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Blind and Training-Assisted Subspace
Code-Timing Estimation for CDMA
With Bandlimited Chip Waveforms
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Abstract—In this paper, we present a group of subspace
code-timing estimation algorithms for asynchronous code-di-
vision multiple-access (CDMA) systems with bandlimited chip
waveforms. The proposed schemes are frequency-domain based
techniques that exploit a unique structure of the received signal
in the frequency domain. They can be implemented -either
blindly or in a training-assisted manner. The proposed blind
code-timing estimators require only the spreading code of the
desired user, whereas the training-assisted schemes assume the ad-
ditional knowledge of the transmitted symbols of the desired user.
Through a design parameter of user choice, the proposed schemes
offer flexible tradeoffs between performance, user capacity, and
complexity. They can deal with both time- and frequency-selective
fading channels. Numerical simulations show that the proposed
schemes are near-far resistant, and compare favorably to an ear-
lier subspace code-timing estimation scheme that is implemented
in the time domain.

Index  Terms—Code-division = multiple-access (CDMA),
code-timing estimation and synchronization, bandlimited chip
waveforms, time- and frequency-selective fading channels.

1. INTRODUCTION

ODE-DIVISION MULTIPLE-ACCESS (CDMA) is con-

sidered a major air interface scheme for wireless mobile
communications [1]. In CDMA systems, all user transmissions
overlap in time and frequency. They are distinguished from one
another by utilizing a unique spreading code for each user. In
order to successfully recover the information of each transmis-
sion, the local spreading code generator has to be synchronized
to the code-timing of the desired transmission. This is consid-
ered one of the most challenging tasks performed at a CDMA
receiver [2, ch. 5].

Multiuser code-timing estimation and synchronization,
which parallels the well acknowledged research on multiuser
detection (e.g., [3]) for CDMA systems, has been receiving
increasing interest recently. Most existing code-timing esti-
mation techniques can be classified as either training-assisted
methods that require transmission of training symbols known
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to the receiver to assist code acquisition, or blind techniques
that obviate training but rely on the structure of spreading
codes for code acquisition. Notable training-assisted schemes
include the classical correlator [2, ch. 5], which is optimum
only in the single-user case but very sensitive to multiple-ac-
cess interference (MAI), and the more recently introduced,
multiuser based methods, such as the minimum mean squared
error (mmse) [4], maximum likelihood (ML), and large-sample
ML (LSML) [5], [6] code synchronization algorithms, among
others. A short list of blind code synchronization algorithms
include the well-known subspace scheme [7], [8] and several
variants [9]-[11], and the minimum variance based methods
[12]-[14]. Compared with the single-user based correlator,
these multiuser based code synchronization schemes achieve
significantly improved performance in near-far environments,
and can support more user transmissions without enforcing
stringent power control.

Most of the aforementioned code-timing estimation schemes
implicitly assume rectangular chip waveforms which are not
bandlimited and seldom used in practice. Real CDMA systems
utilize bandlimited chip waveforms, such as the square-root
raised-cosine pulse [15]. In contrast with the rich research
works on code-timing estimation with rectangular chip wave-
forms, only limited studies are available that take into account
bandlimited chip waveforms. One possible approach to dealing
with the problem is to extend existing methods by enforcing
bandlimited chip waveforms in their cost functions. For ex-
ample, the subspace technique, originally proposed in [7]
and [8] for rectangular chip waveforms, was extended in [16]
to handle bandlimited pulses. The extension is conceptually
simple; however, the implementation is not. In particular,
subspace methods for rectangular pulses can be conveniently
implemented by low-complexity polynomial rooting, whereas
the counterparts for bandlimited pulses involve highly nonlinear
cost functions that require iterative nonlinear searches over the
parameter space, a process that is computationally expensive
and suffer local convergence due to inaccurate initialization
(see Section V).

Another notable code-timing estimation scheme addressing
bandlimited chip waveforms was recently proposed in [17]. It
exploits various shift-invariance in the frequency domain to iso-
late the subspace of interest, from which an ESPRIT (see [18])
like procedure is invoked to derive the code-timing estimates.
Unlike the extended subspace estimator of [16], the shift-invari-
ance based algorithm is noniterative, requiring no parameter ini-
tialization. It works quite well in time-invariant channels [17].
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When the channel is both time- and frequency-selective, how-
ever, the algorithm was found to degrade significantly.

In this paper, we also take a subspace approach and present
new solutions to the code-timing estimation problem with the
bandlimited pulse constraint. In contrast to the earlier time-do-
main subspace technique of [16] that requires multidimensional
searches, our proposed schemes are frequency-domain based
techniques that can be conveniently implemented via rooting
of a single-variate polynomial. Unlike the shift-invariance
based method [17], our schemes can deal with both time- and
frequency-selective fading channels, meanwhile providing
resistance to strong MAI. The proposed schemes include a
group of blind and training-assisted code-timing estimation
algorithms that rely on frequency-domain subspace decompo-
sition. Only the desired user’s spreading code is required for
the blind schemes. The training-assisted schemes also assume
transmission of a unique training sequence for the desired user.
By utilizing a design parameter of user choice that controls the
subspace dimension, all proposed schemes allow convenient
tradeoffs between estimation accuracy, user capacity, and
implementation complexity.

