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Fundamental Principles ~ Chap. 1

Sometimes only a portion of a stressed body is in compression, as, for exam-
ple, the compression flange of a beam. The danger of buckling may be present here
if sufficient lateral support is lacking. Such action has been the cause of failures and
should be carefully guarded against by the designer'®.

If the load P approaches the critical load P,, Eq. (36) indicates that the stress
becomes infinite. Although there can be no such stress, it is characteristic of column
equations to indicate the buckling phenomenon in this manner.

The hydraulic cylinder with extended piston rod forms a column''.

E——-é 1-19 STRESSES IN ANY GIVEN DIRECTION
The stresses in a body, as found by the equations of this chapter, have definite direc-
tions. It is sometimes necessary to have the stresses at directions other than those
given by the equations.
Figure 1-30(a) shows an element of a plate with the vertical surfaces subjected
to the general two-dimensional state of stress. The element has been cut from a
larger plate so that stresses oy, oy, and 7, represent the effect of the surrounding

{b) Plan view of element
shawn in (a)

(c) Components of stress in
directions i and v clement at any angle ¢

Figure 1-30  Shear and normal stress on

A complete treatment of this subject may be found in the reference works at the end of the
chapter.

"! For design equations, see p. 136 of Reference 3, end of chapter.
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i ¢ element is shown in Fig. 1-30(b). Sup-
g o 0o crlrﬂmaT:.: ..:\, ]aﬂr?:nk:;l:\\:n?{ntll; that it is necessary (o find Fhe values 0[
ne sn'e_s e ca;]] ?J'JCIineJysurface whose normal makes an angle ¢ with th.e X axis
i fiiisl‘:ali clgrln 1-30(c). Angle ¢ is an arbitrarily chosen angle and determines the
as sho &
g ”tl; l: :tl::st ?T:Zust be applied to the cut surface in order to maintain
i ‘AS'Sume mi remainirig portion of the plate. Resultant stress o, can be resolved
2 nents of normal stress o, and shear stress 7, as ,s;ho\w-y )
i comp-oa of the inclined surface is A, then the area of the horizontal side of
l:’] lh\ziﬁl; A sin ¢, and the area of the ver_tical side, A cos ¢. Since ‘lhe_pliate ?l’
e bo‘ { c) is in equilibrium, the projections of the forces on the perpendicular to
Flg~‘lﬂp(tgl ” ;‘f‘acg must be in equilibrium. Multiplication of stress b)’ A and then
lrahctl;cc z;;nf:rimc trigonometric function gives the following equation for o;,:
v

: 2 il
T, = 27, SiNg cOSE + o cOs7p + oysinT

substituti ations
The trigonometric terms should be changed by the substitution of the equ
g
involving the double angles. Then,
o, toy, O~

SR BB Tay SN2 (37)
a="" 2

1f the element in Fig. 1-30 is cut at 90° to the direction in ske[cl"x (c)? su.mmanou of
the forces will give the equation for the normal stress in the v direction:

oyt Ty Ty — 07

_ L c0s2¢ — 7,, sin2e (38)
oy 2

. . " i
Thus, the normal stresses in the material at any desired zu?glc @ can be foun.d:)y ,l:ﬁ
ol l['.l!E above equations. Should the equation give a negative result, the correspond
ing stress is compressive. ) o :

3 In a similar manner, 7, can be found by making the sum of the projections ol
all forces parallel to the cut surface equal to zero. Hence,

Tuw = Tay (08 = ™) = (0, = ) sing cosg

or

X -
Tun = Tyy CO82¢ — - sin2¢ (39)

The shear stress ,, at any desired angle ¢ can tl}us l?e found by Eq. (39). ‘:v]::o:;tsl‘;f]i
result for r,,, means that the stress is directed as in Fig. 1-30(c), and a negaf
means that the stress is directed oppositely. : "

Angle ¢ is positive when taken clockwise from the x axis.
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1-20 THE MOHR CIRCLE

