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Abstract: A blind channel estimation and equalisation scheme is given for orthogonal frequency-
division multiplexing systems with unmodelled interference. The approach uses a generalised
multichannel minimum variance principle to design an equalising filterbank that preserves the
desired signal components and suppresses the overall interference. A channel estimate is then
obtained by deriving an asymptotically tight lower bound of the filterbank output power, which
reduces the problem to a quadratic minimisation. By imposing a special structure on the received
signal, the performance is shown to be significantly increased. To assess the performance of the
proposed scheme, an unconditional Cramér–Rao bound (CRB) is derived which, similar to the pro-
posed blind channel estimator, does not assume knowledge of the transmitted information symbols.
The CRB serves as a lower bound for all unbiased blind channel estimation schemes. Numerical
examples show that the proposed scheme approaches the CRB as the SNR increases. It also exhibits
low sensitivity to unknown narrowband interference and compares favourably with a subspace
blind channel estimator.
1 Introduction

Orthogonal frequency division multiplexing (OFDM) is a
multicarrier (MC) digital modulation technique that
allows high data-rate transmission such as digital TV broad-
casting and high-speed telephone line communication. The
implementation relies on very high-speed digital signal pro-
cessing which has only recently become available, making
OFDM a competitive technology for future broadband wire-
less applications. In OFDM the transmitted information is
transformed by the inverse fast Fourier transform (IFFT)
into parallel blocks. When the channel is dispersive, inter-
block interference (IBI) between successive blocks occurs.
To eliminate the IBI a cyclic prefix (CP) is inserted at the
beginning of each transmitted data block. By choosing the
length of the CP to be greater than the channel impulse
response, successive blocks will not interfere and can be
reliably recovered at the receiver’s end.
Numerous channel estimation schemes have been inves-

tigated recently. These schemes rely on either explicit train-
ing (e.g. [1]) or some inherent structure (e.g. subspace [2])
of the transmitted signal. Although the training-assisted
schemes perform quite well, they reduce the spectral effi-
ciency. Moreover, to track channel variations, training
symbols have to be retransmitted periodically, leading to
throughput reductions. Blind schemes, on the other hand,
do not suffer from such drawbacks. Well-known blind
channel estimation schemes for MC are the subspace-based
methods proposed in ([2, 3] for example). However, when
there is insufficient information about the interference so
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that prewhitening cannot be performed, subspace channel
estimation is in general inaccurate.

In this work we consider the problem of blind channel
estimation and equalisation for OFDM systems with
unmodelled interference. Such unmodelled interference
may be caused by time/frequency synchronisation errors,
overlay with narrowband systems, among others. A general-
ised multichannel minimum variance principle (e.g. [4]) is
invoked to design an equalising filterbank that preserves
desired signal components and suppresses the overall inter-
ference. Even though multidimensional nonlinear search
methods can be applied to find channel estimates by directly
maximising the filterbank output power, such an approach is
computationally prohibitive and suffers local convergence.
To overcome the difficulty associated with multidimen-
sional search methods, we derive an asymptotically (in
SNR) tight lower bound of the filterbank output power
and use it for channel estimation, which reduces the
problem to a quadratic minimisation.

We also derive an unconditional Cramér–Rao bound
(CRB) which, similar to the proposed blind channel estima-
tor, does not assume knowledge of the transmitted infor-
mation symbols. The CRB serves as a lower bound for all
unbiased blind channel estimation schemes. By imposing
a unique structure on the received data symbols, significant
performance improvement can be obtained as we show
through numerical examples in Section 6. Furthermore,
we show that the proposed scheme exhibits low sensitivity
to unknown narrowband interference and compares favor-
ably with a subspace blind channel estimator.

