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Joint Estimation of Carrier Offset and Code Timing for
DS-CDMA With Performance Analysis

Khaled Amleh, Member, IEEE, and Hongbin Li, Member, IEEE

Abstract—This paper considers the problem of joint carrier
offset and code timing estimation for code-division multiple-access
(CDMA) systems. In contrast to existing schemes that require
nonlinear iterative searches over the multidimensional parameter
space, this paper proposes a blind estimator that provides an
algebraic solution to the joint parameter estimation problem.
By exploiting the subspace structure of the observed signal, the
multiuser estimation is first decoupled into a series of single-
user estimation problems, and then analytical tools of polynomial
matrices are invoked for joint carrier and code timing estimation
of a single user. The proposed estimator is near–far resistant. It
can deal with frequency-selective and time-varying channels. The
performance of the proposed scheme is examined analytically by
a first-order perturbation analysis. The authors also derive an un-
conditional Cramér–Rao bound (CRB) that is conditioned neither
on fading coefficients nor information symbols; as such, the CRB
is considered a suitable lower bound for blind methods. Numerical
examples are presented to evaluate and compare the proposed and
a multidimensional search (MD-search)-based scheme.

Index Terms—Carrier offset and code timing estimation, code-
division multiple access (CDMA), Cramér–Rao bound, perturba-
tion analysis, time-selective and frequency-selective channels.

I. INTRODUCTION

INITIAL spreading code and carrier frequency synchroniza-
tion that precede symbol detection are challenging problems

in direct-sequence code-division multiple-access (DS-CDMA)
systems [1]. A conventional technique is to search serially
through all potential code phases and frequencies for the de-
sired user while treating the multiaccess interference (MAI)
as noise [1, ch. 5]. This approach, albeit easy to implement,
suffers the MAI, particularly in a near–far environment. A
number of MAI-resistant code synchronization schemes have
been introduced recently. These schemes can be classified as
training-based methods (see [2], [3], and references therein),
which require transmitting symbols known to the receiver, and
blind techniques (e.g., [4]–[6] and references therein), which
require no training but rely on some inherent structure of the
transmitted signal.

Most of the above MAI-resistant acquisition schemes con-
sider only code synchronization, assuming that carrier synchro-
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nization has been achieved at a prior stage. There are lim-
ited studies on joint code and frequency synchronization. One
example is a joint carrier offset and code timing estimator pro-
posed in [7], where frequency-nonselective and time-invariant
channels were considered. This estimator involves nonlinear
iterative searches over the multidimensional parameter space.
It is computationally involved and requires accurate initial
parameter estimates that are often difficult to obtain.

The authors present herein an algebraic approach to joint
carrier offset and code timing estimation in CDMA systems.
To some extent, the proposed method is reminiscent of a
technique proposed in [8] for joint channel and carrier offset
estimation. However, there are notable distinctions. One is
that [8] assumes a strictly quasi-synchronous system in which
intersymbol interference (ISI)-free chip samples are available.
It was also assumed that there is a finite-duration impulse
response (FIR) channel model with time-invariant and congru-
ent channel taps. The authors relax these assumptions to allow
for channel variations and adjacent-symbol ISI (no ISI-free
chips are available); the path delays are otherwise unrestricted.
Specifically, by exploiting the subspace structure of the ob-
served signal, the multiuser estimation is first decoupled into a
series of single-user estimation problems. Next, analytical tools
of polynomial matrices are utilized for joint carrier and code
timing estimation of a single user. The proposed estimator is
near–far resistant. It can deal with frequency-selective and time-
varying channels. The performance of the proposed scheme
is examined analytically by a first-order perturbation analysis.
An unconditional Cramér–Rao bound (CRB) that is condi-
tioned on neither fading coefficients nor information symbols
was also derived. Hence, CRB is considered a more suitable
lower bound than a conditioned CRB (e.g., [4]) for blind code
timing estimators. Numerical examples are presented to evalu-
ate and compare the proposed and a multidimensional search
(MD-search)-based schemes.
Notation: Vectors (matrices) are denoted by boldface lower

(upper) case letters; all vectors are column vectors; superscripts
(·)∗, (·)T, (·)H, and (·)† denote the complex conjugate, trans-
pose, conjugate transpose, and Moore–Penrose pseudo-inverse,
respectively; IN denotes the N × N identity matrix; 0 denotes
an all-zero vector/matrix; ‖ · ‖ denotes the vector 2-norm; E{·}
denotes the statistical expectation; diag{·} denotes a diagonal
or block diagonal matrix; and null(A) denotes the null space
of matrix A.