A graphical solution to the combined stress
now be given. Use of this method rather than the
ally effects a considerable saving
signs and directions must be understood and carefully followed.
Figure 1-31 shows the perpendicul;

the inclination of the surface on which thy
sion, to the right of the origin, and nega
are plotted vertically upward or down
stresses at a point in the body,
Stresses oy, and Ty acting on the right and left ed
locate point 4 in Fig. 1-31. Tension o, is plotted to th

(a) Given state
of stress

(c) Stresses on element (d} Principal stresses
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problem known as the Mohr circle, will
previously derived equations usy.
in time. However, certain conventions re,

ey act, are plotied horizontally positive, or (eg.
tive, or compression, to the left. Shear stresses
ward on the diagram. The normal and shear
thus, become the coordinates of a point on the circle,

ges of the plate in Fig. 1-30(b)
e right in accordance with the

Ty = a5in (26 — 2)

/= a[sin28 cos 2¢ — cos 20 sIn 2gh)
T o -,

{ =4 o026 — = g

¥

T
= T4eC08 2ep — —
v ¢ 2

sin 24

o
Normal stress

@ cos (20 — 2d) = a (cos 26 cos 2¢ -+ sin 20 sin 2¢)

N

""{_ T, Tay
= al—zd—- €08 2 + — sin 24

g,
= 5 o8 2 + 7, 5in 2

(e) Maximum shear
stress

oriented at angle ¢

Figure 131 Mohr circle for two-dimensional siress,
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previously mentioned rule. Since shear stress 7, tends to rotate the element il?. .4
clockwise direction, it is plotted upward. Slmsses’ o afld Ty ofALhe upper an§ lower
edges of the plate shown in Fig. 1-30(b) locate point B in Fig. 1-31. Tension g, is plot-
lcdw to the right. Since shear stress 7,, on these surfact_:s tm_-lds to prm_iuc; counter-
clockwise rotation, it is plotted downward._The. Mokr circle is drawn withline A as
a diameter. Greater facility in the detenmnahanuf angles will be obtained if radii
AC and BC are marked x axis and y axis, respectively. o

To find the stresses on an element oriented at angle o, as &hD\\-‘ljl in Fig. 1—:’51(5),
the angle 2¢ is laid off from CA in the same direction as angle ¢ is turned in the
body. Diameter DE is thus located. ‘ . .

" The horizontal projection of CD has the value shown in the figure. thn this
is added to QC, the result is the value of g, as given by‘Eq. (37). The vcrt@al pro-
jection of CD has the value shown on the figure. This is equal to T, as given hy
Eq. (39). It is plain that the coordinates of point D of the cxrclc? are equal to the nor-
mal and shear stresses as found by the combined stress equations. )

Stresses oy, and 7, for the surface in Fig. 1-31(c), whn§e normal lies at angle
(90° + ) from the x axis, are given by the coordinates of point £.

A clockwise angle ¢ on the body corresponds to a clockwise angle of 2¢ on the
circle, and vice versa. .

Values of stresses o, a,,, and 7, change as angle ¢ is changed. The maximum
and minimum values of the normal stresses are called the principal slresscs._and are
designated g7 and o, respectively. Their values can be found from thcAahstl:lssas for
points Fand G in Fig, 1-31(b). The element for the principal stresses is oriented at
angle & (o the x axis as shown in Fig. 1-31(d). As shown by the circle, the value of #
can be found by the following equation:

274y
tan26 = ",i—, for principal stresses (40)
Ty = Oy

The radius of the circle has the value shown. The equations for e and e, are as follows:

oy + a, 0z — O,\2 2
=Ty \/(_) + 7, {41)

to, [fEm—oNT o
o, = U—‘z—’ + \j(z—z— ) + (42)
1t should be noted that the sides of the element for principal stresses are free from
shearing stress. If shear stress Ty should be equal to zero, stresses o, and o, would
become the principal stresses o and o '%

