Assignment 8.

This homework is due *Thursday*, October 24.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper and *credit your collaborators*. Your solutions should contain full proofs. Bare answers will not earn you much. Extra problems (if there are any) are due December 6.

1. Quick reminder

Simple Approximation Lemma. Let $f: E \to \mathbb{R}$ be measurable. Assume f is bounded on E. Then for each $\varepsilon > 0$, there are simple functions φ_{ε} , ψ_{ε} defined on E such that

$$\varphi_{\varepsilon} \leq f \leq \psi_{\varepsilon}$$
, and $0 \leq \psi_{\varepsilon} - \varphi_{\varepsilon} < \varepsilon$ on E .

Egoroff's Theorem. Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\varepsilon > 0$, there is a closed set F contained in E for which

$$\{f_n\} \to f$$
 uniformly on F , and $m(E \setminus F) < \varepsilon$.

Lusin's Theorem. Let $f: E \to \mathbb{R}$ be measurable. Then for each $\varepsilon > 0$, there is a continuous function $g: \mathbb{R} \to \mathbb{R}$ and a closed set F contained in E such that

$$f = g$$
 on F , and $m(E \setminus F) < \varepsilon$.

2. Exercises

- (1) (3.2.12) Let f be a bounded measurable function on E. Show that there are sequences of simple functions on E, $\{\varphi_n\}$ and $\{\psi_n\}$, such that $\{\varphi_n\}$ is increasing, $\{\psi_n\}$ is decreasing and each of these sequences converge to f uniformly on E. (*Hint:* Use Simple Approximation Lemma.)
- (2) (3.2.21-) For a sequence $\{f_n\}$ of measurable functions with common domain E, show that $\inf\{f_n\}$ and $\sup\{f_n\}$ are measurable. (*Hint:* Express sup and inf as limits of appropriate sequences.)
- (3) (3.3.26) Lusin's theorem provides that f equals to some continuous g at points of a set F. Must f itself be continuous at any point (as a function on E)?
- (4) (3.3.27) Show that the conclusion of Egoroff's theorem is false if we drop the assumption that the domain E has finite measure. (*Hint:* Take a function f that is zero on \mathbb{R}_{-} and nonzero on \mathbb{R}_{+} , consider $\{f(x-n)\}$.)
- (5) (3.3.29) In-class proof of Lusin's theorem used finiteness of measure of E. Taking the case of finite measure for granted, prove Lusin's theorem for the case $m(E) = \infty$.
- (6) (3.3.31) Let $\{f_n\}$ be a sequence of measurable functions on E that converges to the real-valued f pointwise on E. Show that $E = E_0 \cup \bigcup_{k=1}^{\infty} E_k$, where all sets E_0, E_1, \ldots are measurable, and $\{f_n\}$ converges uniformly to f on each E_k if k > 0, and $m(E_0) = 0$.

1