Notation: Vectors (matrices) are denoted by boldface italic
lower (upper) case letters; all vectors are column vectors;
superscripts (.)T, (.)� and (.)H denote the transpose, conju-
gate and conjugate transpose, respectively; IN denotes the
N � N identity matrix; 0 denotes an all-zero matrix or
vector; trf.g denotes the trace; vec(.) stacks the columns of
its matrix argument on top of one another; Ef.g denotes
the statistical expectation; the Matlab notation A(i1: i2,
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j1: j2) denotes (i22 i1þ 1) � ( j22 j1þ 1) matrix formed
from rows i1, . . . , i2 and columns j1, . . . , j2 of matrix A
and finally, � denotes the matrix Kronecker product.

2 Problem formulation

Consider an OFDM system where a serial of information
symbols are blocked into K � 1 vectors s(n) ¼ [s(nK ),
. . . , s(nKþ K2 1)]T, which are linearly transformed into
u(n) ¼ Fs(n) by J � K matrix F W [ �F1

T, �FT]T, where �F
denotes the K � K IDFT unitary matrix, and
�F1 [ C ( J2K) � K is formed from the last m W J2 K rows
of �F, where m is the length of the cyclic-prefix. To avoid
multipath-induced interblock interference (IBI), trans-
mission redundancy is introduced by choosing m � L,
where L is the channel order. In the following, we process
a block of N � 1 OFDM symbols simultaneously. Let

sN ðnÞ ¼

sðnN Þ

..

.

sðnN þ N � 1Þ

2
64

3
75

KN�1

uN ðnÞ ¼

uðnN Þ

..

.

uðnN þ N � 1Þ

2
64

3
75

JN�1

¼ ðIN � FÞsN ðnÞ

ð1Þ

The discrete-time baseband equivalent channel, which
includes the transmitter/receiver filter and the physical
channel, is modelled as an FIR filter h W [h(0), h(1), . . . ,
h(L)]T. Hence the overall received samples resulting from
the transmission of uN(n) is JNþ L. We discard the first
and last L samples and form a (JN2 L) � 1 vector yN (n),
which can be expressed as [2]

yN ðnÞ ¼ HðIN � FÞsN ðnÞ þ wN ðnÞ þ eN ðnÞ ð2Þ

where wN(n) and eN(n) denote interference and channel
noise vectors, respectively, and H is an (JN2 L) � JN
Toeplitz matrix defined as

H ¼

hðLÞ . . . hð0Þ 0 . . . . . . 0

0 hðLÞ . . . hð0Þ 0 . . . 0

..

. ..
.

0 . . . . . . 0 hðLÞ . . . hð0Þ

2
6664

3
7775 ð3Þ

It is seen that H(IN � F) is a tall matrix with full column
rank if JN2 L � KN or equivalently, N � L/(J2 K ). If
the length of the cyclic prefix is chosen as J2 K ¼ L,
then the minimum value of N that is needed is equal to one.

The problem of interest is to estimate the channel coeffi-
cients fh(n)gLn¼0 from the observed data without any knowl-
edge of the transmitted symbols.

3 Proposed scheme

Due to the presence of wN(n) and eN(n), the observed
signal yN(n) is noisy. Hence, instead of directly using the
raw data, we propose to first pass yN(n) through a bank
of filters that are designed to enhance the useful signals
and suppress the interference/noise, and then derive the
channel estimates from the filtered data. Equation (2) rep-
resents a multiple-input multiple-output (MIMO) system
with KN inputs and JN2 L outputs. The mixing matrix
H(IN � F) is partially known since H has a known
Toeplitz structure and F is also known to the receiver.
We can exploit this knowledge to design a bank of KN
FIR filters G [ C (JN2L)�KN , each passing one symbol
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with unit-gain, completely annihilating the other KN2 1
interfering symbols, meanwhile suppressing interference
wN(n) as much as possible. While alternative design
schemes may exist, we choose G based on the following
idea: if G is effective in canceling the interference/noise,
the average power of the filterbank output should be
small; meanwhile, to avoid the trivial solution G ¼ 0 and
to prevent signal cancellation, we should enforce certain
constraint on G such that it will pass the desired signals
with little distortion. In particular, we design an equalising
filterbank according to the following minimum variance
criterion