The maximum shearing stress to which the material is subjected has a value
¢qual to the radius of the circle. On the circle, point H is located 90° from points F
and G for principal stresses. In the body, the surfaces for maximum shear siress are
thus inclined 45° to the surfaces for the principal stresses. The element of maximum

2 When the stress consists only of simple tension, it can be designated o rather than o,

i
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shearing stress, as shown in Fig, 1-31(e), is inclined at # to the x axis. As shown by

the circle, the value of #can be found by the following equation:

oy~ 0y

tan2fy = ———2 (43)

2Ty

The value of the maximum shearing stress is

Ty — Oy e
T = =) #fy (#4)

The circle of Fig. 1-31 indicates that at points of maximum shear, such as at 4, nor-
mal stresses oy and o are present whose value is given by the equation

; . 9x +ay !
gl=oh= — (45)

When shear stress ris equal to zero, the radius of the circle or the maximum shear-
ing stress is equal to

1
Tmax = 5 (o1~ ) (46)

EXAMPLE 1-15

P,

Statehient: Let the state of stress at some point in a body be defined as follows:

o, = 20,000 psi, o, = —4000 psi, Ty = 5000 psi

(a} Draw the view of the element for the given state of stress and
mark values thereon.

(b) Draw the Mohr circle for the given state of stress and mark
completely.

(c) Draw the element ariented 30° clockwise from the x-axis and
show values of all stresses.

(d) Draw the element correctly oriented for principal stresses and
show values.

(e

=

Draw the element for maximum shear stress and mark values of
all stresses

Given Information:  The three siress components.
Assumptions: The stresses are in a single plane and are not three-dimensional.
Solution Method: Mahr’s Circle.

Solution Details:

(a), (b). The given state of stress and the Mahr circle are shown in
Fig. 1-32(a) and (b), respectively.

an
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|fo,= —2330psi
l T = 7890 psi @,

{(a) Given state ol stress

\\

S

=
g‘({ﬂ, = —4000 psi

Ty = S000 pst

~. N7
a3y = 5000 psi =

T = 7890 psi

/a 18,330 psi

‘—ﬂ——"/ b J[-rw = 7890 psi

(b) Mohr circle for
given stresses

317'0,‘ = 18,330 psi

~ |
o Pv= ~2330 psi ¥
(c) Stresses at 30° with x-axis

Tonaz = 13,000 psi
s’ = 8000 psi
ay' :/{5000 psi v

(e) Maximum shearing stress

(d) Principal stresses

Figure 132 Solution of Example 1-15 by Mohr circle.

{c) Diameter ECD should be drawn at 60° clockwise Lo the x-axis of
the circle, and stresses o, and o, should be scaled and I'JIaccd on the
element of Fig. 1-32(c). Since point D lies below the u-axis, shear stress
Ty CTO88ES the w-axis of Fig. 1-32(c) in the dircclioy that causes a coun-
terclockwise moment on the element. Likewise,since £ h‘es at?ove the
o-axis, stress 7, crosses the v-axis in skeich (c) in the direction that
causes a clockwise moment on the element.

(d) Principal stresses o and o3, together with their ang,_ie of inclina-
tion, are scaled directly from the circle, and are shown acting on an ele-
ment properly oriented in Fig. 1-32(d). i

(&) The maximum shear stress zn,, and the corresponding normal
stress oy are shown on the element of Fig. 1-32(e}. The arrows are
directed in accordance with the previously explained rules.

The advantages of the graphical method for solving combined stress problems should
now be apparent. Not only is the method more rapid, but the state of stress for any

—

v
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to sliding is smaller than its resistance to separation. Failure takes place by yield-
ing. Many ductile materials share the same yield point for compression as for
tension.

A brittle material is one whose resistance to separation is less than its resjs-
tance to sliding,. Failure takes place by fracture. A limit of about 5% elongation is
usually taken as the dividing line between ductile materials and brittle materials.
Most brittle materials have a considerably higher value for the ultimate strength in
compression than for tension.

