ME345 — Modeling and Simulation NAME: IC E\{

Fall 2005 '
December 9, 2005

NOTE: For the final you may use up to five (5) 8 112" by 11" sheets of notes that you
have prepared in reviewing for this test. You MAY NOT use review sheets that have been
prepared by others in the class.
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PROBLEM 1.
An often used formula in the area of vibrations is that the natural frequency w_ of a

spring-mass system such as that shown in Figure 1 is given by

- i {Equation 1)
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where k is the stiffness of the spring and M is value of the mass at the end of the spring.
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Figure 1. One degree of freedom spring-mass system.

In actuality, such an expression only holds when the mass of the spring negligible (what
some call a massless spring). If the mass of the spring is NOT negligible, the natural
frequency of the system can be written in terms of the equivalent mass such that

gy ™= 1||I:;;- » where M, =M +m/3 {Equation 2)
=5

is the equivalent mass of the system, M is the mass at the end of the spring and m is the
mass of the spring.

[ I. For any spring-mass system, how will accounting for the mass of the spring affect
| the derived natural frequency of the system?
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2. Show that the “limit case” of Equation 2 provides the expression shown in
Equation 1.
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\ /3. What is the ratio of (M/m) such that the natural frequencies predicted in Equations

(1) and (2) agree within 1% for the same spring constant of the system. Prove that
your result is correct.
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PROBLEM 2.

In the design of a heat sink the geometry of the symmetric fin shown in Figure 2 is to be
optimized. Specifically, you are given the task to minimize the volume of the fin given
the constraint that the “exposed” surface area (i.e. not including the bottom surface area)
of the fin must be = 20 mm®. The range of variables for the fin top (d1), bottom (d2), and
height (h) are givenin  Figure 3.
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7 Parametars that can adjust !
8 iparamater value min max... . . o ; -
9 di 0.1 0.1 0,3 :width of top of heat sink triangle
(10 d2 15 1.5 2.5 base of the heat sink triangle
ilih i 3 S 15 height of the heat sink triangle
12 i
13 [constraints 1 want the surface area of the fin => 20 mm~3
14 .20 Minimum acceptable surfaca area of the fin
| 16 |Equatigns—rthgse are the equations describing the enclosed volume and surface ares
L7 " - ... Enclosed volume cfthe fin | e
18] 1019792497 TUUN | Surface area of thefin T
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Figure 3. Excel optimization study for the fin design.
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\k"‘ 1. Identify and derive any equations necessary to solve this optimization problem
using the Excel solver tool. (Hint: recall that ¢ = Va® + b*)

( Apihe = 101915 v/
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2. Explain in words (or alternatively using Figure 3) how to solve this multivariate
problem using the Excel solver tool.
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PROBLEM 3.
In class we have discussed the element stiffnesses for both a spring and a rod element,

which are given as:

. . . 1 -1}|4 F
Spring element stiffness matrix: k =
-1 1|4, F,
1 -l1i(d F
Rod element stiffness matrix: AE P hod 1
L (-1 1||d, F,

We will now consider the torsional element (also referred to as a torsional spring) shown
in Figure 4, which has the element spring constant given below

JG|1 -1}[6, 1
L|-1 1|68, |z
where J is the polar moment of inertia, G is the shear modulus, and L is the element
length. Note that the torsional spring stiffness relates nodal angle of twist 6 to the nodal

applied torque T.

Figure 4. Torsional spring element.

Hint: recall that for a solid cylindrical rod the polar moment of inertia is given as
J =L1xr® where r is the radius of the rod. Be careful with units!

For the problem shown in For element 1: r1 = 2 inches, L1 = 2 ft, G1 = 3 * 10° Ib/in’
For element 2: r2 = 1 inch, L2 = 1 ft, G2 = 3 * 10° Ib/in’
Figure 5a (clearly show and label all work):
1. assemble the global stiffness matrix.
2. solve for the angle of twist at node 2.

3. justify your analysis by considering the angle of twist for a torque of 200 Ib*ft
applied on only element 1. (i.e. see Figure 5b)
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For element 1: r1 = 2 inches, L1 = 2 ft, G1 = 3 * 10° Ib/in’ %_’

For element 2: r2 = 1 inch, L2 = 1 ft, G2 = 3 * 10° Ib/in’

Figure 5a. (left) Torsional problem via the finite element method. (right)
Comparison problem.
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PROBLEM 4. The Matlab code below was used in class to implement the finite element
method to solve one dimensional problems with rod elements. Edit the appropriate lines
of code to solve the previous problem where 1D torsional elements are used. Be sure to

use consistent units!

T =200 Ib*ft

0y
® ©)

1 2 3

For element 1: r1 = 2 inches, L1 = 2 ft, G1 = 3 * 10° Ib/in’
For element 2: r2 = 1 inch, L2 = 1 ft, G2 = 3 * 10° Ib/in*

% One dimensional finite element program
% Frank Fisher, Stevens Institute of Technology
% Modeling 345, Fall 2005
%
% INPUT DATA
% this data automatically describes a line of 2-node elements
% with support conditions at both ends and a uniform load, the
% number of elements can be varied by changing numele
clear;
cle;
disp('This code was originally written for a 1D rod element.");
- disp('Stepped rod problem");
numele=7;'¢.
numno numeIe+1
2-[083048% L O ’-’—’+ 3¢]
|-node=[1:numele; 2: numele+
m&=£+—9—5*6"35‘j‘ k ’fT ﬁ
[~ yourg-f266;+60,20]; & wrt C 1]
% support conditions, ifix(i)= 1 1f node i1is fixed, else zero
ifix=[1,zeros(1,numele)];
ifix(numnod)=1;
_-% applied forces
foree=f0;RE-30,-804; ve = [0 200%il,0
% DO NOT EDIT BELOIA;;HIg LINE C 4 / j
{rest of code follows}
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