
EXAMPLE 8: An Electrical System (Mechanical-Electrical Analogy) 

A completely analogous procedure can be used to find the state equations of electrical 
systems (and, ultimately, electro-mechanical systems with transformers between the 
electrical and mechanical domains). We will outline this procedure in the Electrical 
Domain below with an example.  

Note: As you may have figured by now, the ultimate goal of this process is to develop one or more 
differential equation that describe the behavior of the system as a function of time. Once this 
equation(s) has been determined, it is simply a matter of choosing one’s favorite approach to solve 
the differential equations (these solution techniques are covered in depth in Differential Equations). 

To start, it will be useful to outline the analogy between the Mechanical and 
Electrical domains. As far as the representative elements are concerned, in the 
Mechanical domain we had springs, dampers, and masses, whereas in the Electrical 
domain we will consider capacitors, resistors, and inductors. The analogy is 
explored more in the table below: 
 

 ‘Forcing’ Term ‘Flow’ Term Time derivatives 

Mechanical Force Velocity 
(displacement) 

Displacement -> 
Velocity -> Acceleration 

Electrical Voltage Current (Charge) Charge -> Current ->  
!" !" 

Analogy between Mechanical and Electrical Terms 
 

 Mechanical Domain Electrical Domain 

Store energy Spring 
(k) !! = !"! 

Capacitor 
(C) !! =

1
! !!  

Dissipate 
energy 

Damper 
(b) !! = !"! = !!! Resistor 

(R) !! = !"! = !!! 

‘Inertial’ 
behavior Mass (m) !! = !"! = !!! Inductor 

(L) !! = !!"
!"
= !!! 

Relationship between Constitutive Elements in Mechanical & Electrical Domains 



If we reconsider the Five Step to Solving a State Equation that were discussed 
before (and to now only demonstrated for a Mechanical System), from the Table 
above we have the constitutive relationships for the elements comprising our 
electrical system (Step 1). 

Step 2 in the (mechanical system) process was referred to as Geometric Continuity, 
where we relate the velocities in the (mechanical) system. In the electrical domain, 
based on the analogy that we are developing we would want to relate the currents in 
each of the element. In the electrical domain there is a term for this: Kirchoff’s 
Current Law (KCL). 

Step 3 in the (mechanical system) process we referred to as Free Body Diagrams, 
where we relate the forces in the system. For the electrical domain, the analogy would 
be voltages, and there is also a term for this: Kirchoff’s Voltage Law (KVL). 

In Step 4, we identify the State Variables in the system. For mechanical systems 
these State Variables were related to the displacements of the springs (xs) and the 
velocities of the masses (vm) in the systems. What would be the analogy in the 
electrical domain? Answer: charges in the capacitors (qC) and the currents through the 
inductors (iL) would be the natural guesses. But by convention (primarily because it is 
MUCH easier to measure voltages experimentally than it is to measure charge), the 
State Variables in the Electrical Domain are generally assumed to be the Voltage 
of the Capacitor (VC) and the currents through the inductors (iL)!  

Note: This is perhaps the ‘largest’ difference between the two approaches, and since there is a linear 
relationship between the voltage and charge of the capacitor from the constitutive relationship, the 
difference in the grand scheme of things is negligible. 

In Step 5, we solve for the State Equations; starting with the derivative of each 
state variable, we manipulate the expression until the terms on the right-hand side of 
the equation are suitable. (Recall here what was suitable: system parameters, state 
variables and derivatives of state variables, and external ‘force’ and ‘velocity’ 
sources.) The exact same procedure is followed for systems in the electrical domain. 

Note: In the mechanical domain, we saw that external forces/velocities could include things like the 
force due to gravity, known velocity of certain masses, etc. What would be the analogous types of 
‘external’ sources in the electrical domain? (Answer: Voltage sources, i.e. batteries, and current 
sources, for example, constant current sources.) 



To illustrate, we will do a simple example in the electrical domain below. Some of 
the details regarding the application of Kirchoff’s Current Law (KCL) and Kirchoff’s 
Voltage Law (KVL) you may recall covering in earlier classes in the curriculum. 

EXAMPLE: Consider the electrical system to the 
right. Find all a) first-order and b) second-order state 
equations necessary to fully predict the behavior of 
the system. 
 

Solution: To start, we need to assume a direction for 
positive flow of the current, which is assumed to go 
from the negative to positive terminal of the battery 
(because there is only one loop, the current will 
continue to flow clockwise in the diagram to the 
right). By convention, once we identify the direction 
of the current, we assume that we can label the 
voltage from each as element as positive-to-negative 
in the direction of the current (as shown to the right).  
 

1) Constitutive Laws   

!! = 1
! !!    ,   !! = !!!   ,   !! = !!! 

2) Kirchoff’s Current Law (analogy to Geometric Continuity)     

!! =    !! =    !!  

3) Kirchoff’s Voltage Law (analogy to Free Body Diagrams)      

!! + !! + !! − !! = 0 

4) Identify State Variables (recall discussion above):    

VC,     iL 

  



5) Solve for the (first order) State Equations: 

!!! =
!
!
!!! =

!
!
!! =

!
!
!!      ✔ 

!!! =
!!
!
= !!!!!!!!

!
= !!!!!!!!!

!
= !!!!!!!!!

!
  ✔ 

 

You should confirm for yourself that the terms in the final expressions for the State 
Equations are of a suitable form, and contain only system parameters, state variables 
or derivatives of state variables, and external ‘sources’. There were two first order 
equations, which was also the case for the spring-mass-damper mechanical system. 

To complete the example, we can combine the two first-order equations into a second 
order equation. We will start with the first of the two first order equations we found 
above and differentiate both sides: 

!!! =
1
!
!! 

!!!! =
1
!
!!!  

But we can now substitute the second of our first-order equations into the right hand 
side of the equation above to replace !!! . Doing so: 

!!!! =
1
!
!! − !!! − !!

!  

Continuing to simplify, and using the relationship that  

!! =    !! = !!! = !  !!! 

we can show that we ultimately end up with 



!!!! =
1
! !! −

!!
! −

!!!!!

!  

We can re-write this in more standard form as 

!!!! +
!
!
!!! +

1
!"

!! =
1
!"

!! 

 

This is our second-order differential equation. Note that it is “non-homogeneous’ 
since the right-hand side is non-zero. Compare this to the solution obtained in 
Example 4 for a spring-mass-damper system given below, and the analogy is clear: 

!!!! +
!
!
!!! +

!
!
!! = ! 

 

Now that we have found our second-order differential equation, we can determine the 
behavior of the system using the techniques covered in a class on Differential 
Equations and highlighted in these ME345 notes. 

 