Under certain conditions, a material ordinarily said to be ductile will undergo
a fracture or separation failure similar to that of a brittle material. Some of these
conditions are (a) cyclic loading at normal temperatures (fatigue); (b) long-time sta-
tic loading at elevated lemperatures (creep); (c) impact or very rapidly applied load-
ing, especially at low temperatures; (d) work hardening by a sufficient amount of
yielding; () severe quenching in heat treatment if not followed by tempering; and
(f) a three-dimensional state of stress in which sliding is prevented.

C(‘Q} 2:3-PHENOMENOLOGICAL FAILURE THECRIES BASED ON STRESS
7 1

W

4

(\.

All phenomenological failure theories for static stress are based on the use of a uni-
axial tensile or compression test as the simple test.

Maximum Normal Stress Theory of Failure

The hypothesis for the maximum normal stress theory of failure is that failure will
occur in a complex part if any of the principal normal stresses exceeds the principal
normal stress that gave rise fo failure in the simple, uniaxial test. This can be stated
in the following way:

S;‘Pt‘ =5 = S',,_‘,,

Sype = 8y = SVM

Sype = 83 = Syot
These failure equations can be converted into design equations by applying a factor
of safety Ny, to the yiekd Ppoint stresses to get

(1

ype

e D
‘\Z‘J Nis

If this theory is applied to brittle materials, the ultimate stresses oy, and ay, are sub-

stituted for the yield point stresses in the equations. This failurc theory can be
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implemented using spreadsheet Module 2-1, which allows the user to insert the
principal normal stresses and check the inequalities.

Maximum Shear Stress Theory of Failure

The hypothesis for the maximum shear stress theory of failure is that failure will
oceur in a complex part if any of the principal shear stresses exceeds the principal
shear stress that gave rise to failure in the simple, uniaxial test. Since the shear stress
at failure for uniaxial tension is one-half of the normal yield point stress, this failure
theory can be stated in mathematical terms as

_S,VP =(85-5)= Syp

=8, = (5 - 85) =35,

—8y, = (53— 8§) = Sy
These failure equations can be converted into design equations by applying a factor
of safety to get
Sy

= s =]

I

(S-S = - @

- :
7::5 (83— 81) =7~

This failure theory can be implemented using spreadsheet Module 2-2 which allows
the user to insert the principal normal stresses and check the inequalities.

Before proceeding with the development of other failure theories, let us look
at an application using the two that we have already discovered.

EXAMPLE 2-1

Problem Statement: The stresses at a point in a body are o, = 20,000 psi, o, = 4000 psi
and 7, = 6000 psi. If the factor of safety is to be Ny, = 2.0 and the
material is No. 40 gray cast iron, determine if the design is sale by the
maximum normal stress theory of failure.

Given Information: o, = 20,000 psi,
o, = 4000 psi,
Tyy = 6000 psi,
Ny, =20 and

the material is No, 40 gray cast iron.

128 i i
Warking Stresses and Failure Theories Chap. 2
Assumptions: The stresses are biaxial and the material is such that the maximum nor-
mal stress theory of failure is applicable.
Solution Method: Module 1-4, Module 2-1A.
From Tuble 14-16 we abtain ¢,, = —135 i
e = 5,000 psi and &, = i
for No. 40 gray cast iron. ¥ W= iine
Solution Details: To solve ?his problem we must first determine the principal normal
sgresses Since this is a biaxial state of stress, we could use either Mohr's
circle or Module 1-4 to determine these stresses. To use Medule 1-4

Module 1-4

Biaxial Stress Compurations
im(r:uﬁ:;g Hers f?: ohr's Circle)
Lions on how H
: This module finds the principal

10 use this spreadsheet.
L ) normal stresses for a 2-d
stress tensor.