G ¼ argmin
G[C ðJN�LÞ�KN

trfGHRGg

subject to G
H
HðIN � FÞ ¼ IKN ð4Þ

where R W EfyN(n) � yHN(n)g denotes the covariance
matrix, and the constraint GHH(IN � F) ¼ IKN ensures
that each filter (i.e. one column of G) will pass only one
signal component [corresponding to one column of
H(IN � F)] undistorted with unit-gain, while completely
eliminating inter-symbol interference (ISI) caused by the
other columns of H(IN � F). Using the Lagrange
multiplier the solution to the constrained quadratic
minimisation problem is given by (see, for example
[5, p. 283])

G ¼ R�1HðIN � FÞ½ðIN � FÞHHHR�1HðIN � FÞ��1
ð5Þ

Substituting (5) into (4), the minimised average power of
the filterbank output is given by

V1ðhÞ ¼ trf½ðIN � FÞHHHR�1HðIN � FÞ��1
g

¼ trf½HHR�1HðIN � FFH
Þ�
�1
g ð6Þ

where we used the fact that tr(AB) ¼ tr(BA) for any A and
B with compatible size. To find an estimate for h, we want
to maximise V1(h) with respect to h, so that G will maxi-
mally preserve the signal power. Because of the nonlinear
nature of V1(h), this approach is computationally involved
and suffers local convergence. Instead, we maximise an
asymptotic lower bound of V1(h). Using the Schwartz
inequality (see [6], eq. 5), V1(h) � K2/trfHHR21H[IN�
(FFH)]g, where the equality is achieved asymptotically.
So maximising V1(h) w.r.t. (with respect to) h is equivalent
to minimising the following asymptotic lower bound

V2ðhÞ ¼ trfHHR�1H½IN � ðFFH
Þ�g

¼ vecT ðH�
Þf½IN � ðFFH

Þ� � R�1
gvecðHÞ ð7Þ

which becomes a quadratic minimisation problem. Next,
we express vec(H) explicitly as a linear function in h. In
particular, we can write

vecðHÞ ¼ Sh ð8Þ

where S is a (JN2 L)JN � (Lþ 1) matrix formed by
elements 0 and 1 only. It is seen that S is full column
rank since the mapping is one-to-one. For example, if
L ¼ 2, that is three-tap FIR filter/channel, then S can be
IET Commun., Vol. 1, No. 3, June 2007



expressed as

S ¼

0 0 1
o
block 1

0ðJN�L�1Þ�ðLþ1Þ

0 1 0

0 0 1
o
block 2

0ðJN�L�2Þ�ðLþ1Þ

1 0 0

0 1 0
o
block 3

0 0 1

0ðJN�L�3Þ�ðLþ1Þ

..

. ..
.

0ðJN�L�2Þ�ðLþ1Þ

1 0 0

0 1 0
o
block JN � 1

0ðJN�L�1Þ�ðLþ1Þ

1 0 0
o
block JN

���������������������������������������������������������������

ð9Þ

Remarks:

(i) There are JN blocks, each block is of size
(JN2 L) � (Lþ 1).
(ii) Block 1: 1st row is formed by last row of ILþ1; zeros
elsewhere.
(iii) Block 2: first two rows formed by last two rows of
ILþ1; zeros elsewhere.
(iv) Block number Lþ 1: first Lþ 1 rows from ILþ1; zeros
elsewhere.
(v) Block number JN2 L: last Lþ 1 rows from ILþ1; zeros
elsewhere.
(vi) Block number JN2 1: last two rows formed by first
two rows of ILþ1; zeros elsewhere.
(vii) Block number JN: last row formed by first row of
ILþ1; zeros elsewhere.
(viii) Explicit expression of the lth block of S is given by

Sl ¼

Pl
j¼1 El�jþ1;Lþ2�j l ¼ 1; 2; . . . ;LPLþ1
j¼1 El�jþ1;Lþ2�j l ¼ Lþ 1;Lþ 2; . . . ; JN � LPJN�lþ1
j¼1 Ejþl�L�1; j l ¼ JN � Lþ 1;

JN � Lþ 2; . . . ; JN

8>>>><
>>>>:

ð10Þ

where Eij is a (JN2 L) � (Lþ 1) elementary matrix with
unit element at the (i, j)th location and zeros elsewhere.

