ME 345: Modeling &
Simulation

Introduction to Finite Element Method
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Why use the finite element method?
(FEM, FEA, FE, etc)

« One of the most commonly used methods of stress analysis
< Versatile computational tool

+ Discretize (i.e. approximate) complex problems for which
analytical solutions are difficult/impossible

+ Increasingly easy to obtain results, but... are the results
meaningful? (GIGO)

< SolidWorks/CosmosWorks, ProE, others... solid models
directly into FEM analyzes

«+ More complex finite element packages available
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Discretization (Meshing)
i

+ Discretize a region into a finite number o
of elements (hence, FEM) smas
<+ Nodes:

= simple definition: where elements meet
= More complex definition:
+ Solve appropriate systems of equations . L
given appropriate constraints

1

+ Assume linear elastic, static analysis

<+ Small displacements (negligible chance
in geometry)

<+ Response of the structure is static
< Linear elastic material 6
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Linear Static Stress Analysis

+  Following conditions must be satisfied:
1. Equilibrium
YF=0

YM=0

2.  Linear stress-strain law

f=kx Linear elastic spring
o= E¢ 1D stress-strain law

3.  Compatibility (strain-displacement conditions)
v Continuous displacements
v No gaps/overlaps in the body due to displacements
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Element stiffness matrix: 1D spring
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Assembly of global stiffness matrix

X Again, need to ensure: compatibility, equilibrium, and stress-strain relationships

& Note that the global stiffness matrix is BC independent!
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Enforcement of boundary conditions

The global stiffness matrix is boundary condition independent. The same “mesh” can be
used to solve a class of problems of similar geometry.

Boundary conditions: prescribed displacements and external forces at the nodes.
Multiple methods of accomplishing this. Computationally, want the most efficient method.

10
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Example problems: 1D spring

Three problems using the same global stiffness matrix, but the matrix algebra is different
after accounting for the BCs.

Note: statically indeterminate “problems”... not a problem because additional geometry
constraints are included in the finite element derivation.

11



Element stiffness: 1D rod

A rod element is a one dimensional element similar to a spring.
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Element stiffness of a 1D rod (K,) 12
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Numerical example

< Once the element stiffness is determined, continue with the same steps as for the spring examples:

& Assemble global stiffness matrix
& Enforce boundary conditions
% Matrix algebra
F = 1000 lbs

Al=1in% A2=2in?
El=1*107 psi, E2 =2 * 107 psi
L1=10in,L2=51n

Al,El,L1 =——pF

A2,E2,L2

<  Other variables can also be determined (strains, stresses, etc.) 13
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Icicle Problem (simplified)

< Analytical solution, compare with FE code (Matlab)
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Icicle Problem (more complex)
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Stiffness method for 2D truss

—]Ac.\'l | ] 1 0 -1 0- P(;;.tl |
A P Element stiffness

{ f}l }_ A_E 0 0 0 0 {d_y] } in the element coordinate system.
fur L'-1 0 1 0hd,

f\'] | L 0 0 0 0~ b(}.\'f )

16



oW, |

Global Stiffness 2D truss elements
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L (This is what we will want to use!) 17



Two dimensional example
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