Click here to learn
more about this
spreadsheet.
—_——

Click here 1o look at

a plot of Mohr's
Cirele for the data,
—_—

Click here ta close
tite Molir's Circle
sketch.
—_—

‘The principal normal stresses are:

o= 22,000 psi

.

we need to inse?'l the appropriate stress values into the shaded cells
and the result will be provided in later cells as indicated.

Now lhg\r we have Ehe principal normal stress values of 22,000 psi and
2000 psi, we can utilize the maximum normal stress theory of failure.

Sec. 2-3
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Module 2-1a
murn Normal Stress Theory of Failure
(Brittle Materials)

Click here ta l2am
more about this

Input the Yield point values and the Factor of Safey:

—135000 | psi (Compression Ultimate Strength)
40,000 | psi (Tension Ullimate Strength)
2.00 (Factor of Safety)

Check each of the three equations of the failure theory:

S o g« Su
Mr Nf:

—57,500] = I 22,000 ‘ 3 | 20,000 ‘ Fails
Sy o Su
Ng Ny

—67,500 f = | 2000 ‘ = | 20,000 | Safe
i =5= i
Ny Ny

—67,500 ‘ = i o ‘ = 20,000 | Safe

Since the material is No, 40 gray cast iron, we will use Medule 2-1a,
which is for brittle materials. If we insert the appropriate values and the
principal normal stresses into Module 2-1a, the result will be as shown.
Clearly this part fails since the first of the three design equations for
the failure theory is not satisfied. This design could be made safe if the
factor of safety were lowered or if a different material with a higher
ultimate strength in tension were used.

130 Working Stresses and Failure Theories  Chap. 2

Figure 2-3 A rectangular block
e subjected to the principal normal
stresses.

3; Maximum Strain Energy Theery of Failure

The hypothesis for the maximum strain energy theory of failure is that failure will
occur in a complex part when the strain energy per unit volume exceeds that for a
simple uniaxial tensile test at failure. To determine the strain energy per unit vol-
ume, we will need to look at a small rectangular block of the material that is “dx”
wide, “dy” high and “dz” deep as shown in Fig, 2-3.

This block has the principal normal stresses applied to its faces as shown. The
total sirain energy will be the work done by the forces resulting from these stresses:

U = Strain Energy = Work :/FE,! (3)

In this expression, &l is the distance moved, and F represents the force as the deflec-
tion occurs. The final forces generated by the stresses on each face will be the final
stress on that face multiplied times the area of that face:

Fy (finay = Sadxdz

Fy (foaty = S1dydz

Fy (tuat) = Sadxdy

work =05 F . 8

Figure 2-4 'The linear relationship
between load and deflection for the
block.
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Since the stretching process is a linear one, the integral will be the area under the
curve of /- versus - &l as shown in Fig. 2-4. Thus, the total sirain energy will be

Fx(ﬁnnll‘sr i FJ‘(ﬁnbl)'S.\' + -leﬁnanas

U = Strain Energy =
2 2 2

(4)

The distance moved for each direction will be the strain per unit length “s” times
the length, or

8, = g dx
8, = ey dy
8, = &;dz

The strains can be eliminated from these equations by means of Hooke’s law:

1 g
Ei:E(.‘sl = 1Sy — puSs)

1
G=x (82 = pS; — pSs)

1
&8 = ‘E (83 — pS; — uS,)
Adding together all three work components gives

_ dxdydz

v 2E

(7 +83 + 53 — 2u(8:5: + 55 + §5))

The strain energy per unit volume, «, will be the total strain energy, U, divided by
the volume of the small block (V' = dx dy dz):

1 R
w=or(St+ S+ S - 2u(5i8+ 58 + §153))
The strain energy per unit volume at failure for the uniaxial tensile test will be

2

i
W= E(sm
Setting this as a limit for the complex case gives a failure equation of the form
(S} + 83 + 53 —2u(5,5: + 55 + 5 5) = 82,