Using vec(H) ¼ Sh from (8) back in V2(h) (7), we have

V2ðhÞ ¼ hHST
f½IN � ðFFH

Þ� � R�1
gSh W hHFh ð11Þ
IET Commun., Vol. 1, No. 3, June 2007
where

FðLþ1Þ�ðLþ1Þ W S
T
f½IN � ðFF

H
Þ� � R

�1
gS ð12Þ

The solution ĥ that minimises V2(h) is given by the
eigenvector of F associated with the smallest eigenvalue.
Note that for implementation, R has to be replaced by
some covariance matrix estimate, for example the sample
covariance matrix R̂ ¼ P21 PP21

n¼0 yN(n)y
H
N(n) or some

adaptive estimate of R. It can be shown (e.g. [4]) that ĥ
converges to the true channel h (up to a scalar factor) as
the interference and noise vanish. For finite SNR and in
the presence of interference, we evaluate the accuracy of
ĥ via simulations in Section 6. Finally, like all other
blind schemes, the channel estimate ĥ has a scalar ambigu-
ity, which can be resolved either by differential coding or
by transmitting a few pilot symbols.

4 Implementation

We note that the calculation ofF has to be performed care-
fully because of the large dimensions of the matrices
involved: FFH is J � J, IN � (FFH) is JN � JN, S is
(JN2 L)JN � (Lþ 1) and [IN � (FFH)] � R21 is a
(JN2 L)JN � (JN2 L)JN matrix (e.g. 14 336 � 14 336
for N ¼ 2, J ¼ 64 and L ¼ 16). Hence, brute-force computa-
tion is impractical/inefficient except for small values. The
spars/special structure of the matrices involved has to be
exploited for efficient implementation. Let

FFH
¼

Im
�F1

�F
H

�F �F
H

1 IK

" #
¼

Im Im
IK�m

Im Im

2
4

3
5 ð13Þ

Then

ðFF
H
Þ � R

�1

¼

Im � R
�1

Im � R
�1

IK�m � R
�1

Im � R�1 Im � R�1

2
6664

3
7775 ð14Þ

Let

S ¼

S1

..

.

SN

2
64

3
75

ðJN�LÞJN�ðLþ1Þ

Sn ¼

Sn;1

..

.

Sn;J

2
664

3
775

ðJN�LÞJ�ðLþ1Þ

ð15Þ

where Sn, j is (JN2 L) � (Lþ 1) and n ¼ 1, . . . , N. It
follows that F can be expressed as [cf. (14)]

F ¼
XN
n¼1

S
T
n ½ðFF

H
Þ � R

�1
�Sn

¼
XN
n¼1

XJ
j¼1

ST
n;jR

�1Sn;j

"

þ
Xm
j¼1

ðS
T
n;jR

�1
Sn;Kþj þ S

T
n;KþjR

�1
Sn;jÞ

#
ð16Þ
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To compute Sn, j for all n and j, we can reform Sn, j as
follows

Sn;j ¼ ½ 0ðJN�LÞ�L I JN�L 0ðJN�LÞ�L �

�

0½ðn�1ÞJþj�1��ðLþ1Þ

ILþ1

0½ðJN�ðn�1ÞJ�j��ðLþ1Þ

2
64

3
75

W ½ 0ðJN�LÞ�L IJN�L 0ðJN�LÞ�L �
~Sn;j ð17Þ

Following this reformulation, one can see that the first item
in the second equality of (16), that is STn, jR

21Sn, j, can be
simplified as

ST
n;jR

�1Sn;j ¼
~ST
n;j

0L�ðJN�LÞ

I JN�L

0L�ðJN�LÞ

2
64

3
75

� R�1
½ 0ðJN�LÞ�L IJN�L 0ðJN�LÞ�L � ~Sn;j

¼ ~ST
n;j

0L�L 0L�ðJN�LÞ 0L�L

0ðJN�LÞ�L R�1 0ðJN�LÞ�L

0L�L 0L�ðJN�LÞ 0L�L

2
64

3
75 ~Sn;j

W ~ST
n;jR ~Sn;j ð18Þ

Note that R is independent of n or j. Additionally, ~Sn, j is
essentially performing a matrix truncating operation. As
such, we have

