ME 345: Modeling and Simulation

Matlab notes

Part of the material covered in ME 345 Modeling and Simulation is programming in Matlab. While ME 345 is NOT a programming class, programming is covered in ME 345 because:

1. Programming is a natural activity of engineers, and all engineers should be competent in being able to use a computer code (such as Matlab) to solve a problem.

2. The act of taking a problem and representing it in a way which can be tackled via a computer program is one form of modeling which engineers do.

3. Troubleshooting and verifying a computer code in many ways mimics the manner in which one must troubleshoot a model to ensure that it is properly describing the characteristics of a system.

Matlab has been selected as the programming language for ME 345 because of the belief that it is the easiest programming language to learn and, more importantly, to troubleshoot for programming errors. While the syntax of Matlab may differ from other programming languages, the ability to represent the problem in a manner compatible to solving via Matlab is a generic skill that readily transfers to other programming languages should the syntax of that language be known.

Because this is not a programming class, most computer-programming topics that would likely be covered in typical programming classes offered by other departments will NOT be covered in this class. The goal of this class is to use Matlab as a tool with which to solve problems. Students are encouraged to use proper programming techniques when applicable. The focus of the class is on developed functional codes which perform as required.

General hints for programming:

1. Spend the time to properly frame the problem and think about the proposed plan of attack before starting to program. Outline/sketch how the program will be developed and key steps in the solution BEFORE developing the program; it will save you time later in the programming process. (Computer programmers might call this psuedocode)

2. Break the code into smaller components and make sure that each subcomponent is working correctly. Dividing the tasks into smaller sub-tasks makes it easier to identify where problems in the code are and how they can be corrected.

3. One key benefit in Matlab is that you can cut/paste a line or group of lines from the program (the M-file) into the “Command Line” to test that it is working properly. This feature makes it much easier to identify that lines are working as expected. Take advantage of this feature.

4. Don’t be afraid to tackle challenging aspects of the problem (that you have identified in your subcomponent breakdown) first. For example, in a Cash Registrar homework assignment where the user is asked to calculate the ‘most sensible change distribution’, many would say that the most challenging aspect is the calculation of the change. One could start at this stage, and save the more straightforward ‘input’ aspects of the code for later.

5. Don’t overcomplicate your code. For the Cash Registrar problem highlighted above: do you need 17 menu items to show that your code works? What if you only had 2 items that the customer could choose from? Would seem trivial to add more items later if desired…

General Programming Suggestions

1. Always develop some sort of pseudocode that lays out how you will be attacking the problem. A little extra time at the beginning thinking through the process will be time well spent.

2. Break up complicated, larger codes into ‘sub-codes’ that you can tackle individually. Be sure that these individual sub-codes are working properly before adding them into the larger code. It is much easier to troubleshoot 20 lines of code than it is to troubleshoot 200 lines of code. Functions and/or subroutines can be extremely useful in this regard.

3. Keep your code organized and clean, with sufficient white space. This makes it easier for other people to review your code.

4. Use comment lines! Use comment lines! Use comment lines!

5. Be aware of Tunnel Vision. Once you keep looking at the same code for so long it is very easy to overlook simple mistakes because you are seeing what you think is there rather than what is really there. This can be particularly difficult to find (for example, perhaps using the wrong variable name). When I find myself in these situations I have found the following helpful:

a. Walk away from the code (at least momentarily)! Take a break, work on another assignment, etc. Sometimes just taking a little break can make a world of difference, and when I come back to the problem I almost immediately find the error. (This is one reason why you CANNOT wait until the last moment to start a programming assignment.)

b. Sometimes I will literally re-write the code (or I effect the ‘sub-code’, see Comment #2 above) from scratch. This can usually be completed faster as you have already gone through the coding process once (sometimes I cut/paste individual lines). Sometimes one needs to take one step backwards to take two steps forward.

6. For some multimedia demos developed by Matlab, you can click on the ‘blue question mark’ in the toolbar at the top of the Matlab Command window (highly recommended!)

7. Be extremely careful when working with a colleague in the class that you are not inadvertently plagiarizing their code. You must be the one programming your own Matlab code. Be warned that it is very easy to watch someone program, but be stuck when it is your time to program on your own.

8. Enhancing your programming skills is like any sort of practice – it requires time, effort, and sweat. If you don’t put the appropriate effort into it, you wouldn’t advance very far.

9. Use common sense when checking that your results make sense. If took 23 guesses for a computer to randomly generate a number between 0 to 1 from a uniform distrubution that was greater than 0.5, does this seem reasonable? [Hint: it should not seem reasonable; think of flipping a coin 23 times…]. Now, there is a chance your code is correct and you have observed a very rare statistical anomaly, or there could be an error in code [such as not clearing the guess variable]. How could you tell between the two? [Hint: what sh/would happen if you ran your code again?]
Partial list of Matlab commands that might be of use (to add suggestions of commands to add for future versions of this list, please email comments to ffisher@stevens.edu). Also note:

- File name convention. To ensure that there are no problems with your file names:

1) only one word (no spaces);

2) only lower case;

3) do not start the name with a number (i.e. 1st_code.m)

	helpwin
	brings up the “Help” window; useful to find commands

	help command
	provides information on the use of a particular command. For example, typing “help length” at the command line will provide information on using the command length

	clear
	Clears all variables in memory. This should be done at the beginning of every code

	clc
	Clears the command window

	close all
	Closes all Figure windows

	CRTL-C
	Kills a command; useful if never-ending loop (may be slightly different on a PC)

	%
	Comment indicator; everything to the right of the ‘%’ on a line is ignored by Matlab

	.* .^ ./ etc
	The period in front of the arithmetic sign denotes ‘element by element’ arithmetic. This is necessary because Matlab assumes matrix operations by default. Thus if A = [1,2,3] and B = [7,8,9], A*B will give an error since you cannot multiply two matrices that are 1x3.

	;
	At the end of a line, it suppresses output to the command window

	who
	Lists all variables in memory

	Disp(‘text’)
	Will write text to the command window.

	‘
	Transpose of a matrix

	X=start:step:finish
	This will give a 1 x n matrix of values between start and finish incremented by step. For example, x=0:.5:1 is the same as x=[0,.5,1]

	rand
	Gives a random number between 0 and 1

	length
	Gives the length of an array

	size
	Gives the size of a matrix

	For, while, if
	Standard programming statements

	
	

	menu
	

	Fix
	

	input, inputdlg
	

	idivide
	

	msgbox
	

	struct
	

	mod, floor, ceil
	

	round, roundn
	Note: roundn appears to be new starting 2010b version of Matlab

	ismember
	

	randperm
	Try randperm(49) – useful for the Lottery problem?