This equation can be converted to a design equation by applying a factor of safety

to the yi¢ld-peintstress o gel

(5)

‘This ¢quation can be implemented by means of Module 2-4 in the spreadshes

(et P4 132
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f,(‘ Maximum Distorfion Energy Theary of Failure d \jg}\j MLS%%

i

The basis for the maximum distortion energy theory of failure is that the overall
strain energy is composed of two parts. The first part is the energy associated with
merely changing the volume of the part while the second part is associated with the
distortion of the part. Thus, the total strain energy per unil volume “u” can be
written as

H=uy iy

where u, is the energy of volume change per unit volume and 1, is the energy of dis-
tortion per unit volume. It is this distortion part of the strain energy that is the basis
for this failure theory. The hypothesis for this theory is that failure will occur in the
complex part when the distortion energy per unit volume excecds that for a simple
uniaxial tensile test at failure,

For purposes of describing this failure theory, the principal normal stresses can
be thought of as being composed of two parts that are superimposed as shawn in
Fig. 2-5. For this superposition, the relationships will be

Si=8+S,
S$=8+8,
S3 =53+ 8,

Here S, represents the portion of the stress that causes volume change and the §]
terms represent the portion of the principal normal stresses that cause distortion, If
there is to be no volume change associated with the distortion components, then the
sum of the strains arising from the distortion stresses must equal zero:

g +eptei=0

We can write these strain components in terms of the stress components by means
of Hooke’s law:

P 7 ,
31 =E( 1~ mSy — pS3)
. 1 /] 3 r
g = E‘(Sz — S~ pS3)

R . ,
3= E(éz = uS - 185)

Total Stress Stress of Stress of
Volume Change Distortion

8

5 fg 5

Tigure 2-5  The component parts of the
principal normal stresses.
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If we add together these three equations and set them equal to zero as required,
the result will be

0=25]+ 8 + 8 — 2u(S) + S5 + 53)
This will be true for all values of  if
0=5+5+58
If this relationship is used with the sum of the first three stress equations, the
result will be

1
Sy = 3(51 + 8+ 83)

This relationship can be used in the first three equations to express the distortion
stresses in terms of only the principal normal stresses:

3 2 2
2 5 sg>

= S,‘__

5 3(— 3 o

g il s,)

53‘3(5’ 2 2

‘I'he strain energy of volume change will be

u; =3 2

1 Sy
&0 = (S0 — w8y = pSy) = (1 - 2u)

Using Hooke’s law of the form

Thus,

1-2p 5
Iy = (- B )(31 + 85 + 5)?

We know that the distortion energy per unit volume is
Ug =0 — Uy

We know that the total strain energy per unit volume was determined from the pre-
vious section to be

= %(s% + 857 + 53 — 2u(8,85; + 5,5 + 5,83))

/'/l‘
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Taking the difference between this value and the change of volume strain energy per
unit volume gives the final expression for the distortion energy per unit volume in
terms of the principal normal stresses:

1+
O 5.t (S7+ 82+ 52 — 5,8 — 518 — 5:5))
\ 3E
Comparing this value with the value for a uniaxial case gives a failure equation
of the form
(ST + 53+ 82— 5.5 — 6,85, — 55) = 52

This failure equation can be converted to a design equation by introducing the fac-
tor of safety associated with the yield stress. The result will

his €quation can be implemented by means of Module 2-4 in the spreadsheet pack-
age. Unlike the maximum strain energy theory of failure, this equation does not
depend in any way on Poisson’s ratio g This [ailure theory is also known as the
shear—energy theory or the van Mises—Hencky theory. Before summarizing and
comparing the design equations, let us look at an example problem utilizing this fail-
ure theory.