II. PROBLEM FORMULATION

Consider a baseband asynchronous K-user DS-CDMA
system. The transmitted signal for user k is given by sk(t) =

1536-1276/$20.00 © 2005 IEEE
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∑M−1
m=0 dk(m)πk(t − mTs), where M is the number of sym-

bols used for synchronization, dk(m) and πk(t) denote the
mth symbol and spreading waveform, respectively, for user k,
and Ts = NTc denotes the symbol interval, with Tc and N
being the chip interval and spreading gain, respectively. The
signal sk(t) passes through a baseband frequency-selective
time-varying channel. The received signal is given by

y(t) =
K∑

k=1

Lk∑
l=1

αk, l(t)sk(t − τk, l)e jΩk(t−τk, l) + n(t) (1)

where Lk is the number of paths for user k, Ωk is the
frequency offset, αk, l(t) is the fading coefficient for the lth
path, τk, l is the associated delay, and n(t) is the channel
noise with zero-mean and variance σ2

n. To avoid ambiguity, the
authors assume that the delay for the desired user is such that
τk, l < Ts. This could be due to a prior coarse synchronization
that pulls the timing uncertainty to within a symbol interval
(e.g., [2]). On the other hand, if τk, l ≥ Ts, the proposed blind
scheme can identify the fractional delay, i.e., τk, l mod Ts; the
integer portion of the delay cannot be identified blindly. In what
follows, the authors also assume that the time-varying fading
coefficient αk, l(t) is a stationary random process while the
number of paths Lk and path delay τk, l remain (approximately)
fixed during acquisition. The receiver front-end is a chip-
matched filter (CMF) that outputs samples y(l) = y(t)|t=lTi

,
where Ti = Tc/Q is the sampling interval, with Q ≥ 1 denot-
ing the oversampling factor (an integer). It is convenient to
write τk, l as a multiple of the sampling interval Ti

τk, l = ( pk, l + µk, l)Ti

where pk, l ∈ [0, NQ − 1] denotes the integer delay while
µk, l ∈ [0, 1) is the fractional delay.

Let y(m) ∆=[y(mNQ), . . . , y(mNQ +NQ − 1)]T and ck
∆=

[ck(0), . . . , ck(NQ − 1)]T, where ck(n) = (1/Ti)
∫ nTi

(n−1)Ti
πk

(t)dt. Due to asynchronous transmissions, two adjacent sym-
bols in each path contribute to y(m). As a result, y(m) can be
expressed as [5]1

y(m) =
K∑

k=1

Σk(ωk)Ak(τ k)βk(m) + n(m),

m = 0, 1, . . . ,M − 1 (2)

1The authors invoke the standard assumption that the frequency offset is
small compared to the chip rate, i.e., Ωk � 1/Tc, so that the exponential
term in (1) remains approximately constant within Ti [8]. Also, to simplify
the data model, the channel is assumed to remain unchanged within one Ts and

αk, l(m)
∆
= αk, l(t)|t=mTs . In testing the proposed scheme, the authors allow

αk, l(t) to vary continuously according to a more realistic channel model; see
Section VI.

where ωk
∆= ΩkTi denotes the normalized carrier offset

τ k
∆= [τk,1, . . . , τk,Lk

]T

Σk(ωk) ∆= diag
{

1, e jωk , . . . , e jωk(NQ−1)
}

βk(m) ∆=
[
βk,1(m), β̄k,1(m), . . . , βk,Lk

(m), β̄k,Lk
(m)

]T

βk, l(m) ∆=αk, l(m)dk(m − 1)e
jωk

(
mNQ−τk, l

Ti

)

β̄k, l(m) ∆=αk, l(m)dk(m)e
jωk

(
mNQ−τk, l

Ti

)

and n(m) denotes the NQ × 1 channel noise vector. The
spreading code matrix Ak(τ k) is given by

Ak(τ k) = [ak(τk,1), āk(τk,1), . . . ,ak (τk,Lk
) , āk (τk,Lk

)]
(3)

where ak(τk, l) and āk(τk, l) are formed from the acyclic left
right shift of the spreading code ck [5]

ak(τk, l)
∆= (1 − µk, l)cl

k( pk, l) + µk, lcl
k( pk, l + 1) (4)

āk(τk, l)
∆= (1 − µk, l)cr

k( pk, l) + µk, lcr
k( pk, l + 1) (5)

cl
k( pk, l)

∆=P( pk, l)ck

cr
k( pk, l)

∆= P̄( pk, l)ck (6)

where P( p) and P̄( p) are shifting matrices

P( p) ∆=
[
0 Ip

0 0

]
, P̄( p) ∆=

[
0 0

INQ−p 0

]
. (7)

Let

Fk( pk, l)
∆= [P( pk, l)ck,P( pk, l + 1)ck]

F̄k( pk, l)
∆=

[
P̄( pk, l)ck, P̄( pk, l + 1)ck

]

µk, l
∆= [1 − µk, l, µk, l]T.