The rest of the paper is organized as follows. In Section II, we
introduce the data model and formulate the problem of interest.
In Section III, we discuss a unique structure of the received
signal in the frequency domain. A group of blind and training-
assisted subspace code-timing estimators exploiting this struc-
ture are presented in Section IV. Section V contains numerical
examples illustrating the performance of the proposed as well as
competing schemes. Finally, we draw conclusions in Section VI.

Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters; all vectors are column vectors; superscripts
(-)T,(-)*,and (- )¥ denote the transpose, conjugate, and con-
jugate transpose, respectively; Iy denotes the N x N identity
matrix; 0 denotes an all-zero matrix or vector; diag{x} denotes
a diagonal matrix with the elements of x placed on the diagonal;
E{-} denotes the statistical expectation; and finally, x denotes
the linear convolution.

II. PROBLEM FORMULATION

The system under investigation is an asynchronous K -user
CDMA system with spreading codes of length (processing gain)
N. The code waveform for user k is

N—-1

ge(t) =Y ex(n)p(t —nT.) (1)

n=0

where {cy.(n)}NZ denotes the spreading code for user k, p(t)
the chip waveform assumed to be bandlimited and identical for
all users, and T.. the chip duration. The transmitted signal ¢ (¢)
for user k is formed by multiplying g (¢) by the mth transmitted
data symbol di(m), i.e.,

M-1

S du(m)gu(t —mT.) @

m=0

Yi(t) =

where M denotes the number of symbols used for code acqui-
sition, and Ts = NT, denotes the symbol duration.
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Consider a general scenario where the channel is both time-
and frequency-selective. The baseband signal received at the
base station can be represented as [19]

K L

Y1) =D ana()hr(t — mier) + nn(t) 3)

k=11=1

where Ly, a,(t), and 74; denote the number of propagation
paths, the [th path’s gain, and the [th path’s delay for user £, re-
spectively, and n,.(¢) is the channel noise, assumed to be zero-
mean with power spectral density (PSD) Ny /2. For ease of
derivation, we assume that the time-varying fading coefficient
ag,(t) remains (approximately) unchanged within v symbol
periods, where the integer v > 1. This is reasonable since vy
is usually small, e.g., v = 1 or 2, and let

a1 (m) £ (8| i=mr., - “)

In testing the proposed schemes, however, we will relax this
assumption and allow «, ;(t) to vary continuously according to
a more realistic channel model, e.g., the Jakes’ model [20]; see
Section V for details.

The receiver front-end is a chip-matched filter that correlates
the received signal with the chip waveform and outputs the fol-
lowing signal

y(t) =o' (t) xp(T. — 1)

M-1 K L
PIPILT

m=0 k=1 I=1

(m)si(t —mTys —731) + n(t)

)

where sj,(t) denotes the signature waveform for user k obtained
as a convolution between the spreading waveform g, (¢) and the
impulse response of the chip-matched filter

si(t) £ gi(t) xp(TL. — t) ©)

and the output noise n(t) = n,.(t) «p(T, —t) is, in general, col-
ored due to chip matched filtering, with known autocorrelation
ralr) = Bfn(tn*(t 1)} = S2p(T. -
Let user k be of interest. The problem is to estimate the code-
timing {73 ;}*, from the chip-matched filter output y(t), as-
suming knowledge of the spreading code of only user k. In this
paper, we do not address the issue of estimating Ly, which is
assumed known. An estimate of Lj can be obtained by prior
channel/cell measurements and/or through a model order detec-
tion scheme (e.g., [21]). For the problem of interest, we will
consider solutions that are blind, in which case the information
symbols {dy(m)}Z} are assumed random and unknown, or
training-assisted, whereby we will impose certain structure on
the transmitted symbols {dy,(m)}} =} to seek improved perfor-
mance.

T)*p(r =T¢). (7)

III. PRELIMINARIES

In this section, we discuss a unique structure of the trans-
mitted signal in the frequency domain, which forms the basis
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Fig. 1. Formation of the continuous-time received signal.
for all code-timing estimation schemes to be introduced in Sec- sOD() = ar(t) (11)
tion IV. sO@)=s(t), 0<¢<y—2. (12)
Consider a scenario where a set of y(y > 1) adjacent sym-
bols are processed simultaneously. It is noted that «y is a design ~ Then, we can write 2, (¢) more compactly as follows:
parameter whose choice should reflect a tradeoff between com- )
plexity, estimation accuracy, and user capacity (viz., how many _ — ©)
active transmissions can be supported by the synchronization Tm(t) = Z (1 = (Ts = m)d(m + Q). (13)
scheme). In general, the larger the +, the better/larger the ac- ¢=-1
curacy/capacity and, yet, the higher the complexity. This will Applying the Fourier transform to @, (t) yields!
become apparent in Sections IV and V. For illustration purpose,
Fig. 1(a) depicts ~y shifted copies of a signature waveform for Y -1 e
one user, while Fig. 1(b) depicts a delayed version. The shape of T (f) = 77?07 Z sO(e P Ted(m +¢)  (14)
the signature waveform is hypothetical and unimportant; what is ¢(=-1

of interest here is the relative position of the different copies of
the signature waveform. Note that the signature waveform s(¢)
is broken into two portions

s(t) = a-(t) + b- () ®)

where

T 0 elsewhere
thé{s(t) T, —17<t<T;
®) 0 elsewhere.

