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Abstract—We consider the problem of peak-to-average power
ratio (PAPR) reduction in orthogonal frequency-division multi-
plexing (OFDM) based massive multiple-input multiple-output
(MIMO) downlink systems. Specifically, given a set of symbol
vectors to be transmitted to K users, the problem is to find an
OFDM-modulated signal that has a low PAPR and meanwhile
enables multiuser interference (MUI) cancelation. Unlike previ-
ous works that tackled the problem using convex optimization, we
take a Bayesian approach and develop an efficient PAPR reduc-
tion method by exploiting the redundant degrees of freedom of
the transmit array. The sought-after signal is treated as a ran-
dom vector with a hierarchical truncated Gaussian mixture prior,
which has the potential to encourage a low PAPR signal with
most of its samples concentrated on the boundaries. A variational
expectation-maximization (EM) strategy is developed to obtain
estimates of the hyperparameters associated with the prior model,
along with the signal. In addition, the generalized approximate
message passing (GAMP) is embedded into the variational EM
framework, which results in a significant reduction in computa-
tional complexity of the proposed algorithm. Simulation results
show our proposed algorithm achieves a substantial performance
improvement over existing methods in terms of both the PAPR
reduction and computational complexity.

Index Terms—Massive MIMO-OFDM, PAPR reduction,
variational EM, GAMP.

I. INTRODUCTION

M ASSIVE multiple-input multiple-output (MIMO), also
known as large-scale or very-large MIMO, is a promis-

ing technology to meet the ever growing demands for higher
throughput and better quality-of-service of next-generation
wireless communication systems [1]. Massive MIMO systems
are those that are equipped with a large number of anten-
nas at the base station (BS) simultaneously serving a much
smaller number of single-antenna users sharing the same time-
frequency bandwidth. In addition to higher throughput, massive
MIMO systems also have the potential to improve the energy
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efficiency and enable the use of inexpensive, low-power com-
ponents. Hence, it is expected that massive MIMO will bring
radical changes to future wireless communication systems.

In practice, broadband wireless communications may suf-
fer from frequency-selective fading. Orthogonal frequency-
division multiplexing (OFDM), a scheme of encoding digital
data on multiple carrier frequencies, has been widely used to
deal with frequency-selective fading. However, a major prob-
lem associated with the OFDM is that it is subject to a high
peak-to-average power ratio (PAPR) owing to the independent
phases of the sub-carriers [2]. To avoid out-of-band radiation
and signal distortion, handling this high PAPR requires a high-
resolution digital-to-analog converter (DAC) and a linear power
amplifier (PA) at the transmitter, which is not only expensive
but also power-inefficient [3]. The situation deteriorates when
the number of antennas is large, leaving such systems imprac-
tical. Therefore, it is of crucial importance to reduce the PAPR
of massive MIMO-OFDM systems to facilitate low-cost and
power-efficient hardware implementations.

Many techniques have been developed for PAPR reduction
in single-input single-output (SISO) OFDM wireless systems.
The most prominent are clipping [4], tone reservation (TR) [5],
active constellation extension (ACE) [6], selected mapping
(SLM) [7], partial transmission sequence (PTS) [8] and oth-
ers. For a detailed overview, we refer readers to [3], [9].
Although these PAPR-reduction schemes can be extended to
point-to-point MIMO systems easily [9]–[11], extension to
the multi-user (MU) MIMO downlink is not straightforward,
mainly because joint receiver-side signal processing is almost
impossible in practice as the users are distributed. Recently,
a new PAPR reduction method [12] was developed for mas-
sive MIMO-OFDM systems. The proposed scheme utilizes the
redundant degrees-of-freedom (DoFs) resulting from the large
number of antennas at the BS to achieve joint multiuser inter-
ference (MUI) cancelation and PAPR reduction. Specifically,
the problem was formulated as a linear constrained �∞ opti-
mization problem and a fast iterative truncation algorithm
(FITRA) was developed in [12]. However, the FITRA algo-
rithm shows to have a fairly low convergence rate. Also, the
algorithm employs a regularization parameter to achieve bal-
ance between the PAPR reduction and the MUI cancelation (i.e.
data fitting error). The choice of the regularization parameter
may be tricky in practice. On the other hand, the regularization
parameter may be seen instead as an additional degree of free-
dom that allows to regulate the operation of the algorithm. In
[13], a peak signal clipping scheme was employed to reduce
the PAPR and some of the antennas at the BS are reserved to
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Fig. 1. System model for the downlink of OFDM based massive MIMO, with N OFDM tones, M transmit antennas and K independent single-antenna users.

compensate for peak-clipping signals. This method has a lower
computational complexity. But it achieves only a mild PAPR
reduction and those antennas reserved for compensation may
incur large PAPRs.