Then, ak(τk, l) and āk(τk, l) can be compactly expressed as

ak(τk, l) = Fk( pk, l)µk, l, āk(τk, l) = F̄k( pk, l)µk, l. (8)

The problem of interest is to estimate the code timing
{τ k}K

k=1 and the carrier frequency offset {ωk}K
k=1 from the

received data {y(m)}M−1
m=0 without any knowledge of the

information symbols.

III. JOINT CARRIER OFFSET AND

CODE TIMING ESTIMATION

The proposed scheme is a subspace-based approach that
decouples the multiuser parameter estimation problem into a
series of single-user estimation. For ease of presentation, the
authors first consider the noise-free case in Section III-A and
then discuss the noisy case in Section III-B.
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A. Noise-Free Case

Let

x(m) = Θ(ω)A(τ )β(m)

where

Θ(ω) ∆= [Σ1(ω1), . . . ,ΣK(ωK)]

A(τ ) ∆= diag {A1(τ 1), . . . ,AK(τK)}

τ
∆=

[
τT

1 , . . . , τT
K

]T
β(m) ∆=

[
βT

1 (m), . . . ,βT
K(m)

]T
.

Let

X ∆= [x(0), . . . ,x(M − 1)]

that can be expressed as

X = Θ(ω)A(τ )B

where B = [β(0), . . . ,β(M − 1)]. Let L
∆=

∑K
k=1 Lk denote

the total number of paths of all K users. The authors assume
that NQ > 2L so that matrix Θ(ω)A(τ ) is tall with full
column rank, which is in general satisfied with independent
spreading codes for different users and distinct path delays
(of any one particular user). Furthermore, the authors assume
that M > 2L and that B has full row rank, which is again
satisfied with independent data symbols for different users and
independent or correlated (but not fully coherent) path gains
(of any one particular user). With such assumptions, the singu-
lar value decomposition (SVD) can be expressed as

X = [Us Un]
[

Λ2L×2L 02L×(M−2L)

0(NQ−2L)×2L 0(NQ−2L)×(M−2L)

] [
VH

s

VH
n

]

(9)

where Λ is a 2L × 2L diagonal matrix made from 2L nonzero
singular values and the associated left and right singular vectors
are contained in Us ∈ C

NQ×2L and Vs ∈ C
M×2L, respec-

tively. It is ready to show that

UH
nΣk(ωk)Ak(τ k) = 0, k = 1, . . . ,K. (10)

Estimates of ωk and τ k can be obtained from the above equa-
tions through nonlinear searches over an (Lk + 1)-dimensional
parameter space, which are computationally involved and may
suffer local convergence.

To seek an alternative solution, by which frequency offset
and code timing can be estimated algebraically, the authors
invoke the theory of polynomial matrices (e.g., [9]). For the lth
path of user k, (10) is equivalent to (the authors henceforth drop
the subscripts k and l for notational brevity)

UH
nΣ(ω)a(τ) = 0, UH

nΣ(ω)ā(τ) = 0. (11)

Let τ
∆= ( p + µ)Ti and z

∆= e jω. The authors may write
Σ(z) = diag{1, z, . . . , zNQ−1}. Substituting (8) into (11)
yields

Ψ(z)µ = 0, Ψ̄(z)µ = 0 (12)

where Ψ(z) ∆= UH
nΣ(z)F( p) and Ψ̄(z) ∆= UH

nΣ(z)F̄( p).
Notice that Ψ(z) and Ψ̄(z) are (NQ − 2L) × 2 polynomial
matrices in z of order NQ − 1. To see this, let un,i, fH

i ( p),
and f̄H

i ( p), i = 1, 2, . . . , NQ, denote the ith column of UH
n ,

the ith row of F( p), and the ith row of F̄( p), respectively.
Then, the polynomial matrices Ψ(z) and Ψ̄(z) can then be
explicitly expressed as

Ψ(z) =
NQ∑
i=1

un,ifH
i ( p)zi−1, Ψ̄(z) =

NQ∑
i=1

un,if̄H
i ( p)zi−1.