The subscript 7 signifies that both portions are functions of the
unknown propagation delay 7. In the sequel, we assume that the
maximum path delay is less than 7, which can be a result of a
prior coarse synchronization achieved through a side signaling
channel for call setup (e.g., [4], [22]). According to the relation
shown in Fig. 1, the delayed signal (with data modulation) as-
sociated with a particular user over an observation window of
T seconds starting at ¢ = m7T is given by

Tm(t) £ ar(t — (y = DTy = 7)d(m +~ — 1)
+ b (t+Ts — 7)d(m — 1)
+ ) st = Ty = 7)d(m + ()
¢=0

©)
and note that the last term vanishes if v = 1. To simplify the

expression, we introduce the following notation

sUD(t) = be(t) (10)

where 5(¢)(f) denotes the Fourier transform of s(¢)(t). To fa-
cilitate digital signal processing, Z,,(f) is sampled, i.e., via
the DFT (discrete Fourier Transform), at the following equally
spaced frequency grids

fu 2 uAf = p=01,...,yNQ —1 (15)

VT’
where the integer () > 1 will be referred to as oversampling
factor (see Section 1V).

A typical choice for the oversampling factor is Q = 2, which
renders the aliasing-induced estimation error negligible. Let
59 () 2 5O j=pay and T () £ Zn(f)ls=pas- The
discrete version of (14) is given by?

v—1

> e T d(m + ).
¢=-1

2mpT
T 15y

Em () = €

(16)

Effectively, the above equation indicates that the spectrum of
% (t) defined in (13) is a complex sinusoid with a frequency
proportional to the code timing 7, multiplied by a frequency
function denoted by the sum in (16). The frequency function
has some known structure since the spectra 5(¢)(z) is known
for 0 < ¢ < v — 2. This observation is fundamental to the pro-
posed code-timing estimation schemes that are to be presented
in Section IV.

'Henceforth, (_) is used to denote quantities in the frequency domain.

2DFT will incur some frequency-domain aliasing that diminishes with in-
creasing sampling frequency. Assuming slight oversampling (e.g., at twice the
chip rate), the aliasing-induced estimation error is in general negligible com-
pared to the error caused by channel noise and MAI inherent in CDMA systems;
see, e.g., [23].
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We will consider in the sequel two approaches, namely blind
and training-assisted techniques, to solve the code-timing esti-
mation problem. For blind estimation, we will model the infor-
mation symbols, which appear in the sum in (16), as unknown
and random. For training-based estimation, we will impose an
additional constraint that the training symbols for the desired
user are identical. Assuming without loss of generality all-one
training, it is straightforward to show that (16) reduces to

2mpT

Tm(p) = s(p)e™" =1

_s2mpd
E e

=0

_ _j2mpr 1 — e 32mn
= s(u)e Vrs —mM8M ————

y—1
<

— 2w
1—e773
—j2mur

= ’Yg(.u’)e VTs n,ny

n=0,1,....NQ -1 (17)

where §; ; denotes the Kronecker delta, 5(i1) = 5(f)|f=paf
with 5(f) denoting the Fourier transform of s(¢), and we have
used the fact that

L2mp _s2m(y=Du
e‘] Yy = e ] vy

s(u) = 801 () + 57D (p).

Equation (17) can, again, be interpreted as a complex sinusoid
with a frequency proportional to 7 multiplied by a frequency
function. The complex sinusoid is upsampled by a factor of ~y
(without interpolation) [24]. We stress that the frequency func-
tion in the current case is completely known to the receiver,
while in the former blind case, it is in general unknown since it
depends on the unknown symbols and, furthermore, the spectra
5(=D(u) and 5= (p) are functions of the unknown delay
7 [cf. (10)—(11)]. This will lead to different performance of
the proposed training-based and blind code-timing estimation
schemes, as we shall see later.

(18)
19)

IV. BLIND AND TRAINING-ASSISTED
CODE-TIMING ESTIMATION

In this section, we present both blind and training-based sub-
space solutions to the problem of interest. Since both are fre-
quency-domain based schemes, we first discuss the DFT-con-
verted signal in vector form in the frequency domain. We then
present the proposed blind and training-assisted subspace code-
timing estimation algorithms. Following our detailed treatment
of the blind schemes, our discussions on the training-assisted
methods are brief, focusing on the difference from the former.