In this paper, we develop a novel Bayesian approach to
address the joint PAPR reduction and MUI cancelation prob-
lem for downlink multi-user massive MIMO-OFDM systems.
Specifically, MUI cancelation can be formulated as an under-
determined linear inverse problem which admits numerous
solutions. To search for a low PAPR solution, a hierarchi-
cal truncated Gaussian mixture prior model is proposed and
assigned to the unknown signal (i.e. solution). This hierar-
chical prior has the potential to encourage a quasi-constant
magnitude solution with as many entries as possible lying on
the truncated boundaries, thus resulting in a low PAPR. A
variational expectation-maximization (EM) algorithm is devel-
oped to obtain estimates of the hyperparameters associated
with the prior model, along with the signal. In addition, the
generalized approximate message passing (GAMP) technique
[14] is employed to facilitate the algorithm development in
the expectation step. This GAMP technique also helps signif-
icantly reduce the computational complexity of the proposed
algorithm. Simulation results show that the proposed method
presents a substantial improvement over the FITRA algorithm
in terms of both PAPR reduction and computational complexity.

During the review process of the current work, it was brought
to our attention that an efficient approximate message pass-
ing (AMP)-based Bayesian method was recently proposed [15]
for PAPR reduction for massive MIMO systems, which can be
extended to the case with OFDM modulation. The rationale
behind our work and the above work are similar: both meth-
ods cast the PAPR reduction problem as a Bayesian inference
problem and employ priors to promote solutions with con-
stant envelopes. The prior distributions employed by these two
works, however, are very different. The prior proposed in [15]
assigns each coefficient to a random point on a circle with a
certain radius on the complex plane. Unlike our work, this prior
only encourages entries of the obtained solution to be close to
the boundary but cannot guarantee that they exactly lie on the
boundary points.

The rest of this paper is organized as follows. In Section II,
we introduce the data model, basic assumptions, and the PAPR
reduction problem. A new hierarchical Bayesian prior model
is proposed in Section III, and an efficient Bayesian algorithm
is developed in Section IV. Simulation results are provided in
Section V, followed by concluding remarks in Section VI.

Notations: Lowercase boldface is used for column vectors
x, and uppercase for matrices X . The superscripts (·)T and

(·)H represent the transpose and conjugate transpose, respec-
tively. ‖x‖2 is used to denote the �2 norm of vector x, and
‖x‖∞ stands for the �∞ norm, �∞̃ norm is define as ‖x‖�∞̃ =
max{‖�{x}‖∞, ‖�{x}‖∞}, with �{x} and �{x} denoting the
real and imaginary part of x, respectively. FN denotes the
N × N unitary discrete Fourier transform (DFT) matrix. The
N × N identity matrix and the M × N all-zeros matrix are
denoted by I N and 0M×N , respectively. We denote the pdf
of Gaussian random variable x with mean μ and variance σ 2

N(x;μ, σ 2), for the special case of N(x; 0, 1), we write the cdf
as �(x). The symbol ⊗ denotes the Kronecker product.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We first introduce the system model of OFDM based mas-
sive MIMO systems. Then we discuss some recent research
on PAPR reduction for multi-user massive MIMO-OFDM sys-
tems.

A. System Model

The system model of the OFDM-based massive MIMO
downlink scenario is depicted in Fig. 1, where the BS is
assumed to have M transmit antennas and serve K independent
single-antenna users (K � M), and the total number of OFDM
tones is N . In practice, the set of tones available are divided
into two sets T and TC, where the tones in set T are used for
data transmission and the tones in its complementary set TC

are used for guard band (unused tones at both ends of the spec-
trum). Hence, for each tone n ∈ T, the corresponding K × 1
vector sn comprises the symbols for K users, which are usually
chosen from a complex-valued signal alphabet B. We normalize
the data vector to satisfy E{‖sn‖2

2} = 1. For each tone n ∈ TC,
we set sn = 0K×1 such that no signal is transmitted in the guard
band.