(13)

Represent Ψ(z) and Ψ̄(z) explicitly using column polyno-
mial vectors

Ψ(z) = [ψ1(z), ψ2(z)] , Ψ̄(z) =
[
ψ̄1(z), ψ̄2(z)

]
.

Equation (12) implies that at the true values of p and the
carrier offset, ψ1(z) and ψ2(z) are linearly dependent on each
other, and so are ψ̄1(z) and ψ̄2(z); furthermore, µ lies in both
null(Ψ(z)) and null(Ψ̄(z)).2 Therefore, the rank of null
(Ψ(z)) and null(Ψ̄(z)) is one. Hence, the authors can con-
struct projection matrices P⊥

ψ2
(z) and P̄⊥

ψ̄2
(z) that project to

the orthogonal complement of vectors ψ2 and ψ̄2, respectively

P⊥
ψ2

(z)ψ1(z) = 0, P̄⊥
ψ̄2

(z)ψ̄1(z) = 0. (14)

To construct P⊥
ψ2

(z) and P̄⊥
ψ̄2

(z), it is noted that by the Bezout

identity [9, p. 379] (see also [8]), there exist 1 × (NQ − 2L)
polynomial vectors gH(z) and ḡH(z) such that

gH(z)ψ2(z) = z−n0 , ḡH(z)ψ̄2(z) = z−n̄0 (15)

for some appropriate delays n0 and n̄0; see Appendix A for
how to construct gH(z) and ḡH(z). Once the authors have these
vectors, P⊥

ψ2
(z) can be formed as

P⊥
ψ2

(z) = z−n0INQ−2L − ψ2(z)gH(z). (16)

Likewise, P̄⊥
ψ̄2

(z) can be similarly formed from ψ̄2(z), ḡH(z),
and n̄0.

According to (14), a natural estimate of the frequency offset
can then be obtained by solving the minimization problem

ω̂ = arg min
ω

{∥∥∥P⊥
ψ2

(z)ψ1(z)
∥∥∥2

+
∥∥∥P̄⊥

ψ̄2
(z)ψ̄1(z)

∥∥∥2
}

(17)

that needs to be minimized for all possible values of p. Specif-
ically, for p = 0, 1, . . . , NQ − 1, the authors construct the

2Note that µ is by construction nontrivial (viz. µ �= 0) for all possible
delays, including when µ = 0 (i.e., zero fractional delay), for which case it
reduces to µ = [1, 0]T.
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projection matrices P⊥
ψ2

(z) and P̄⊥
ψ̄2

(z) as in the above,
and find an estimate ω̂ by minimizing (17) for each p; the
final estimate is the one that yields the smallest value of the
cost function among the NQ candidates. For each p, the min-
imization of (17) can be efficiently performed by polynomial
rooting, similar to the root-MUSIC algorithm [10, p. 158].

Once an estimate of ω is known, Ψ(z) and Ψ̄(z) are para-
meterized by the integer delay p. Then, the authors may write
them explicitly as Ψ( p) and Ψ̄( p). It follows from (12) that
the following criterion can be used to estimate the integer and
fractional delay as

{p̂, µ̂} = arg min
p,µ

{
‖Ψ( p)µ‖2 +

∥∥Ψ̄( p)µ
∥∥2

}
. (18)

In the multipath case, there are Lk solutions corresponding
to the Lk paths of user k, all achieving identically the same
minimum of the cost function, which is zero if Un is known
exactly (see discussions next). The authors remark that criterion
(18) is equivalent to the one employed in [4, Eq. (23)] for code
acquisition assuming no carrier offset. As shown there, it can
be efficiently minimized by a sequence of polynomial rooting.

B. Noisy Case

It can be shown that in the absence of noise, the proposed
scheme yields error-free parameter estimates (see, e.g., [10]).
With noisy observation, however, (11) no longer holds exactly
since only a noisy estimate of Un is available. As a result, the
criteria (17) and (18) have to be minimized in the least-squares
sense, and the delay and carrier offset estimates are no longer
exact. The performance of the proposed scheme in the noisy
case is analyzed in Section IV and numerically evaluated in
Section VI. The authors briefly summarize the implementation
of the proposed scheme as follows.

1) Collect all noisy observations and form the data matrix
Y ∆= [y(0), . . . ,y(M − 1)]. Compute the SVD of Y as

Y = [Ûs, Ûn]Λ̂V̂H (19)

where Ûs ∈ C
NQ×2L is formed by the 2L left singular

vectors associated with 2L largest singular values while
Ûn ∈ C

NQ×(NQ−2L) collects the rest of the left singular
vectors.

