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ABSTRACT: The objective of this paper is to investigate a class of general tire models 
that provides results suitable for usage in vehicle dynamics. Tire models currently used 
for vehicle dynamic analyses are overly simplistic (springs, a spring and damper 
combination or semi-elastic substance) or based on curve fits of experimental data. In 
contrast, the tire models used by major tire companies are extremely complex with 
solutions possible only by finite element analysis. Between these two extremes exists the 
potential for an elasticity based shell theory tire model. Micro-mechanics and composite 
laminate theories provide an integrated approach to the macroscopic behavior of the tire 
carcass and the tread support plies. This methodology has the capability of including 
centrifugal and friction forces. Finite difference methods are applied that produce reliable 
and accurate solutions of the tire response.  
 

Table of Nomenclature 
 
eφ, eξ, ez – unit vectors 
hk – layer thickness 
pφ, pξ, pz – surface load components 
n – number of layers 
u, v, w – displacements components 
A, B – Lamé parameters 
Aij , Bij , Dij – stiffness coefficients 
Kφ, Kξ, Kφξ - change of curvature 
Nφ, Nξ, Nφξ – force resultants 
Mφ, Mξ, Mφξ - moment resultants 
M(φ), M(ξ) – moment resultants 
Qij – reduced stiffness matrix components 
Qφ, Qξ - shearing forces 
R1, R2 – radii of curvature 
T(φ), T(ξ) – force resultants 
εφ, εξ, γφξ - strain components 
φ, ξ, z – curvilinear coordinate system 
σφ, σξ, τφξ – stress components 
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Introduction 
 
The single most important external excitation of a vehicle is the profile of the terrain. The 
tire and suspension system translates the profile into motions of the vehicle mass. 
Lumped parameter springs and dampers model the suspension system relatively well. 
However, such systems fail to capture the observed tire performance in vehicle dynamics 
models. In very simple models, the tire is modeled as a stiff spring of a somewhat 
arbitrary spring rate. Representations that are more complex admit different 
configurations of springs and dampers representing the Maxwell and Voight tire visco-
elastic responses. Even more complex formulations are represented by multiple spring 
models including the “brush” model. However, experimental results have not in general 
confirmed the accuracy of these models. Another approach is to measure and curve fit 
experimental data. This method, particularly with the four-parameter Pacejka model, is 
quite successful in producing reliable results. However, the results are very specific to the 
tire measured and are difficult to generalize.  
 
There is a need to have a tire model based on the principles of physics of the tire 
composite model that correctly translates the profile and properties of a terrain surface 
into forces experienced at the axle of a vehicle as the vehicle moves on terrain. The 
development of scientific tire models is a requirement for significant improvements of 
modeling quality. The ability the model to be predictive over a broad class of movements 
and profiles is essential to modeling future vehicles and designing future vehicles using 
the advanced capabilities of the computer. 
 
In this vein, this paper describes the work performed to develop a general shell theory 
model of a tire. The initial work builds on a small deformation linear shell theory first 
successfully applied by Brewer in the early 1970’s. However Brewer was unable to 
progress on his model as the computational capabilities that existed at that time were 
limited as compared to computers today. This model was extended to include twisting 
that could not be modeled in the 1970’s. Furthermore, the work described in this paper 
builds towards a large deformation, nonlinear tire model, which is under investigation. 
 
 
Tire Model Formulation 
 
A curvilinear coordinate system was constructed on the tire mid-surface. This is 
represented in Fig. 1. The local coordinates used to describe the tire system are φ,  the 
meridian direction that varies along the cross section of the tire, ξ, the circumferential 
direction, and z, normal to the surface. Note that the apex of φ is at the tire rim. This 
avoids a mathematical discontinuity if the apex were in the center of the cross section as 
it is in most toroid shell analyses. The global system of coordinates is represented by 
XYZ. 
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Figure 1: Tire coordinate system and displacements 
 
The geometric strain-displacement equations from shell theory are: 
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where A and B are the Lamé parameters, R1 and R2 are the principal radii, u, v, and w are 
displacement components and εφ, εξ, and γφξ, are strain components and Kφ, Kξ, and Kφξ 
are changes in shell curvature. 
 