Since cooperative detection among users is often impossible,
precoding must be performed at the BS to remove multi-user
interference (MUI). Usually, the signal vector on the nth tone is
linearly precoded as

wn = Pn sn (1)

where wn ∈ C
M×1 is the precoded vector that contains sym-

bols to be transmitted on the nth sub-carrier through the M
antennas respectively, and Pn ∈ C

M×K represents the precod-
ing matrix for the nth OFDM tone. Zero-forcing (ZF) precoding
and minimum-mean square-error (MMSE) precoding are two
classical precoding schemes. The former aims at removing MUI
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completely, while the latter tries to achieve balance between the
MUI cancellation and the noise enhancement. In this paper, we
consider the ZF procoding scheme. Note that since K � M , the
ZF precoding matrix has an infinite number of forms, among
which the most widely used is

Pzf
n = H H

n (Hn H H
n )

−1, (2)

where Hn ∈ C
K×M denotes the MIMO channel matrix asso-

ciated with the nth tone. Here we assume the channel matrix
Hn , ∀n to be known at the transmitter, which can be acquired
by exploiting the channel reciprocity of time division duplexing
(TDD) systems (i.e., the downlink channel is the transpose of
the uplink channel).

After precoding, all precoded vectors wn are reordered to
M antennas for OFDM modulation,

[a1 . . . aM ] = [w1 . . .wN ]T , (3)

where am ∈ C
N×1 represents the frequency-domain signal to

be transmitted from the mth antenna. The time-domain signals
are obtained through the inverse discrete Fourier transform
(IDFT), i.e., âm = FH

N am , ∀m. Then, a cyclic prefix (CP) is
added to the time-domain samples of each antenna to elimi-
nate intersymbol interference (ISI). Finally, these samples are
converted to analog signals and transmitted via the frequency-
selective channel.

At the receivers, after removing the CPs of the received sig-
nals, the DFT is performed to obtain the frequency-domain
signals. The receive vector consisting of K users’ signals can
be described as

rn = Hnwn + en, ∀n (4)

where rn ∈ C
K×1 denotes the receive vector associated with

the nth tone, and en ∈ C
K×1 is the receiver noise and has i.i.d.

circularly symmetric complex Gaussian entries with zero-mean
and variance No. If the ZF precoding scheme is used, by com-
bining (1), (2) and (4), the received signal vector equals to
rn = sn + en , ∀n, which means the MUI is perfectly removed.

B. Peak-to-Average Power Ratio (PAPR) Reduction

OFDM modulation typically exhibits a large dynamic range
because the phases of the sub-carriers are independent of each
other, which may combine in a constructive or destructive
manner. To avoid out-of-band radiation and signal distortion,
high-resolution DACs and linear power amplifiers are required
at the transmitter to accommodate the large peaks of OFDM
signals, which leads to expensive and power-inefficient RF
chains.

PAPR is defined as the ratio of the peak power of the signal
to its average power. Specifically, the PAPR at the mth transmit
antenna is defined as

PAPRm � 2N‖âm‖2∞̃
‖âm‖2

2

, (5)

where the operator ‖ · ‖2∞̃ is used because RF-chains often pro-
cess and modulate the real and imaginary part of time-domain

samples independently. It should also be noted that, we only
consider the PAPR of discrete-time OFDM signals in this paper,
one can obtain its continuous-time counterpart precisely by
implementing an L-times oversampling in OFDM modulation
[16].1 Since many conventional MIMO-OFDM systems, such
as 3GPP LTE [17] and IEEE 802.11.n [18], disallow such an
oversampling operation, here we ignore the difference as in [12]
(i.e., L = 1).

When the number of transmit antennas is larger than the
number of users, numerous ZF precoding matrices are avail-
able. In other words, for a set of sn , n = 1, . . . , N , we have
an infinite number of precoded signals w � [wT

1 , . . . ,w
T
N ]T

that achieve perfect MUI cancelation. Thus there may exist a
candidate w whose associated time-domain signals {âm} have
low PAPRs. In this paper, instead of designing the procod-
ing matrix, we directly search for the signal w to achieve a
joint PAPR reduction and MUI cancelation. Specifically, in
order to remove the MUI, the precoded vectors wn need to
satisfy:

sn = Hnwn, n ∈ T, (6a)

0M×1 = wn, n ∈ Tc. (6b)