2) Estimate the carrier offset by (17). Note that the con-
struction of the projection matrices P⊥

ψ2
(z) and P̄⊥

ψ̄2
(z),

as well as the minimization of (17) that produces the
carrier offset estimate, follows exactly the same way as
that described in Section III-A. The only exception is that
Un [cf. (13)] is now replaced by the noisy estimate Ûn.

3) Estimate the delay by (18), which is minimized as de-
scribed in Section III-A.

IV. PERTURBATION ANALYSIS

In the following, an asymptotic expression was derived for
the covariance matrix of the carrier offset and the code timing
delay estimates obtained by the proposed estimator. The analy-
sis is based on a first-order Taylor expansion of the cost function

involved when the signal-to-noise ratio (SNR) is high. In that
case, the parameter estimates deviate slightly from the true
values. As such, the Taylor expansion with respect to (w.r.t.)
τk, l effectively reduces to the expansion w.r.t. the fractional
delay µk, l, assuming knowledge of the integer delay pk, l. It
is noted that (19) and (9) are related as

Ûn = Un + ∆Un

where the first-order perturbation is given by [11]

∆Un = −UsΛ−1VH
s NHUn = −X†HNHUn (20)

where N ∆= [n(0), . . . ,n(M − 1)]. The cost function to be
minimized is

J(ωk, µk, l, Ûn) ∆=
∥∥∥ÛH

nΣk(ωk)Fk( pk, l)µk, l

∥∥∥2

+
∥∥∥ÛH

nΣk(ωk)F̄k( pk, l)µk, l

∥∥∥2

. (21)

Hereafter, the subscripts k and l and the dependence on ωk

and τk, l are sometimes dropped for notational simplicity. Let

θ
∆= [ω, µ]T. A first-order Taylor series expansion at (ω, µ, Ûn)

yields

0 = J ′(ω̂, µ̂, Ûn) ≈ d(ω, µ, Ûn) + H(ω, µ, Ûn)∆θ (22)

where J ′(ω̂, µ̂, Ûn) ∆= ∂J(ω̂, µ̂, Ûn)/∂θ, d(ω, µ, Ûn) ∆=
∂J(ω, µ, Ûn)/∂θ, and H(ω, µ, Ûn) denote the Hessian ma-
trix of the cost function evaluated at (ω, µ, Ûn). It follows that

∆θ ≈ −H−1(ω, µ, Ûn)d(ω, µ, Ûn). (23)

With first-order approximations, d(ω, µ, Ûn) and H(ω, µ, Ûn)
can be expressed as

d(ω, µ, Ûn) =d(ω, µ,Un) + ∆d(ω, µ,Un)

= ∆d(ω, µ,Un) (24)

H(ω, µ, Ûn) =H(ω, µ,Un) + ∆H(ω, µ,Un) (25)

where the second equality of (24) is due to the fact that
d(ω, µ,Un) = 0. Substituting the above equations into (23),
the authors have

∆θ ≈ −
[
H−1(ω, µ,Un) − H−1(ω, µ,Un)∆H(ω, µ,Un)

× H−1(ω, µ,Un)
]
∆d(ω, µ,Un)

≈ − H−1(ω, µ,Un)∆d(ω, µ,Un) (26)

where the second-order term was ignored.
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The authors now evaluate first-order derivative d(ω, µ, Ûn)
and the Hessian matrix H(ω, µ,Un) as follows. Let

µ́
∆=

∂µ

∂µ
= [−1, 1]T

Σ́ ∆=
∂Σ
∂ω

= j diag
{

0, e jω, . . . , (NQ − 1)e jω(NQ−1)
}

´́Σ ∆=
∂2Σ
∂2ω2

= −diag
{

0, e jω, . . . , (NQ − 1)2e jω(NQ−1)
}

.