We will process « adjacent symbols from the output (5) of
the chip-matched filter. To this end, we form overlapping signals
Ym (t) of duration uTy as

Ym(t) = {Zé(t)7

Using the notation introduced in Section III, ,,(¢) can be ex-
pressed as

mTs <t < (m+7)Ts
otherwise.

ym(t) = Z Z ag,i(m) Z sgf)(t —mTs — (Ts — T 1)

K Lk ’y—l
k=

1il= ¢(=—1

xdg(m + ¢) + n(t)
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where s,(f) (t) is similarly defined as in (10)—(12) for user k and
delay 73;. Note that for 7,; < T, the observation window
covering M symbols is (M + 1)75. It follows that the number
of overlapping signals is equal to M — v + 2.

For DSP processing, y.,(t) is sampled with a sampling in-
terval T; = T./Q:

Ym (1) = Ym () [t=m1, 457, 1=0,1,...,7NQ -1 (20)

where the () > 1 is referred to as oversampling factor. A typical
choice for the oversampling factor is () = 2, which renders the
aliasing-induced estimation error negligible [23]. Let

y(m) £ [ym(mNQ), ..., ym(mNQ +yNQ — 1)]"
m=0,1,....M —~v+1.

As mentioned in Section III, different choices of v lead to dif-
ferent code-timing estimators, with different tradeoffs in accu-
racy, capacity, and complexity. Let n(m) be YNQ x 1 vector
formed similarly from the noise samples, and

S () 2 [s(=CNQ = 7).

$r = ONQ =1 =mp)]

which consist of samples of the delayed signature waveforms.
In vector form, the received signal can be written as

K L, ~v—1

y(m) =333 Bralm + Qs (rig) +n(m)  (22)

k=11=1¢=—1

where
ﬂk,l(m) = ak,l(m)dk (m).

Itis assumed that the channel remains approximately unchanged
within a period of -y symbol periods such that o ;(m + () =
ari(m),( = —1,...,v — 1. This assumption is reasonable
since 7y is usually small, e.g., v = 1 or 2. Again, the assump-
tion is mainly for the sake of simplicity of derivation. We will
drop the assumption in our simulation and consider continu-
ously fading channels according to the Jakes’ model; see Sec-
tion V. Recall that after chip-matched filtering, n(m) is col-
ored with covariance matrix R,, £ E{n(m)n (m)} formed
by samples of the autocorrelation function (7) that is known to
the receiver.

To convert the signal to the frequency domain, we take the
DFT of the observed vectors y(m). Before proceeding, a few
remarks are necessary. It is noted that the spectrum of a typical
bandlimited signature waveform usually tapers off at the end
(i.e., high) frequencies. To see this, Fig. 2 depicts the magnitude
spectrum of a signature waveform as a function of the normal-
ized frequency fT.. The signature waveform is formed by using
a square-root raised-cosine chip waveform and a Gold spreading
code with processing gain N = 31. It is clearly seen that the
signature waveform has a low-pass nature, with the magnitude
spectrum tapering off quickly as the frequency increases (e.g.,
f > 1/(2T.) in Fig. 2). In the presence of channel noise, which
typically has a wider spectrum than the signal bandwidth, the
end frequencies have a lower signal-to-noise ratio (SNR) than

(23)
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Fig. 2. Magnitude spectrum of a typical spreading waveform sy, ().

the middle frequencies. In view of this observation, we shall dis-
card the low-SNR end DFT grids, keeping only the high-SNR
middle DFT grids for delay estimation (also see [23] for a dis-
cussion). To do so, we can utilize » € (0, 1] as a DFT grid selec-
tion parameter. Consider the following YN, x yNQ truncated
DFT matrix

1 c—i75 . oI5 (INQ-1)

1 iz (N1 o F (N —1)(NQ-1)
which is formed by the v N rows corresponding to the selected
middle DFT grids of the YN @ x yN @ full DFT matrix, where
N, = [nNQ], with [-] denoting the smallest integer no less
than the argument. Let

y(m) £ Fy(m) (24)
555) (’T‘kJ) £ fs](f)(Tk,l)~ (25)

It is easy to see that Fx for any YN @ x 1 vector x is equivalent
to computing a full-grid DFT of x followed by discarding the
unwanted DFT samples. Since a full-grid DFT can be efficiently
computed by fast Fourier transform (FFT), the matrix multipli-
cation is never needed for implementation; F is introduced only
for analysis. Finally, we remark that a typical choice of 7 is be-
tween 0.5 and 0.9.
The DFT-converted signal can be written as
Ly

K . oy—1
y(m) = Z Z ﬂk,l(m + C)gl(f)(Tk,l) + fl(m)
k=11=1(=-1
m=01,....M—~v+1 (26)
where n(m) = Fn(m), which is colored with covariance ma-
trix

R, = E{n(m)n®(m)} = FR,FH. 27
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Applying prewhitening, we have

y(m) 2 R, *y(m)
K L ~-1

=33 S Bralm+ Q3 (i) + 0(m) (28)

k=11=1(=—-1
where

5 (111) 2 R, V28 (1)

2% n(m).

