ME345 — Modeling and Simulation NAME: K 6 y
Professor Frank Fisher

Spring 2006

May 3, 2006

“I pledge my honor that I have abided by the Stevens Honor Code.”

NOTE 1: For the final you may use up to five (5) 8 1/2" by 11" sheets of notes that you have prepared in reviewing
Jor this test. You MAY NOT use review sheets that have been prepared by others in the class.

NOTE 2: This quiz counts for 20% of your grade for the course. Other components of the final grade are the three
Case Studies (20% each), and 20% for homework and class participation.

PROBLEM 1. (15 points)

x In accord with the Stevens Honor code, I will complete (or have already completed) the
online course evaluation for ME 345 at http://www.stevens.edu/assess. (Check to confirm.) (3 points)
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b) Briefly discuss the utility of analyzing the maximum von Mises stress in the context of a stress

analysis. (6 points)
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¢) For a particular two mass - two spring ki ml k2 m2
system, the state equations for the velocities of W
the masses as a function of time were found to %

be:
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Find one set of values for a, and b, that will result in a normal mode behavior of the system. In this
case, if the velocity of mass 1 is —5m/s (i.e. v,,,=-5m/s), what will the velocity of mass 2 be? (6

points)
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PROBLEM 2. (18 points)

The geometry of the open-top, square-base container (shown in the Figure) with a base dimension of a
and height ¢ is to be optimized to provide maximum volume while having a surface area less than or
equal to 4 m”. The range of variables for a and c are to be between 0.1 and 1 m.

et R STl S RS TS - PGS R - RRe: el R ; o
glidfrantebober . .ol o o o T
& ME345 - Fall 2005
.3 lop fon of the container g try

Open to 5 ‘

PRAOR -3 [NOTE: all unitsin meters

6
7 _Parameters that can adjust
8 | parameter value min max description
[]

8 a 0.5 0.1 1 width of the square base

" 10 < 0.5 0.1 i height of the container

¢ AL

a 12 Constraints : here list additional constraints
13 4 Constraint
| i4
a 15 |Equations : these are the equations describing the enclosed volurme and surface area
i6 1.25 surface area of the container

1r 0.125 !nclosed voluml of the container
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b) Clearly describe in words (or alternatively using the Figure on the right) how to solve this
multivariate problem using the Excel solver tool. Clearly identify where how the equations above
are used within the spreadsheet. (6 points)
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c) Neglecting the constraints on the values for a and ¢ above, one could solve analytically for the
value of a that satisfies the optimization problem (do NOT solve). Will the optimized volume in
/Z) this case (found analytically) be greater than, less than, or equal to that found through the Excel

solution in Part B above? Why? (6 points) ‘-)L‘ﬁ(
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PROBLEM 3. (26 points)

Consider the 1D problem below (x-direction), where gravity effects are negligible. Prior to the
application of the external forces, springs 1 and 3 are at their unstretched (equilibrium) length. Be

consistent with units.

In the figure below, k1 = 10 N/mm, k3 = 20 N/mm, and A,E,/L,=50 N/mm, whereas the magnitudes of
the forces F2 and F3 are 100 N and 90 N in the directions shown in the Figure, respectively.
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Recall that the element stiffnesses for a sprmg element and a rod element are as given below:

spring rod
P 1 -1j|d, ~ 7 AE| 1l -1}|4d, F,
d,| |F, L -1 1||d,] |F

-1 1
a. Clearly identify the nodes and elements on the Figure above. (1 point)

b. Assemble and clearly label the global stiffness matrix. (7 points)
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c. Solve for the unknown nodal dlsplacements in the problem. (7 points)
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d. Identify which, if any, elements are in compression. (4 points)
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€. What is the deformation of the rod due to the application of the applied forces? (4 points)
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f.  What is the internal force in Spring 1 due to the application of the @m
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PROBLEM 4. (26 points)

The one-dimensional problem shown at right
consists of 3 springs (labeled 1, 2, and 5) and 2
masses (labeled 3 and 4). Standard notation and i }
labeling of the system parameters (i.e. k, is the
spring constant of spring 2) is assumed.

a. Derive the first order state equations for the
system. Clear and legible work will be eligible
for partial credit. (20 points)
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Assuming that your first order equations above are correct, one could show (you do NOT need to do this
here, although it would allow you to check your solution to the first part of the problem) that the
equivalent second order system can be written in matrix form as:

(k + k) &
i 2 il
vy k, ~ (k, + ks)
m, m,

Further assuming that k,=1, k,=2, ks=4, ms=1, and m,=2; for a particular set of initial conditions one can
show that the state equations for the system can be written as:

_ PslF) ~ 1 1 }
- {w)} - [0_707}(cos(ﬁr)) ‘ [_0.707](3 sin(Aa1)

b. List a complete set of initial conditions necessary to provide the system behavior given above. (6

points)
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PROBLEM 5. (15 points)

Consider the problem of a hanging rod subject to gravity as shown below. The rod has a density p, a
modulus E, an original (undeformed) length L, and a constant cross-sectional area A. Assume standard
metric units.

Due to gravity, the rod is subject to a distributed force along its length. However, it has been suggested
that one can model this problem by simply treating the entire weight of the rod as an applied force at the
end of the rod, i.e. W, =pgV =pgAL
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Figure. (left) distributed loading. (right) Weight modeled as a point load.

Discuss the implications of this assumption. How will the solution for the distributed loading case (left in
the Figure above) differ from that of the solution for the point load case (right in the Figure above)?
Discuss in terms of displacements and stresses in the rod, as well as comparison of the finite element
solution to the exact solution in each case (assuming the use of linear, constant stress elements as we have
used throughout the class).
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