By direct computation, the authors have [using (20) and the fact
that UH

nΣFµ = UH
nΣF̄µ = 0 and keeping only the first-

order terms]

∂J(ω, µ, Ûn)
∂ω

= 2�
[
µHFHΣ́

H
ÛnÛH

nΣFµ

+ µHF̄HΣ́
H
ÛnÛH

nΣF̄µ
]

≈ − 2�
[
µHFHΣ́

H
UnUH

nNX†ΣFµ

+ µHF̄HΣ́
H
UnUH

nNX†ΣF̄µ
]

(27)

∂J(ω, µ, Ûn)
∂µ

= 2�
[
µ́HFHΣHÛnÛH

nΣFµ

+ µ́HF̄HΣHÛnÛH
nΣF̄µ

]

≈ − 2�
[
µ́HFHΣHUnUH

nNX†ΣFµ

+ µ́HF̄HΣHUnUH
nNX†ΣF̄µ

]

(28)

∂2J(ω, µ,Un)
∂ω∂µ

= 2�
[
µHFHΣ́

H
UnUH

nΣFµ́

+ µHF̄HΣ́
H
UnUH

nΣF̄µ́
]

(29)

∂2J(ω, µ,Un)
∂ω2

= 2µHFHΣ́
H
UnUH

nΣFµ́

+ 2µHF̄HΣ́
H
UnUH

n Σ́F̄µ (30)

∂2J(ω, µ,Un)
∂µ2

= 2µ́HFHΣHUnUH
nΣFµ́

+ 2µ́HF̄HΣHUnUH
nΣF̄µ́. (31)

Substituting (27) and (28) into (26), while observing that the
noise is zero mean and independent of the signal part X,
the authors have E{∆θ} ≈ 0, implying that the estimator is
asymptotically unbiased. The asymptotic covariance matrix is

cov(θ) ∆=E{∆θ∆θH}
=H−1(ω, µ,Un)RdH−H(ω, µ,Un) (32)

where Rd
∆= E{∆d(ω, µ,Un)∆dH(ω, µ,Un)} is computed

in Appendix B.

V. CRB

A CRB that is averaged over unknown user symbols and
channel fading is derived herein. Recall (2), which is re-
written as

y(m) ∆= Θ(ω)A(τ )β(m) + n(m) m = 0, . . . , M − 1.
(33)

In what follows, the standard assumption that the information
symbols, fading, and noise are zero-mean and independent
of one another was used. To facilitate arriving at a simple
but useful CRB expression, the authors further assume
that {β(m)}M−1

m=0 are Gaussian with zero-mean and covari-
ance matrix E{β(m1)βH(m2)} = Rβδ(m1 − m2), where

Rβ
∆= E{β(m)βH(m)} = diag{Rβ1 , . . . ,RβK

}, E{βk(m)

βH
k (m)} = diag{Pk,1, Pk,1, . . . , Pk,Lk

, Pk,Lk
}, with Pk, l

∆=
E{|αk, l(m)|2} denoting the average power of the lth path
of user k and δ(n) denoting the Kronecker delta. It is noted
that the CRB based on a Gaussian assumption is the lower
bound for the covariance matrices of a large class of estimation
methods, regardless of the data distribution [10, p. 293]. Let
y ∆= [yT(0), . . . ,yT(M − 1)]T. With the above assumptions,
it is easy to show that y is Gaussian with zero-mean and
covariance IM ⊗ Ry , where

Ry
∆= Θ(ω)A(τ )RβA(τ )HΘH(ω) + σ2

nI.

Let φ collect all unknown parameters

φ
∆=

[
φT

τ ,φT
ω ,φT

P , σ2
n

]T

where φτ
∆= [τT

1 , . . . , τT
K ]T, φω

∆= [ω1, . . . , ωK ]T, and φP
∆=

[P1,1, . . . , P1,L1 , . . . , PK,1, . . . , PK,LK
]T, and σ2

n denotes the
noise variance. By the Slepian–Bangs formula, the CRB
matrix is given element-wise by (e.g., [10])

[
CRB−1(φ)

]
i,j

= M tr
[
R−1

y

∂Ry

∂[φ]i
R−1

y

∂Ry

∂[φ]j

]
. (34)

The partial derivatives are computed as

∂Ry

∂τk, l
= Pk, lΣk(ωk)

[
Fk( pk, l)Dk, lFH

k ( pk, l)

+ F̄k( pk, l)Dk, lF̄H
k ( pk, l)

]
ΣH

k (ωk)

(35)

∂Ry

∂ωk
= Pk, lΣk(ωk)

[
ak(τk, l)aH

k (τk, l)

+ āk(τk, l)āH
k (τk, l)

]
Σ́

H

k (ωk)

+ Pk, lΣ́k(ωk)
[
ak(τk, l)aH

k (τk, l)

+ āk(τk, l)āH
k (τk, l)

]
ΣH

k (ωk) (36)

∂Ry

∂Pk, l
=Σk(ωk)

[
ak(τk, l)aH

k (τk, l)

+ āk(τk, l)āH
k (τk, l)

]
ΣH

k (ωk) (37)
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where

Dk, l =
[

2(µk, l − 1) 1 − 2µk, l

1 − 2µk, l 2µk, l

]

Σ́k(ωk) = j diag
{

0, e jωk , . . . , (NQ − 1)e jωk(NQ−1)
}

.