The Lamé parameters and radii of curvature are related to one another by Codazzi and 
Gauss conditions: 
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The three dimensional carcass of the tire is reduced to two dimensions by modeling all 
loadings at the middle surface. A major assumption in developing a shell theory is that 
the critical dimensions of length and radii are much greater than the thickness of the shell. 
This is true with a tire. The carcass thickness for an automotive tire is of the order of a 
few tenths of an inch while the radii involved are greater than 4 inches. The assumption is 
less valid for the tread, which is of the order of an inch but still within the range of 
acceptable error. Another measure is that the thickness be small compared to the lengths. 
The meridian lengths for an automotive tire are greater than 8 inches while the 
circumferential lengths are much larger. Consequently, forces and moments load the 
middle-surface and are placed in at the middle surface. The stress resultants and stress 
couples are presented in Fig. 2. 
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Figure 2: Shell stress resultants and stress couples with transverse forces resultant 

 
The internal forces and moments acting on the differential element will be replaced by 
equivalent couple force systems consisting of resultant forces T(φ) and T(ξ) and resultant 
couples M(φ) and M(ξ) as shown in Fig. 3. 
 

 

Figure 3: Couple-Force System 
 
The forces and moments in the in the φ direction are 
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The forces and moments in the in the ξ direction are 
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The resultant forces and moments acting on the opposite faces φ and φ+dφ, as well as ξ 
and ξ+dξ have opposite signs. The surface load is expressed as a distributed pressure: 
 

zzepepepp ++= ξξφφ         (6) 
 
When placed in equilibrium, the system of equations produced is 
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A typical tire structure consists of a system of layers bonded together. The individual 
plies have various angles in a prescribed sequence. The classical lamination theory 
assumes that the orthotropic layers are perfectly bonded together with an infinitely thin 
bond line and the deformations across the bond line are continuous [1-3]. Generally, the 
multi-ply systems twist and bend when subjected to simple tensile load. An out of plane 
twisting of the laminate structure is observed when two plies with opposite angle are 
bonded together. The result is a combination of bending and stretching of the laminate. 
 
The development of the constitutive properties for the tire follows Walters [4]. The 
constitutive equations for an anisotropic layer have the following expression: 
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The stress resultants and moment resultants per unit width of the cross-section acting at a 
point in the laminate are determined by integration of the stresses for each ply. Separating 
the continuous integrals over each of the n layers, the stress resultants are expressed as 
the sum of n simple integrals. 
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Finally, the constitutive equations are: 
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where: 
 
[Aij] is associated with in-plane extension, contraction and shear, 
[Bij] is associated coupling effects between bending and stretching, 
[Dij] is associated with bending and twisting. 
 
The system of geometric strain-displacement equations, equilibrium equations, 
constitutive equations, and boundary conditions describes completely the behavior of the 
tire. Two additional simplifications, Nφξ = Nξφ and Mφξ = Mξφ , reduces the system to 17 
equations and 17 unknowns: 
 
 .,,,,,,,,,,,,,,,, wvuQQMMMNNNKKK ξφφξξφφξξφφξξφφξξφ γεε       
 
 
Strategically, this system can be solved in two ways. In the first method, the forces and 
moments in the equilibrium equations are replaced by the displacement components, 
which (after applying the constitutive relationships) results in an eight order, three partial 
differential equations, system that is solved for the displacements. In the second method, 
the displacements are replaced in the geometric compatibility equations by the forces and 

 7



moments resulting in an eight order, six partial differential equations, system, which is 
simultaneously solved for the forces, and moments. In this work, the first method is 
employed. 
 
Numerical method 
 
It is highly unlikely that an analytical solution to the equations exist due to the nonlinear 
terms. Therefore numerical methods must be used to solve the equations. In this analysis 
a finite difference approach was selected as the geometry is relatively simple. The partial 
differentials were replaced with their central difference approximations: 
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The program code was written using Mathematica™ software. The advanced 
performance of the symbolic computation of the software package and the advanced 
mathematical tools offered were the main reasons of choosing this software package. An 
additional benefit Mathematica™ is the ease of converting the finished program into C 
for faster performance. 
 