ST
n;jR

�1Sn;j ¼
~S
T

n;jR ~Sn;j ¼ Rði1 : i1 þ L; i1 : i1 þ LÞ

for n ¼ 1; . . . ;N; j ¼ 1; . . . ; J ð19Þ

where i1 ¼ (n2 1)Jþ j. Similarly, for the second term in
(16), we have

ST
n;jR

�1Sn;Kþj ¼
~S
T

n;jR ~Sn;Kþj

¼ Rði1 : i1 þ L; i1 þ K : i1 þ K þ LÞ

ST
n;KþjR

�1Sn;j ¼ ðST
n;jR

�1Sn;KþjÞ
T

for n ¼ 1; . . . ;N; j ¼ 1; . . . ;m ð20Þ

We summarise the implementation steps of F along with
the computational complexity in terms of number of flops
as follows:

† Step 1: Set F ¼ 0(Lþ1)�(L þ 1). ) total O(0) flops
† Step 2: Form R using (18). ) total O(0) flops
† Step 3: Partition R and sum them using (19) and (20).
(In the following loops i1 ¼ (n2 1)Jþ j.)

for n ¼ 1 :N
for j ¼ 1 : J

F ¼ F þR(i1 : i1 + L, i1 : i1 + L);
end ) total O(JN(Lþ 1)2) flops
for j ¼ 1 :m

F ¼ F þR(i1 : i1 + L, i1þ K : i1 + K + L)
þR(i1: i1 + L, i1 + K : i1 + K + L)T;

end ) total O(mJ(L + 1)2) flops
end

With direct implementation, the number of operations
(flops) needed to calculate F is given by O((Lþ 1)((JN2
L)JN)2), or approximately O((Lþ 1)J 4N 4) when JN � L
(i.e. JN2 L ’ JN).
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5 Craḿer–Rao bound

We derive the unconditional Cramér–Rao Bound (CRB)
that is averaged over the unknown user symbols. The
CRB provides a suitable lower bound for all unbiased
blind estimators, which do not assume knowledge of the
user symbols and channel coefficients. Conditional CRBs
(i.e. CRBs which are conditioned on the information
symbols) for various blind channel identification problems
have been investigated in the literature; see [7–9] and refer-
ences therein.
Referring to (2), the information symbols are assumed to

be IID and drawn from some unit-energy constellation, that
is EfsN(n)sN(n)

H
g ¼ IKN. Additionally, we assume that

eN(n) is temporally and spatially white normally distributed
random vector with zero mean and autocovariance given by
s2I(JN2L) and that the information symbols and noise
samples are independent of each other.
Let the observation time consist of a total of P blocks

where each block consists from N OFDM symbols. We
collect all samples within this observation time into an
P(JN2 L)�1 vector y, defined as

y W ½ y
T
N ðPÞ; y

T
N ðP� 1Þ; . . . ; yTN ð1Þ�

T
ð21Þ

With the aforementioned assumptions, it is clear that y
follows a Gaussian distribution with zero mean and covari-
ance matrix

RP ¼ IP � ½HðIN � ðFFH
ÞÞHH

þ Rw þ s2I ðJN�LÞ�

¼ IP � R ð22Þ

where

Rw ¼ EfwN ðnÞw
H
N ðnÞg

�

rð0Þ r�ð1Þ

rð1Þ rð0Þ

..

. ..
.

rðJN � L� 1Þ rðJN � L� 2Þ

2
66664
� � � r

�
ðJN � L� 1Þ

� � � r�ðJN � L� 2Þ

. .
. ..

.