The whole linear constraints of (6) can be further written as

s = Hw (7)

where s ∈ C
N K×1 denotes the concatenation of all vectors on

the left-hand side of (6), H is a block diagonal matrix with
its diagonal blocks equal to Hn for n ∈ T and I M for n ∈ Tc.
According to (3), the reordering operation can be equivalently
written as a linear transformation, i.e.,

a = Tw (8)

where a = [aT
1 , . . . , aT

M ]T , T is a permutation matrix that
assigns the M entries of each precoded vector to the M anten-
nas respectively. Recalling âm = FH

N am,∀m, (7) and (8), we
have

s = HT T Fâ, (9)

where F � I M ⊗ FN , and â � [âT
1 , . . . , âT

M ]T . Given a sym-
bol vector s, our goal is to search for a signal â satisfying
the above equation (9), and meanwhile its sub-vector âm , i.e.
the signal to be transmitted at each antenna, having a low
PAPR. This problem can be formulated as a minimax prob-
lem which minimizes the maximum PAPR among all antennas
subject to the linear constraint defined in (9). Nevertheless,
this problem, as indicated in [12], is complex to solve. To cir-
cumvent the difficulty, the minimax problem is replaced by
a constrained optimization which minimizes the �∞̃ norm of
â, a vector formed by aggregating all time-domain vectors
{âm} [12]

min ‖̂a‖∞̃ subject to s = HT T Fâ. (10)

1Instead of N -point IDFT, L-times oversampling can be implemented by
L N -point IDFT of the frequency-domain signals with (L − 1)N zero-padding.
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This problem can be further converted into a real-valued form
as follows [12]

(PMP-INF) min ‖x‖∞ subject to y = Ax, (11)

where

y �
[�{s}
�{s}

]
, x �

[�{̂a}
�{̂a}

]
,

A �
[�{HT T F} −�{HT T F}
�{HT T F} �{HT T F}

]
,

and the dimension of A is 2(|T|K + |Tc|M)× 2N M . For nota-
tional convenience, let J � 2(|T|K + |Tc|M) and I � 2N M .

Intuitively, via minimizing the largest magnitude of entries
of x, the PAPR associated with each transmit antenna can be
reduced. This problem can be solved exactly by reformulating
(11) as a linear programming problem, but is computationally
prohibitive when the signal dimension is large. To develop an
efficient algorithm, the equality constraint is relaxed as ‖ y −
Ax‖2 ≤ δ in [12]. Hence the optimization (11) can eventually
be reformulated as

min λ‖x‖∞ + ‖ y − Ax‖2
2 (12)

where λ > 0 is a regularization parameter. An efficient numer-
ical method, namely, the fast iterative truncation algorithm
(FITRA), was employed [12] to solve (12). The FITRA algo-
rithm requires to choose a suitable regularization parameter λ to
balance between the PAPR reduction and the data fitting error,
which may be tricky in practice. In the following, we develop a
Bayesian method which is free of this issue, and also turns out
to be more efficient and effective than the FITRA algorithm.

III. BAYESIAN MODEL

To facilitate our algorithm development, we introduce a noise
term to model the mismatch between y and Ax, i.e.

y = Ax + ε (13)

where ε denotes the noise vector and its entries are assumed
to be i.i.d. Gaussian random variables with zero-mean and
unknown variance β−1. Here we treat β as an unknown param-
eter because the Bayesian framework allows an automatic
determination of its model parameters and usually provides
a reasonable balance between the data fitting error and the
desired characteristics of the solution. In case that there is a
pre-specified tolerance value for the MUI, we can also set an
appropriate value for β instead of treating it as unknown.

To reduce the PAPR associated with each transmit antenna,
we aim to find a quasi-constant magnitude solution to the above
underdetermined linear system. Note that a constant magnitude
signal achieves a minimum PAPR. Ideally we hope to find a
solution with all of its entries having a constant magnitude.
Nevertheless, it is highly unlikely that there exists such a solu-
tion to satisfy (or approximately satisfy with a tolerable error)
the MUI cancelation equality, i.e. (13). Therefore we, alterna-
tively, seek a quasi-constant magnitude solution with as many

entries as possible located on the boundary points of an interval
[−v, v], whereas the rest entries bounded within [−v, v] but not
restricted to lie on the boundary points in order to meet the MUI
cancelation constraint.

