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A robust channel estimation and detection scheme has been developed
that explicitly accounts for channel estimation error by optimising the
worst-case performance over a properly selected bounded uncertainty
set. Numerical results show improved performance using the proposed
robust approach over the one that ignores the prior estimation errors.

Introduction: Orthogonal frequency division multiplexing (OFDM) is a
popular modulation technique for wideband wireless communications
owing to its various benefits (e.g. bandwidth and computational
efficiency). Many OFDM receiver structures require knowledge of the
wireless channel, which is typically estimated at the receiver using
training or some other channel estimation technique. The conventional
practice is to treat the channel estimate as if it contained no estimation
error, and directly use it for demodulation. However, estimation error
is ubiquitous in all known OFDM channel estimation methods [1]. In
this Letter, rather than ignoring the channel estimation error, we expli-
citly take it into account and introduce a robust approach that leads to
improved estimation and detection performance.

Consider an OFDM system where a series of information symbols are
blocked into K � 1 vectors s(n) ¼ [s(nK), . . . , s(nKþ K2 1)]T. At the
receiver, the nth block of the data symbols can be expressed as (after DFT):

yðnÞ ¼ GðhÞsðnÞ þ eðnÞ ð1Þ

where h is an Lth order channel vector,G(h) ¼ diag(g), with g ¼
p
KFh,

where F stands for the first Lþ 1 columns of a K � K DFT matrix, and
e(n) is the frequency domain channel noise vector. It follows that y(n) in
(1) can be expressed as:

yðnÞ ¼ diagðsðnÞÞ
ffiffiffiffi
K

p
Fhþ eðnÞ

¼ AðnÞhþ eðnÞ
ð2Þ

Proposed scheme: To assist in determining the boundaries of the uncer-
tainty set, we first analyse the estimation error of the least-squares (LS)
based channel estimator using one OFDM training symbol. By dropping
the index n in (2), the initial channel estimate is given as ĥ ¼

(AHA)21AHy. It follows that channel estimation error associated with
ĥ is Dh ¼ ĥ2 h ¼ (AHA)21AHe. Under the assumption of unit
energy constellations and a zero-mean white Gaussian noise with
EfeeHg ¼ s2IK, Dh will be a zero-mean Gaussian with covariance
matrix

covfDhg ¼ s2ðAHAÞ�1
¼

s2

K
ILþ1 ð3Þ

Let b W kDhk2, then b is x2 distribution with 2(Lþ 1) degrees of
freedom, with mean mb ¼ s2(Lþ 1)/K and variance s2

b ¼ s4(Lþ 1)/
K 2. These calculations will help to choose the size of the uncertainty set.

Bounding channel estimation error: We now discuss how to bound the
above estimation error. Since b W kDhk2, is x2 distributed and therefore
unbounded, we use the Chebyshev inequality, where the unbounded
channel estimation error is bounded in probability. For any given posi-
tive number db

Pbðjb� mbj . dbÞ �
s2
b

d2b
ð4Þ

For large db, we ignore the unmodelled channel estimation error, and
consider a bounded set Pb(b � mbþ db) � 1 2sb

2/db
2.

Let 1 W mbþ db, denote a boundary of b, then Pb(kDhk
2
� 1) �

12sb
2/db

2, where Pb(kDhk
2
� 1) is the Chebyshev bounding prob-

ability. For a given probability Pb, the boundary 1 is given by

1 ¼ mb þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1� pb

s
¼

s2

K
Lþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

1� Pb

s !
ð5Þ

Robust channel estimation and detection: Following the minimum var-
iance (MV) criterion (e.g. [2, 3])

WMV ¼ arg min
W[CK�K

tr WHRyW
� �

; subject to WHGðhÞ ¼ IK ð6Þ
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where Ry W Efy(n)yH(n)g denotes the covariance matrix of y(n). Using
the Lagrange multiplier, the solution to (6) is given by [4]:

WMV ¼ R�1
y GðhÞðGH ðhÞR�1

y GðhÞÞ�1
ð7Þ

Substituting (7) into (6), the minimised average output power ofWMV is
given by

V1ðhÞ ¼ tr ½GH ðhÞR�1
y GðhÞ��1

n o
ð8Þ

Since the MV detector is sensitive to signal mismatch owing to errors in
ĥ, we consider robust channel estimation by maximising the output
V1(h) so that WMV will maximally preserve the signal power. Using
the Schwartz inequality [3], it follows that maximising V1(h) is equival-
ent to minimising trfGH(h)R21

y G(h)g. The robust channel estimation
can be obtained as:

~h ¼ argmin
h

trfGH ðhÞR�1
y GðhÞg; s.t. kĥ� hk2 � 1 ð9Þ

To proceed, we simplify the cost function in (9). It follows that tr
fGH(h)R21

y G(h)g ¼ hH[K
P

k¼1
K Ry

21(k, k)Fk
HFk]h ¼ hHFh, where Fk

stands for the kth row of matrix F. Since the solution of (9) will
occur on the boundary of the uncertainty set (i.e. the worst case) [5],
we have

~h ¼ argmin
h

hHFh; subject to kĥ� hk2 ¼ 1 ð10Þ

Using the Lagrange multiplier, the solution to (10) can be solved in a
manner similar to [6]:

~h ¼ ĥ� ðIðLþ1Þ þ lF�1
Þ
�1ĥ ð11Þ

With knowledge of h̃, g can be updated as g̃ ¼
p
KF h̃, and G̃(h) ¼

diag(g̃). The robust MV detector is given by:

~Wrobust MV ¼ R�1
y

~GðhÞð ~GðhÞHR�1
y

~GðhÞÞ�1
ð12Þ

Numerical results: We consider an OFDM system with K ¼ 48 and
L ¼ 3. We compare the proposed robust MV detector in (12), with the
standard MV detector in (7). Fig. 1 depicts the receiver output
signal-to-interference-and-noise ratio (SINR) against the normalised
1/Efkhj2g when s2 [cf. (3)] is fixed and SNR ¼ 10 dB. Since the con-
ventional detector ignores the prior estimation error, it is independent of
1. While the robust detector requires a choice of 1, it is insensitive to the
choice. Compared with the standard detector, the robust detector shows
a notable improvement in SINR. Figs. 2 and 3, respectively, show the
SINR and the average bit error rate (BER) performance against SNR,
when 1/Efkhk2g ¼0.1. It is seen that the robust detector outperforms
the standard nonrobust detector. Moreover, the conventional detector
has an irreducible error floor owing to poor initial channel estimates.
For the case considered in the examples, the receiver behaviour is domi-
nated by the poor channel estimates, and increasing SNR helps only very
little.
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Fig. 1 SINR against normalised channel uncertainty
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Fig. 2 SINR against SNR when 1/Efkhk2g ¼ 0.1
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Fig. 3 Average BER against input SNR when 1/Efkhk2g ¼ 0.1
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Conclusions: A robust detector has been obtained by optimising the
worst-case performance over a bounded uncertainty set pertaining to
the prior estimation error in the initial channel estimate.
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