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Abstract 
We present a methodology to detect unusual trading activity defined as high price movement with relatively little volume traded. The analysis is applied to high-frequency transactions of thousands of equities and the probability of price recovery in the 
proximity of these rare events is calculated. Similar results are obtained when analyzing commodities with different expiration dates. The propagation of rare events in the commodity structure and the liquidity problems are addressed. 
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Specific objectives of the study 
• Develop a method to detect large price movements corresponding to small volume of shares traded. 
• Analyze the evolution of price after these unusual events and study the probability of price recovery. 
• Estimate the expected return if a trade is placed at the detected event. 
• Analyze rare events propagation in futures with several expiration dates. 
• Liquidity considerations using rare events & aggressor indicator  

Methodology 
In this analysis we use tick-by-tick data of 5,369 equities (TAQ), US and EUREX futures. 

Comparative Study of Equity Groups  
We analyze the change in price from the volume perspective. We classify stocks into classes based on the average daily traded volume. 
We refer to this classification as the multi-scale volume classification of the 5,369 stocks considered in this study. 
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Class Average daily volume (shares) Number equities 

1 1,305 

2 Small-Vol Stocks 1,088 

3 Mid-Vol Stocks 2,117 

4 Large-Vol Stocks 799 

5 Super Equity 60 
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Application to Futures  
The Rare Events Detection is implemented for several expirations dates of the same underlying futures contract. The propagation of the 
rare events in the future structure is influenced by the trading activity and results in asynchronous behavior. 

Comparison of Rare Events Detection with other, computationally expensive Algorithms 
The detection of Rare events is compared with p-level points generation and zonoid trimmed regions method. 
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The most liquid future (black line), Aggressor Indicator 
(purple line), for 4 different days. These two are strongly 
correlated, but the later is not visible to traders. Rare 
events are capable to detect sharp liquidity drops (bid or 
ask) by only analyzing the price/volume movement. 

The 3D image on left represents the joint distribution 
of volume and price movement. The total number of 
pairs used for this distribution is 159,583. This is an 
extremely large number of data points to be calculated 
and analyzed for every stock and for every day. 

To further simplify we retain only the 
maximum price movement with 
respect to change in volume for each 
window with             . Consequently, all 
the analysis that follows is based on 
the following distribution: 
 
 
For example for IFF stock, we obtain  
1,570 observations for                shares,  
1,562 observations for                shares, 
1,544 observations for                shares. 
 
The proposed sampling technique 
generates new distributions that share 
similar behavior of the tails and 
provides a computationally feasible 
approach to this analysis. 
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Visualization of the 
quantities used in 
the study 

Table 1: Asset Classification   

Three futures (different expirations) on the same commodity. 
Blue line indicates unusual increase in price relative to the volume, Red 
unusual decrease. Open Pit trading hours are between the yellow lines.  
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