(29)
(30)

n(m) £
It is easy to see that n(m) is spectrally white with identity co-
variance matrix.

The blind and training-based code-timing estimation schemes
to be introduced next all rely on the subspace structure of
span{y(0),...,y(M —~+1)}, which can be decomposed into
a signal and a noise subspace that are orthogonal to one another.
The signal subspace is spanned by signal vectors §,(€<) (T )
for all k,l, and {. A number of observations regarding these
vectors are in order.

* The signature vectors sgf)(Tk,l) are linearly independent
for different k since different users have linearly indepen-
dent spreading codes.

* For the same k, s,(f) (7k,1) are linearly independent for dif-
ferent [ since different paths have distinct delays.

* DFT and whitening do not change the linear independence
structure.

Therefore, 51(5)(7']9’[) are linearly independent of each other, a
property that is needed for proper subspace decomposition and
identification.

A. Blind Estimation

For blind estimation, the receiver is unaware of the user in-
formation symbols dj(m), which can in general be modeled as
independent in mn (time) and & (user). Furthermore, the fading
coefficients a ;(m), which are modeled as stationary random
processes, are assumed independent of the information symbols.
Under these conditions, we have

_ 3 PO (mes () +1 31

where Py, ; = E{|Sk.1(m)|?} = E{|ak(m)|?}, assuming that
the information symbols are drawn from a unit-energy constel-
lation. Let

K
L&Y L.

k=1

(32)

According to our previous discussion about the linear indepen-
dence of {égf) (7.1)}, the eigenvalue decomposition of R can

be written as
R; = E;AEY + E,EY (33)

where A is a diagonal matrix formed by the (y + 1)L largest
eigenvalues, E, € CYNeX(*+DL gpans the (y + 1)L-dimen-
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sional signal subspace, E,, € CYNexD/Ne=(v+DIl gpans the
[YNs — (v + 1)L]-dimensional noise subspace that is orthog-
onal to E;. It follows that
EZs9(n) =0, ¢(=-1,0,....y—1. (34
Hence, we have a set of v + 1 equations that can be used to
estimate the unknown delay. The remaining question is how to
solve these equations efficiently, which is addressed next.
We first express é,(f) (7k,1) explicitly as a function of 7, ;. Re-
call that ng)(’rk_’l) is formed by samples of the linearly shifted

signature waveforms S;f)(’Tk,l) [see (21)]. Let s,(f) be formed

by samples of s,(f)(t), with proper zero-padding to make it a

YNQ x 1 vector, and

s & Fsi). (35)

Sk

By the shifting property of Fourier transform, we have [also see

(16)]

39(m0) = Ry 20489V g(7.1) (36)
where
s@>-—(hag{s§>} (37)
@zdiag{l,e*ﬁ_/w,...,e*jw} (38)
27T g .2m7g (YNs—1) T

¢(7_k,l) = |:1, e T PR e’ s :| - (39

Substituting (36) into (34), we have
EIR, 208 (1) =0, (=-1,0,...,y— 1. (40)

Note that all Sg), 0 < ¢ < v —2, are known to the receiver, ex-

cept S,(C_l) and S,(J_l), which depend on the unknown param-
eter 73, [see (10)—(12)]. The two equations in (40) involving
S,i_l) and Sgy_l) are highly nonlinear and, therefore, difficult
to solve. If v > 2, one possible approach is to discard these two
and use the other v — 1 equations to estimate 7. However, we
do not recommend so since better performance is expected by
exploiting all v + 1 equations for estimation.

To cope with the above difficulty, we note that since E,, is
orthogonal to the signal subspace, it is also orthogonal to any
linear combination of the signal vectors. Summing all v + 1
equations in (40) yields

v—1
0=E"R;"* 3" @S ¢(ri1)
¢=—1
_ Engl/Z [9_15271) n @«,—151(:71)

y—2
+ ZGC Sk| ¢(7k,1)
¢=0

y—2

=EIR;'? @718, + [ Y0 | Si| ¢(mi0)
¢=0

—pHR-1/258&

= En Rﬁ ®Sk¢(7'kl) (41)
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where in the second equality we dropped the superscript ¢ of
S,(f) for 0 < ¢ < v — 2,3 in the third equality, we used the fact
that [cf. (18)—(19)]

o '=0"" 42)
SV 480D —§, (43)

and finally, © is a YN, x yN, diagonal matrix that is known to
the receiver

(44)

Note that all terms except ¢(7) on the right-hand side (last step)
of (41) are now independent of 7. Solving (41) for 7 becomes
immediate. In particular, define a frequency parameter that is
linearly related to the delay

A Tkl
frg = ——=

T (45)

The delay estimation problem is equivalent to estimating
frequency fi,;, which can be obtained through a polynomial
rooting procedure ([25, p. 158]). Specifically, let

2 & iz (46)
o(z) & [1,2, L z(VNH)]T . (47)

Then, (41) can be written as
" (-")SFOFR,’E,EFR,/?0S,4(z) = 0. (48)

One can quickly see that the left-hand side (LHS) of the above
equation is a polynomial in z. The polynomial has a root located
on the unit circle and the phase of the root is —2x f, ;. Hence,
the frequency f;; can be estimated by rooting the polynomial
and identify the phase of the unit-amplitude root. A multitude
of good polynomial rooting algorithms are available (see [26],
[27], and references therein). The computational complexity as-
pect of polynomial rooting based algorithms is addressed in [25,
Sect. 4.5].