� � � rð0Þ

3
77775 ð23Þ

and r(k) denotes the autocorrelation of the interference
samples for k ¼ 0, . . . , JN2 L2 1. Let m ¼ 2JNþ 1 be
the total number of unknown parameters and define the
m � 1 vector of unknown parameters as

u ¼ ½hTr hTi rTi rTi �
T

ð24Þ

where hr ¼ [hr(0), . . . , hr(L)], hi ¼ [hi(0), . . . , hi(L)], rr ¼
[r(0), rr(1), . . . , rr(JN2 L2 1)], ri ¼ [ri(1), . . . , ri(JN2
L2 1)], and the subscripts r and i denote the real and
imaginary parts, respectively. By the Slepian–Bangs
formula, the m � m Fisher information matrix (FIM) is
given, element-wise, by [5]

½J ðuÞ�s;t ¼ tr R�1
P

@RP

@½u�s
R�1
P

@RP

@½u�t

� �

¼ P tr R�1 @R

@½u�s
R�1 @R

@½u�t

� �
ð25Þ
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where [J(u)]s,t denotes the (s, t)th element of the FIM
matrix, [u]s the sth element of u, and the second equality
is due to the block diagonal structure of the covariance
matrix (22). We next calculate the partial differentiation
w.r.t. each unknown parameter. First consider the partial
differentiation w.r.t. the channel real and imaginary part
parameters contained in hr and hi, respectively

@R

@hrðlÞ
¼ X lðIN � ðFF

H
ÞÞH

H
þHðIN � ðFF

H
ÞÞX

H
l ð26Þ

@R

@hiðlÞ
¼ j½X lðIN � ðFF

H
ÞÞH

H
�HðIN � ðFF

H
ÞÞX

H
l � ð27Þ

where

X l W 0ðJN�LÞ�ðL�lÞ IJN�L 0ðJN�LÞ�l

h i
l ¼ 0; . . . ; L ð28Þ

Next we calculate the partial differentiation w.r.t. the
interference real and imaginary part parameters contained
in rr and ri, respectively

@R

@½rr�z
¼

@Rw

@½rr�z
¼

I JN�L z ¼ 1

Qz þ QT
z z ¼ 2; . . . ; JN � L

�
ð29Þ

@R

@½ri�z
¼

@Rw

@½ri�z
¼ jðQz � Q

T
z Þ z ¼ 2; . . . ; JN � L ð30Þ

where

Qz W
0ðz�1Þ�ðJN�L�zþ1Þ 0ðz�1Þ�ðz�1Þ

I JN�L�zþ1 0ðJN�L�zþ1Þ�ðz�1Þ

� �
ð31Þ

Using (26), (27), (29) and (30), which are subsequently
substituted into (25), the FIM can be computed entry by
entry.
The FIR J(u), however, is singular due to the scalar ambi-

guity inherent in all blind channel identification problems
[7–9]. To eliminate the ambiguity, various constraints can
be enforced to regularise the estimation problem. In what
follows, we present the CRB for parameters that satisfy
the constraints

f ðuÞ ¼
hrð0Þ � ar
hið0Þ � ai

� �
¼

0

0

� �
ð32Þ

Then the 2 � m gradient matrix for the constraints is given by

FðuÞ ¼
@f ðuÞ

@uT
¼

1 01�2JN

01�ðLþ1Þ 1 01�ð2JN�L�1Þ

� �
ð33Þ

The gradient matrix F(u) has full row rank, therefore, there
exists a matrix U [ Cm�(m22) whose columns form basis
for the null-space of F(u), that is

FðuÞU ¼ 0 ð34Þ

It follows that the constrained CRB is given by [8, 10]

CRBðu; f ðuÞ ¼ 0Þ ¼ UðUTJ ðuÞUÞ
�1UT

ð35Þ

6 Numerical results

We present simulation results reflecting two different scen-
arios based on how the received signal is being processed.
Precisely, we form blocks of N symbols each, and have
the N-symbols arranged in overlapping and nonoverlapping
fashion. To see this, let the total number of OFDM symbols
M equal to an integer multiples of N, that isM ¼ NP for any
IET Commun., Vol. 1, No. 3, June 2007
integer P. As illustrated by Fig. 1, this will result in P and
M2 Nþ 1 nonoverlapping and overlapping blocks simul-
taneously. The mathematical expression for the received
nonoverlapping symbols is given by (2). By forming an
overlapping symbols, the received data will have similar
expression as in (2) with the index n running from 1 to
M2 Nþ 1.