EXAMPLE 2-2

Problem Statement: Suppose that a triaxial state of siress is given by the following stress
tensor: 8

70 30 25
o;=[30 80 40 | MPa
L25 40 90

If the material is steel with Syp = 386 MPa and Ny = 3.0, determine

if the design is safe by the maximum distortion energy theory of failure.
Given Information:  The six unique stress components of the stress tensor,

Syp = 386 MPa, and

Njs =30
Assumptions: The stresses are three-dimensional and the material is ductile so that

the maximum distortion energy theory of failure is applicable.
Solution Method: Module 1-5, Module 2-4.
Solution Details: The first step in the solution of this problem is to determine the prin-

cipal normal siress components. This can be done using Module 1-3 in
the spreadsheet package as shown next.

pe-
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Module 1-5
Triaxial Stress Computations.
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5 = 8.8 [T normal stresses for a 3-d
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Now that we have the principal normal stresses, we can utilize Lh? dis-
tortion energy theory of failure to see if the part will fail. To do this we
can fit the three principal normal stresses into Module 2-4 from the
spreadsheet package.

not be safe by the maximum normal stress theery of failure
since the largest of the principal normal stresses is sufficient to
failure by this failure theory. This situation suggests that we should
look closely at the accuracy of the various failure theories and consider

cause
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A Comparison of Failure Theories

Table 2-4 provides a summary of the attributes of the four failure
a designer to choose the best theory for a particular situation.
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TABLE 2-4 A COMPARISON OF THE ATTRIBUTES OF VARIOUS FAJLURE
THEORIES

Failure Theory Adttributes

Maximum Normal Stress The only theory for brittle materials,

Good for ductile materials.

Gives satisfactory results and is easy to use
Good for ductile materials

Gives better results but is more difficult to use

Maximum Shear Stress

Maximum Strain Energy

10 N Requires the use of Poisson’s ratio
\I by Maximum Distortion Energy Good for ductile materials.
1 gé Gives the best results.
N l\,‘\ o j Easier to apply than maximum strain energy.
¥

For ductile materials, the most accurate method is the maximum distortion energy
theory of failure and the method that is easiest to apply is the maximum shear stress
theory. All of these theories are based on the application of stead)[ loads to parts that
are shaped in ways that do not concentrate or amplify the resulting stress patterns.
These topics will be the subject of the next two sections.

2-4 STRESS CONCENTRATION CAUSED BY SUDDEN CHANGE IN FORM

Abrupt changes in geometry can give rise to stress values that are l'arger than would
be expected. This can be a source of difficulty for designers. Consider, for example,
the state of stress in the tension member of two widths illustrated in Fig, 2-6, Near
each end of the bar the internal force is uniformly distributed over the cross sections.
The nominal stress in the right portion can be found by dividing the total load by
the smaller cross-sectional area; the stress in the left portion can be found by divid-
ing by the larger area. However, in the region where the width is changing, a eris-
tribution of the force within the bar must take place. In this portion, the load is no
longer uniform at all points on a cross section, but the material in the neighborhoad
of points B in Fig. 2-6 is stressed considerably higher than the average valua: The
stress situation is thus more complicated, and the elementary equation P/A is no
longer valid. The maximum stress occurs at some point on the fillet, as at B, and is
directed parallel to the boundary at that point.

&
=
D
- _——/

B

Figure 2-6  Stress concentration caused by a sudden change in cross section.
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(b)

Figure 27 Stress concentration for a bar with a hole loaded in tension.

Another example is a bar in tension with a circular hole as shown in Fig, 2-7(a).
If the bar is cut on the cross section of the hole, the tension stresses will be as shown
in Fig. 2-7(b). The stress distribution along the cut surface is practically uniform until
the neighborhood of the hole is reached, where it suddenly increases. This irregularity
in the stress distribution caused by abrupt changes of form is called stress concentra-
tion. It oceurs for all kinds of stress, axial, bending, or shear in the presence of fillets.
holes, notches, keyways, splines, tool marks, or accidental seratches. Inclusions and
faws in the material or on the surface also serve as stress raisers. The maximum value
of the stress at such points is found by multiplying the nominal stress as given by the ele-
mentary equation by a stress concentration factor K, or K, which is defined as follows:

highest value of actual stress on fillet, notch, hole, etc. 7
nominal stress as given by elementary equation for minimum cross section o
—

Values of stress concentration factors can be found experimentally by photoe-
lastic analysis or direct strain gage measurement. They can also be found by com-
puter methods using finite element analysis.