Remark 1: The earlier discussion was focused on the case in
which the code timing of a single path is to be found. When there
are L, propagation paths associated with user k, the polynomial
(48) has Lj, roots on the unit circle.

Remark 2: A necessary condition for the proposed technique
is that the noise subspace spanned by E,, is nontrivial. This re-
quires that YN > (v + 1)L or, equivalently, v > L/(N,; — L)
provided that Ny, > L. Recall that L defined in (32) is related to
the number of users in the system. Hence, the choice of v has a
direct impact on the user capacity. As we shall see in Section V,
choosing a larger v also leads to improved estimation accuracy
given the same number of users in the system. As such we refer
to the proposed blind technique for different ~ as a group of
estimators. The complexity of the proposed estimators grows
with increasing - because vectors of larger dimensions are uti-
lized, which invovles eigendecomposition of larger covariance
matrices.

3Note that ESf) defined in (35) are independent of ¢ for 0 < ¢ < v — 2; see
(12).
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Remark 3: The true covariance matrix Ry used for eigende-
composition is unknown, and has to be replaced by some esti-
mate, such as the sample covariance matrix

1 M—~v+1
. w
R = 17 —-73 mz:jo y(m)y™(m). 49

The noise eigenvectors E, based on the eigendecomposition
of the noisy R;, in general, are only approximately orthogonal
to the signal vectors égf)(TkJ). As a result, (41) holds approx-
imately and needs to be solved in the least-squares (LS) sense.
Likewise, (48) generally does not have Ly, roots exactly on the
unit circle. Instead, we can utilize those roots that are closest to
the unit circle.

The proposed blind schemes, as well as the training-based
ones to be discussed next, assume knowledge of the number of
users and the number of paths of each user. For the reverse link
considered in this paper, the base station has knowledge of the
number of users in the system, but needs to estimate the number
of paths. Path estimation belongs to the general model structure
selection problem, and a multitude of good methods can be used
to solve the problem (see [28]). Since these methods are subject
to estimation errors, we consider via simulations in Section V
the impact of inaccurate path estimation on the proposed code-
timing estimation schemes.

B. Training-Based Estimation

While the proposed blind code-timing estimation schemes re-
quire no knowledge of the information symbols, we can im-
prove the performance by transmitting known training symbols
for the desired user. Without loss of generality, let the first user
be the desired one. The training symbols are assumed identical:
d1(m) = 1,Vm. Taking into account of the special training se-
quence, we isolate the desired user from the others and rewrite
(28) as follows:

Ly y—1
y(m) =" a1i(m) Y 8(ri1)
=1 ¢(=-1
K L ~-1

k=21=1¢=—1

L,

=R, 08, Y a1i(m)e(7.)
=1
K L ~v-1

+3°5° S Bralm + Q8 () + B(m). (50)

k=2 1=1 (=—1

A few remarks on the above equation are in order. First, 31 ;(m)
for user one reduces to al,l(m) due to all-one training [see
(23)]. Second, it is assumed that the channel remains approx-
imately unchanged within a period of v symbol periods such
that g ;(m + ) = a1,;(m),( = —1,...,7 — 1. As we men-
tioned earlier in this section, this assumption is reasonable since
~ is usually small. We will drop the assumption in our simula-
tion and consider continuously fading channels according to the
Jakes’ model; see Section V. Finally, the second equality of (50)
follows similar steps in (41) for user one.
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It is noted that we did not try to simplify the expressions for
the other interfering user signals in (41). This is because with
their information symbols unknown and random, they take sim-
ilar forms as in the former blind case in Section IV.A. In par-
ticular, each propagation path of these interfering users con-
tributes v 4+ 1 independent vectors to the signal subspace; on
the other hand, each propagation path for the desired user only
contributes one vector to the signal subspace. In view of this dif-
ference, one can see that although the eigendecomposition of the
covariance matrix of Ry in the current case takes the same form
as in (33), the signal/noise subspaces involve different dimen-
sions. In particular, we now have E; € CYNsX[(v+1)(L=L1)+L]
spans the [(v+ 1)(L — Ly ) + L1]-dimensional signal subspace,
and E,, € CYNeX[YNe=(y+1(L= L)~ L] gpans the [yN, — (v +
1)(L— Ly) — Ly]-dimensional noise subspace that is orthogonal
to E,. Once the noise subspace is properly identified from the
eigendecomposition of Ry, the remaining steps of the training-
based scheme for a particular v is the same as in the blind
scheme with the same . Again, we stress that we have a group
of training-assisted schemes with different v because they offer
different tradeoffs in accuracy, capacity, and complexity, similar
to the blind estimation case.