1 N+1 M-N+1

2

N

N+2

2N

M-N+2

M

P blocks
a b

1 2 M-N+1

2

N

3

N+1

M-N+2

M

M - N +1 blocks

Fig. 1 Orthogonal frequency-division multiplexing symbols

a Nonoverlapping
b Overlapping
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Fig. 2 Normalised RMSE of proposed and subspace blind
channel estimates against SNR and SIR, for K ¼ 48, L ¼ 3 and
N ¼ 2
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We compare here the proposed method with the subspace
blind channel estimators [2]. The system under study
utilises the IDFT transform and a BPSK constellation with
K ¼ 48 and N ¼ 2. Additionally, both estimators use a
total of M ¼ 200 OFDM symbols for channel estimation.
The channel is a four-tap (L ¼ 3) FIR channel. Two narrow-
band interfering signals are added with various values of
signal-to-interference ratio (SIR). As a performance
measure, we consider here the normalised root mean-
squared error (RMSE) defined as

1

khk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

DðLþ 1Þ

XD
i

ĥi � h

��� ���2
vuut

that is averaged over D ¼ 500 Monte Carlo runs. For all
examples, parameters are changed randomly from one
trial to another.

Figs. 2a and b show the performance against SNR and
SIR for both nonoverlapping and overlapping scenarios,
respectively. In the absence of interference (i.e. SIR ¼ 1),
the subspace estimator outperforms the proposed scheme
slightly. However, even with fairly weak interference (i.e.
SIR ¼ 10 dB), the subspace estimator degrades significantly
and exhibit irreducible error. By employing an overlapping
structure to the received data symbols, a significant perform-
ance improvement can be obtained for both estimators as
seen in Fig. 2b.

Fig. 3 depicts the RMSE of the proposed and subspace
channel estimators along with the CRB for SIR ¼ 10 dB.
In this example we see that the proposed scheme, for both
overlapping and non overlapping cases, approach the
CRB as the SNR increases. Meanwhile the subspace
scheme is suffering from the moderately increased inter-
ference level.

Fig. 4 shows the performance against number of data
block and SIR for the nonoverlapping case when the SNR
is 25 dB. Here we see that the proposed method can
handle strong interference and maintain good performance
as the number of data blocks is increased. As for the sub-
space estimator, it outperforms the proposed scheme in
the absence of interference. However, even with large
number of data blocks, the subspace estimator degrades
as the interference is moderately increased. This is
because subspace cannot handle unknown or unmodelled
interference.
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Fig. 3 Normalised RMSE of CRB, proposed and subspace blind
channel estimates against SNR, for K ¼ 48, L ¼ 3, N ¼ 2 and
SIR ¼ 10 dB
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7 Conclusions

We have presented a blind channel estimation and equalisa-
tion scheme for orthogonal frequency-division multiplexing
systems with unmodelled interference. A generalised multi-
channel minimum variance principle was invoked to design
an equalising filterbank that preserves desired signal
components and suppresses the overall interference. To
overcome computational difficulty and local convergence
problems that accompany multidimensional search
methods we have derived an asymptotically (in SNR)
tight lower bound of the filterbank output power and used
it for channel estimation, which reduces the problem to a
quadratic minimisation. To assess the performance of the
proposed scheme an unconditional Cramér–Rao bound
(CRB) was derived. Numerical examples show that the pro-
posed scheme approaches the CRB as the SNR level is
increased. Additionally, the proposed scheme compares
favourably with a subspace blind channel estimator in the
presence of unknown narrowband interference. By impos-
ing an overlapping structure on the received data symbols
the performance of both estimators was significantly
improved.
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