Stress Concentration Factors

Stress concentration factors have been determined for a wide variety of geometric
shapes and types of loading. The best known summary of results for various geo-
metric shapes is the work by Peterson and is based on results from photoelastic test-
ing done prior to 1951. More recently, researchers have developed mathematical
models to approximate this classical data. Some of the best examples of these
approximating models are documented by Norton, Pikley, and Young. In general, a
stress concentration factor is applied to the stress computed for the net or smallest
cross section. In this text, a number of spreadsheet modules have been provided to
assist the designer with the determination of stress concentration factors for various
geometric configurations involving abrupt changes in geometry, These spreadsheets
utilize some of the models of Norton and also some linear interpolation from the
data provided in the work of Peterson. These modules should enable the designer
to find quickly the nceessary concentration factors for a variety of geometric condi-
tions. In many cases, the modules also provide information about the nominal stress
and the actual stress using the concentration factor. Figures 2-8 through 2-21 show
the stress concentration factors reported by Peterson and illustrate the fact that,
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Figore 2-8  Stress concentration factor for a shaft with a shoulder fillet in axial ten-
sion. (Spreadsheet Module 2-5.)

(Curves from Peterson, R. E. “Design Factors for Stress Concentration, Parts 1 to 5," Machine
Design, Pebruary-July, 1951.)
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Figure 2.9  Stress concentration factor for a shaft with a shoulder fillet in bending.
(Spreadsheet Module 2-6.)

(Curves from Peterson, R, E.“Design Factors for Stress Concentration, Parts 1 to 5, Machine
Design, Februaty-July, 1951.)
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Figure 2-16  Stress concentration factor for a flat bar with a fillet in axial tension.
(Spreadsheet Module 2-13.)
(Curves from Peterson, R. E. “Design Factors for Stress Concentration, Parts 1 1o 5,” Machine
Design, February-July, 1951.)
30
28 = Df=60
|
I |
},ﬁ |
K, 1.20 S ! —|
IS = 1.10

wd

Figure 2-17 Stress concentration facter for a flat bar with « fillet in bending.
(Spreadsheet Module 2-14.)

(Curves from Peterson, R. E. “Design Factors for Stress Concentration, Parts 1 to 5, Machine
Design, February-July, 1951.)

£




30~

X
77\ 1.03
18 _\\ = ~ \

T T
002 005 0.10 0.15 020 0.25 0.30
wd

Figure 2-18  Stress concentration factor for a flat bar with a notch in axial tension.
(Spreadsheet Module 2-15.)

(Curves from Peterson, R, E.“Design Factors for Stress ‘Coneenlration, Parts 1 1o 5" Machine
Design, February-July, 1951,)
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Figure 2-19  Stress concentration factor for a fat bar with a notch in bending.

{Spreadsheet Module 2-16.)

(Curves from Peterson, R. E. “Design Factors for Stress Concentration, Pats 1 to 5. Machine
Design, February-July, 1951.)
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Figure 2-20  Stress concentration factor for a [lat bar with a transverse hole in axial
tension. (Spreadsheet Module 2-17.)

(Curves from Peterson, R. E. “Design Factors for Stress Concentration, Parts 1 to 5, Machine
Design, February-July, 1951.)
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Figure 2-21  Stress concentration factor for a flat bar with a transverse hole in
bending. (Spreadsheet Module 2-18.)

(Curves from Peterson, R. E. “Design Factors for Stress Coneentration, Parts 1 to 5. Machine
Design, Fehruary-July, 1951. )