Finally, the partial differentiation w.r.t the noise variance is
given by

∂Ry

∂σ2
n

= INQ.

Substituting this last equation, along with (35)–(37), in (34), the
CRB can be readily calculated.

VI. NUMERICAL RESULTS

The authors consider a K-user asynchronous DS-CDMA
system using binary phase-shift keying (BPSK) and N = 15
large Kasami spreading codes [1] in frequency-selective time-
varying Rayleigh fading channels. The fading αk, l(t) [cf. (1)] is
generated by the model of [12], parameterized by the normal-
ized Doppler rate fDTs, where fD is the maximum Doppler
rate. The fading is updated continuously for every sampling
interval Ti. To model both small- and large-scale fading, the
authors use αk, l(i) = γk, l(i)Pk, l, where i is the sampling
index, γk, l(i) ∼ CN (0, 1) models the small-scale Rayleigh
fading, generated according to the Jakes’ model, while Pk, l

follows a log normal distribution to emulate the large-scale
path loss and shadowing. The authors consider near–far en-
vironments, where the total (from all paths) average power
for the desired user is scaled so that P1

∆=
∑L1

l=1 P1,l = 1,
while the mean power for the K − 1 interfering is P̄ decibel
(referred to as the near–far ratio or NFR) higher than that of the
desired user. The average SNR for the desired user is defined as
SNR ∆= NQ/σ2

n. In all examples, the authors use fDTs =
0.0067, ωk = 0.1 for the desired user, and the time delays
are generated randomly and fixed for all users (to facilitate
comparison with the CRB). The authors compare the proposed
estimator and the MD-Search based scheme (10) (also see [7]).
The latter is initialized by estimates obtained by the method in
[4], assuming zero initial carrier offset, and then iterates using
the Matlab function fminsearch till convergence. Two per-
formance measures are considered. The first is the probability
of correct acquisition (PCA), defined as the probability of the
event that the code timing estimation error is less than Tc/2.
The second is the root-mean-squared error (rmse) of parameter
estimates obtained from all simulation runs.3

The authors first consider changing the SNR in time-varying
two-path Rayleigh fading channels. The simulation parameters
are K = 5, M = 200, Q = 2, and NFR = 10 dB. The PCA
of the two methods is shown in Fig. 1(a). The MD-Search
scheme is seen to suffer local convergence caused by poor
initialization, yielding a lower PCA. Fig. 1(b) depicts the rmse

3For multipath propagation, the authors report the PCA and RMSE of the
delay estimates averaged over all paths for the desired user.

Fig. 1. Performance versus SNR in a time-varying two-path fading channel
when M = 200, Q = 2, K = 5, N = 15, and NFR = 10 dB. (a) PCA.
(b) rmse of τ (top) and ω (bottom).

of the parameter estimates along with the perturbation analysis
result and the CRB. Note that the rmse results are obtained by
averaging all Monte Carlo runs. As the SNR increases, it is
seen that the rmse of the proposed scheme and the perturbation
analysis are very close to each other. It is also seen that the
proposed scheme approaches the CRB as SNR increases.

Next, user capacity is examined, i.e., the number of users
that can be supported. The setup is similar to the first example
except that SNR = 20 dB and the channel is flat fading. The
results are depicted in Fig. 2(a) and (b). It is noted that the
proposed scheme achieves a larger user capacity and gives a
better performance.

Finally, the authors consider the effect of M , i.e., the number
of data symbols used for synchronization, when K = 5, Q = 2,
SNR = 20 dB, and NFR = 10 dB in time-varying two-path
Rayleigh fading channels. The results are depicted in Figs. 3(a)
and (b). It is seen that the number of symbols required by the
proposed scheme is relatively small.
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Fig. 2. Performance versus number of users K in a time-varying flat-
fading channel when Q = 2, M = 200, N = 15, SNR = 20 dB, and
NFR = 10 dB. (a) PCA. (b) rmse of τ (top) and ω (bottom).