Remark 4: To summarize, the proposed training-based
code-timing estimation methods involve transmission of iden-
tical training symbols for the desired user. The associated noise
subspace has a larger dimension than its counterpart for the
blind case. Other than such differences, implementations of the
training-based and blind schemes are identical for the same
choice of . The difference in subspace dimension, however,
does lead to different performance of the two categories of
algorithms, as will be seen in the next section.

V. NUMERICAL RESULTS

We consider a K-user asynchronous DS-CDMA system
using a unit-energy binary phase shift keying (BPSK) constel-
lation and a square-root raised-cosine chip pulse with roll-off
factor equal to one [15]. The pulse is truncated to a duration of
4T, [23]. Each user is assigned an N = 31 Gold code consisting
of 1 and —1. To model both small- and large-scale fading, we
decompose the fading coefficient into two parts and generate
them separately: oy i(¢1;) = &x,1(¢1;) Py, where T; denotes
the sampling interval [cf. (20)], &x(4T3) is a zero-mean,
unit-variance complex Gaussian random variable modeling
the small-scale time-varying Rayleigh fading (more discussion
later), while P, ; follows a log normal distribution to emulate
the large-scale path loss and shadowing [22]. In the sequel,
we consider near-far environments without enforcing stringent
power control, where the total (from all paths) average power
for the desired user is scaled so that P; 2 Zf:ll P =1,
while the power for the K — 1 interfering users follows a log
normal distribution with a mean power P dB higher than that
of the desired user. The near-far ratio (NFR) is defined as P (in
dB). The SNR used below is SNR per bit.

We consider both time- and frequency-selective channel
fading channels that are generated according to the Jakes’
model [20]. In particular, the fading process £ ;(¢71;) has the
classical U-shaped PSD and unit power, parameterized by the
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normalized Doppler rate fpTs, where fp is the maximum
Doppler rate and 7 the symbol interval. In our simulations,
the fading process is generated according to the Jakes’ model
and updated continuously every 7; seconds. As a result, the
fading does not remain unchanged within a symbol interval as
assumed in our earlier derivation.

In what follows, we simulate and assess the performance
of the proposed blind and training-assisted schemes with two
choices of the design parameters, namely v = 1 and v = 2, re-
spectively. We also compare our schemes with a matched-filter
(MF) scheme (e.g., [2, ch. 5]), which is also implemented in
the frequency domain with all-one training for the desired user,
and the time-subspace (TS) scheme proposed by Ostman and
Ottersten [16] that was also designed for bandlimited chip
waveforms. For brevity, our schemes will be referred to as
the FS-blind or FS-trained schemes, with FS standing for fre-
quency subspace, whereas the scheme of [16] is likewise called
the TS. The TS scheme requires initial parameter estimates,
which are provided by the original subspace scheme of [7] for
rectangular pulses, followed by nonlinear iterative searches
over the parameter space. The shift-invariance based scheme
of [17] is not considered here since it is not designed for time-
and frequency-selective channels.

The primary performance measure adopted here is the prob-
ability of correct acquisition, defined as the probability of the
event that the delay estimate is within a half chip of the true
delay. Another performance measure is the root-mean-squared
error (rmse), normalized by 7T, of the delay estimate given cor-
rect acquisition. In the multipath case, we evaluate the proba-
bility of acquisition for each path regardless of the acquisition
of the other paths, then, the averaged probability of acquisition
for all paths is considered. This implies that if correct acqui-
sition is achieved with only a single path, the overall perfor-
mance would still be very poor (due to averaging with paths with
incorrect acquisition). The rmse results are reported in a sim-
ilar fashion. All results shown below are based on hundreds of
Monte Carlo trials, where the over-sampling factor Q = 2 and
T, (delay), &g, (small-scale fading), Py ; (large-scale fading)
for k # 1,di(m) (except di(m) = 1 for the training-assisted
schemes) and channel noise are varied independently from trial
to trial. Unless otherwise specified, the DFT grid selection pa-
rameter is 77 = 1 for the proposed techniques.

Fig. 3(a) and (b) depict the probability of correct acquisi-
tion and rmse, respectively, of the proposed FS, TS, and MF
methods as a function of the number of user K (user capacity)
in time-varying frequency-selective Rayleigh-fading channels
when M = 150, SNR = 20 dB, NFR = 10 dB, fpT, = 0.01,
and L, = 2,Vk. It is seen that the proposed schemes outper-
form the time-subspace method and the MF in terms of both
probability of acquisition and rmse. It is seen that the perfor-
mance of the MF is limited in the multipath multiuser environ-
ment. The poor performance of the TS scheme is due to inaccu-
rate initial parameter estimates provided by the scheme of [7],
which assumes that the chip waveform is rectangular. On the
other-hand, it can be seen from Fig. 3(a) that the TS scheme
outperforms the FS (y = 1) schemes for large number of users
(K > 11). This is because FS discards the tail frequency sam-
ples (i.e., 7 < 1), which reduces the dimension of the noise sub-
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Fig. 3. Performance versus the number of users K in time-varying

frequency-selective fading channels when @ = 2, M = 150, SNR = 20 dB,
NFR = 10dB, fp7, = 0.01, and L, = 2,Vk. (a) Probability of correct
acquisition. (b) rmse.