Results 
 
The Brewer tire cross section with a stiffness matrix corresponding to a radial tire was 
analyzed using various internal pressure configurations.[5] Brewer was chosen as it 
established an effective standard by which to compare this work. The Brewer tire is a 32 
X 8.8 Type VII aircraft tire inflated to 95 psi.  The stiffness coefficients are 
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where Aij[lb/in2], Bij[lb], and Dij[in*lb]. 
 
The boundary conditions were set along the rim edges. Displacements were fixed at zero 
as the tire bead is assumed rigid under the deformation levels imposed. The tire wall was 
allowed to rotate with the bead as a center. Rotation normal to the bead was also fixed at 
zero.  
 
Displacements of the cross-section at 95 psi for both this model and Brewer’s model are 
shown Figure 4. At the crown of the tire, the results are exact. However, in the sidewall, 
there is a pronounced difference between these results and Brewer’s results. We believe 
the results of this model are more accurate as Brewer’s model does not significantly 
deviate from the original shape until midway along the carcass. 

Comparison of tire profiles at 95 psi

[in]
Uninflated Tire Profile

14

Brewer’s Solution

13 This Solution

12

11

10

-4 -2 2 4 [in] 

 

Figure 4: Cross sections comparing solutions 

 
 
φ along a cross section was set to 61 nodes (~4-degree increments). While Brewer did not 
perform computations in the ξ direction, the value of ∆ξ was set at 2-degree increments. 
The computational time needed to produce these results using a Windows based machine 
with a Pentium 4, 3.4 GHz processor, was 121 seconds for a solution.  
 
The analysis of deformations is presented in Figure 5. The centerline of the cross section 
is at node 30. This corresponds to an angle of 90 degrees about the Y axis of the problem. 
Both u and v change signs because the direction changes from positive to negative as the 
analysis traverses the midpoint of the cross section. Also note that the deformations are 
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small as expected with in the tire section. The outward deformation represented by the w 
direction is greater, also as expected. The maximum value is achieved along the Z axis as 
the tire boundary condition at the rim is fixed. Brewer did not present the deformations in 
his work. 
 
Figure 6 shows the representative strain and shear components. The strain in the 
meridian, εφ, is greatest in the sidewall of the tire structure while the hoop strain, εξ, is 
greatest at the crown of the tire. The shear in the surface, γφξ, is quite small and decreases 
from the tire bead. The strain values are very similar to Brewer in shape although about 
an order of magnitude less.  
 
Figure 7 presents the membrane forces and moments computed. The forces computed 
here differ significantly from those reported by Brewer. It is quite possible that there is 
typographical error in the labeling of his graph, as the forces listed in Appendix of his 
earlier published thesis [8] are two magnitudes greater than those presented graphically in 
his paper [5]. The membrane forces appear to be correct in both shape and magnitude; 
however, the moments in the sidewalls are somewhat unstable in these computations. The 
cause for the instability has not been identified although they do not have a major effect 
on the solution found. It should be noted that the magnitude fluctuations appear in 
Brewer’s work as well although not as pronounced as here. The inter-ply forces grow to a 
maximum in the tread region while the twist reaches a minimum value in the tire crown. 

 
Deformations at 95 psi 

 
Figure 5: Analysis of deformations 

 
 
 

Strains at 95 psi 

 
Figure 6: Analysis of strains and shear 
 

Forces and Moments at 95 psi 
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Figure 7: Analysis of forces and moments 

 

Conclusions 
 
The results paralleled Brewer’s work, although the solution method used were 
considerably different. Where as Brewer solved the equations with Kalnin’s shooting 
methods in a two dimensional framework, this analysis used a direct finite difference 
method. We believe the model as presented is reasonably correct in predicting the small 
deformations of a tire as it has been validated against a well known and public accessible 
benchmark in tire science. 
 
The success in solving a linear shell theory in three dimensions using a finite difference 
scheme is a major step towards completing the overall objectives of this project. The 
method shown here is suitable for extending the work to large strain, nonlinear shell 
model whereas a solution method such as Kalnin’s would have proved difficult in 
multiple dimensions. This project, while still in progress, demonstrates that physics based 
tire model can be solved within reasonable computation time and power to provide force 
inputs to a vehicle dynamics model. Future work planned at this time includes building 
and solving the finite strain model and imposing the road forces including friction and 
load onto the tire. 
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