VII. CONCLUSION

The authors have presented an algebraic blind joint car-
rier offset and code timing estimation algorithm for direct-
sequence code-division multiple-access (DS-CDMA) systems.
The performance of the proposed scheme has been examined
analytically by a first-order perturbation analysis. An uncon-
ditional Cramér–Rao bound (CRB) for the estimation problem
has also been derived. Numerical results show that the proposed
estimator performs well in near–far time-varying multipath
fading channels, and the analysis agrees well with simulation
at high signal-to-noise ratio (SNR).

APPENDIX A
CONSTRUCTION OF gH(z) AND ḡH(z)

Here, the authors show how to construct gH(z); ḡH(z)
follows exactly the same way. ψ2(z) and gH(z) are first

Fig. 3. Performance versus number of bits M in a time-varying two-
path fading channel when Q = 2, K = 5, N = 15, SNR = 20 dB, and
NFR = 10 dB. (a) PCA. (b) rmse of τ (top) and ω (bottom).

expressed explicitly as polynomial vectors

ψ2(z) =
NQ−1∑

i=0

ψ2,iz
i, gH(z) =

B−1∑
i=0

gH
i z−i.

Let gH = [gH
B−1, . . . ,g

H
0 ]1×B(NQ−2L). B was chosen such that

B > (NQ − 1)/(NQ − 2L − 1) to ensure that the matrix Υ is
tall as

Υ ∆=




ψ2,0 · · · ψ2,NQ−1 0
. . .

. . .
0 ψ2,0 · · · ψ2,NQ−1


 . (38)

Then, the convolution of (15) can be represented by gHΥ=
eT

n0
, where en0 denotes a unit vector that contains a unit

element at the n0th location and zeros elsewhere. As shown
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in [8], there exist block vector gH satisfying the above
equations if and only if the product Υ†Υ has the form


 ∗ 0 ∗

0 1 0
∗ 0 ∗


 (39)

where ∗ stands for any value. Therefore, the delay n0 can be
chosen such that the n0th diagonal element of Υ†Υ is equal
to 1. In general, the choice of the delay n0 is not unique. In
the ideal noise-free case, any valid choices will give identical
results. In the presence of noise, however, the choice of
n0 becomes more critical, and different delays can lead to
different results. To find the best n0, it can be selected as the
one yielding the smallest values of the cost function. Once n0

is determined, gH can be calculated as [8] gH = eT
n0

Υ†, from
which the authors can readily construct gH(z).

APPENDIX B
CALCULATION OF Rd

For notational convenience, let

∆d(ω, µ,Un) ∆= [∆dω,∆dµ]T

where

∆dω
∆=

∂J(ω, µ, Ûn)
∂ω

, ∆dµ
∆=

∂J(ω, µ, Ûn)
∂µ

that are given in (27) and (28), respectively. Then, Rd =[
Rω Rω,µ

Rω,µ Rµ

]
, where Rω

∆=E{(∆dω)2}, Rµ
∆=E{(∆dµ)2},

Rω,µ
∆=E{∆dω∆dµ}, and note that Rd is a real symmetric

matrix. Direct calculations using (27) and (28) followed by
simplifications yield

Rω = 2σ2
n�

[
ρ1µ

HFHΞ1Fµ + ρ2µ
HFHΞ1F̄µ

+ ρ∗2µ
HF̄HΞ1Fµ + ρ3µ

HF̄HΞ1F̄µ
]

(40)

Rµ = 2σ2
n�

[
ρ1µ́

HFHΞ2Fµ́ + ρ2µ́
HFHΞ2F̄µ́

+ ρ∗2µ́
HF̄HΞ2Fµ́ + ρ3µ́

HF̄HΞ2F̄µ́
]

(41)

Rω,µ = 2σ2
n�

[
ρ1µ

HFHΞ3Fµ́ + ρ2µ
HFHΞ3F̄µ́

+ ρ∗2µ
HF̄HΞ3Fµ́ + ρ3µ

HF̄HΞ3F̄µ́
]

(42)

where

ρ1 =µHFHΣHX†HX†ΣFµ

ρ2 =µHF̄HΣHX†HX†ΣFµ

ρ3 =µHF̄HΣHX†HX†ΣF̄µ

Ξ1 = Σ́HUnUH
n Σ́

Ξ2 =ΣHUnUH
nΣ

Ξ3 = Σ́HUnUH
nΣ.

In carrying out the above calculations, the authors used the fact
that the noise is a complex white Gaussian with zero-mean
and variance σ2

n, which implies that E{aHNbcHNd} = 0
and E{aHNbcHNHd} = σ2

naHdcHb for arbitrary vectors
a, b, c, and d of proper dimensions.
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