space. As K increases, the number of independent noise eigen-
vectors decreases, which has an negative impact on both TS and
FS (7 = 1). The latter is affected more because there are fewer
number of noise eigenvectors available for estimation, due to
discarding the tail frequency samples. Increasing -y from 1 to 2
can improve significantly the user capacity as well as estimation
accuracy. It is also observed from Fig. 3(a) and (b) that the pro-
posed training-assisted schemes outperform the blind ones (for
the same value of ), which is not surprising since the former
utilize more information about the transmission.

Fig. 4(a) and (b) shows the performance of the three methods
as a function of the SNR in time-varying two-path Rayleigh-
fading channels when M = 150, K = 6,NFR = 10 dB,
and fpTs = 0.01. Also shown in Fig. 4(b) is the unconditional
CRB derived in [29]. Since the CRB depends on the propaga-
tion delays, in this example they are randomly generated and
then fixed through the simulation, whereas the other parame-
ters are changed randomly from one trial to another. In terms of
acquisition, it is seen from Fig. 4(a) that the proposed schemes
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Fig. 4. Performance versus SNR in time-varying frequency-selective fading
channels when @ = 2, M = 150, K = 6,NFR = 10dB, fpTs = 0.01,
and L, = 2,Vk. (a) Probability of correct acquisition. (b) rmse.

have the smallest SNR threshold. Fig. 4(b) indicates that the pro-
posed schemes are also more consistent than the others. That is,
the estimation error of the former decreases consistently as the
SNR increases, whereas the other two exhibit irreducible error
floors.

We next examine numerically the choice of 7, the DFT grid
selection parameter (see Section IV), for the proposed schemes.
Fig. 5(a) and (b) depict the probability of correct acquisition
and rmse, respectively, of the proposed schemes in time-varying
two-path Rayleigh-fading channels when M = 150,NFR =
10 dB, SNR = 20 dB, K = 6 and fpTs; = 0.01. It is seen
that as 7 increases, the performance of the proposed schemes
improves; when 7 is too large (i.e., close to one), however, the
estimation accuracy suffers slightly [cf. Fig. 5(b)], due to the
inclusion of noisy end DFT grids. We note that in testing the
algorithms versus 7 for @ = 1 (not shown here), we found that
the performance is more sensitive to the choice of 7 than it is
the case when Q = 2.

Fig. 6(a) and (b) show the performance of the proposed FS,
TS, and MF methods as a function of the Lj, the number of
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paths for each user, when K = 2, SNR = 20 dB, NFR = 10
dB, fpTs, = 0.01, and M = 150. We see that for this par-
ticular example, as the number of paths increases, all estima-
tors suffer a degradation, although the proposed FS schemes are
the best for all L. Note, however, that the effect of multipath
on code acquisition may be more complicated than that. It has
been found in [30]-[32] that on one hand, the weaker paths may
lower the overall acquisition probability; on the other, code ac-
quisition may also benefit from the existence of several signal
paths, which reduces the mean acquisition time. The impact of
multipath on code acquisition may also be complicated by fac-
tors such as the number of users in the system, the power of the
interfering users, the channel fading rate, and the technique used
for acquisition.

Finally, we examine the impact of inaccurate knowledge of
the path number on the performance of the proposed estimators.
The experimental setup is similar to that of Fig. 4, except that
we only consider the case with v = 2 for the proposed schemes.
Fig. 7(a) and (b) depict the results when L, the path number for
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the desired user, is known exactly, underestimated by one, and
overestimated by one, respectively. It is seen that path overes-
timation appears to cause little performance loss, while under-
estimation degrades the proposed schemes considerably. This is
because when L is underestimated, some signal eigenvectors
are mistaken as noise eigenvectors and used for parameter es-
timation, which degrades the performance since (40) no longer
holds. On the other hand, no such mistakes occur with path over-
estimation. This suggests that we may over-estimate the path
number if exact knowledge is not available. However, it should
be noted that path over-estimation has the drawback that it pro-
duces extra code-timing estimates for paths that do not exist.

VI. CONCLUSION

We have presented a group of blind and training-assisted
code-timing estimation algorithms for CDMA systems with
bandlimited chip waveforms. The proposed schemes rely on
subspace structure of the received signal in the frequency
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domain. They can be implemented efficiently through polyno-
mial rooting, and offer the remarkable flexibility to trade off
performance, user capacity, and implementation complexity.
The proposed schemes are near-far resistant, and able to deal
with time- and frequency-selective channel fading. Numer-
ical results show that the proposed frequency-domain based
methods outperform an earlier time-domain subspace scheme
which requires iterative nonlinear searches, and is plagued by
inaccurate parameter initialization.
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