To encourage a quasi-constant magnitude solution, we pro-
pose a hierarchical truncated Gaussian mixture prior for the
signal x. In the first layer, coefficients of x are assumed inde-
pendent of each other and each entry xi is assigned a truncated
Gaussian mixture distribution:

p(xi ) =

⎧⎪⎪⎨⎪⎪⎩
π

N(xi ;v,α−1
i1 )

ηi1
+ (1 − π)

N(xi ;−v,α−1
i2 )

ηi2

if xi ∈ [−v, v],

0 otherwise,

(14)

where the first component of (14) is characterized by a trun-
cated Gaussian distribution with its mean and variance given by
v and α−1

i1 , respectively; the second component is characterized
by a truncated Gaussian distribution with its mean and variance
given by −v and α−1

i2 , respectively; π ∈ [0, 1] is a mixing coef-
ficient that denotes the probability of generating xi from the
first component; the distribution lies within the interval [−v, v],
i.e. from the mean of the second component to the mean of the
first component; and ηil is a normalization constant of the lth
component, given by

ηi1 = 1

2
−�(−2v

√
αi1), ηi2 = �(2v

√
αi2)− 1

2
. (15)

The second layer specifies Gamma distributions as hyperpri-
ors over the precision parameters α1 � {αi1}I

i=1 and α2 �
{αi2}I

i=1:

p(α1,α2; a, b) =
2∏

l=1

I∏
i=1

Gamma(αli |a, b), (16)

where

Gamma(α|a, b) = �(a)−1baαa−1e−bα (17)

in which �(a) = ∫ ∞
0 ta−1e−t dt is the gamma function. To

make the hyperpriors non-informative, small values of a and
b, e.g. a = b = 10−6, should be used [19]. Note that the choice
of the Gamma hyperprior over the precision is inspired by [19].
As indicated in [19], the Gamma hyperprior with a = b = 10−6

corresponds to a broad hyperprior which allows the precision
(more precisely, the posterior mean of the precision) to become
arbitrarily large. For our case, we also place a broad hyperprior
on the precision parameters such that some of these precision
parameters are allowed to become arbitrarily large. As a con-
sequence, the corresponding entries will be driven towards and
eventually located on the boundary points.

The prior distributions with different model hyperparameters
αi1, αi2 are illustrated in Fig. 2, where π and v are both set to
0.5. We can see that the prior distribution defined in (14) resem-
bles the shape of a bowl. Thus the prior has the potential to push
the entries of the solution toward its boundaries. In addition, the
use of the Gamma hyperprior allows the posterior mean of the
precision to become arbitrarily large. As a result, the associated
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Fig. 2. Prior distribution function with different [αi1 αi2], in which π and v
are both set to 0.5.

Fig. 3. Graphical models for low-PAPR signal priors, with circles denot-
ing hidden variables, double circles denoting observed variables and squares
representing model parameters. (a) Original prior, (b) Modified prior.

entries xi will eventually lie on one of the two boundary points,
leading to a quasi-constant magnitude solution. The graphical
model of the proposed hierarchical is presented in Fig. 3(a).

In general, Bayesian inference requires computing the log-
arithm of the prior. In this regard, (14) is a inconvenient form
for inference. To address this issue, we turn the prior into an
exponential form by introducing a binary latent variable κi indi-
cating which component is selected for xi , i.e., κi = 1 indicates
the first component is selected while κi = 0 corresponds to the
second component. The equivalent prior can be written as

p(xi |αi1, αi2, κi ; v)

=
(
N(xi ; v, α−1

i1 )

ηi1

)κi
(
N(xi ;−v, α−1

i2 )

ηi2

)1−κi

, xi ∈ [−v, v],

(18)

and the distribution for κi is

p(κi ;π) = (π)κi (1 − π)1−κi . (19)

where the mixing coefficient is set to π=0.5 to make
the prior non-informative. Also, we define κ � {κi }I

i=1.
The updated graphical model is shown in Fig. 3(b). Note

that, according to (18) and (19), we can compute the
conditional distribution p(xi |αi1, αi2; v) via p(xi |αi1, αi2; v)=∑
κi

p(xi |αi1, αi2, κi ; v)p(κi ;π), which results in the same
form of (14).

IV. BAYESIAN INFERENCE

We now proceed to perform Bayesian inference for
the proposed hierarchical model. A variational expectation-
maximization (EM) strategy is employed for the Bayesian
inference. In our model, z � {x,α1,α2, κ} are treated as hid-
den variables. The noise variance β and the boundary parameter
v are unknown deterministic parameters, i.e. θ � {β, v}. Before
proceeding, we provide a brief review of the variational EM
algorithm.

A. Variational Bayesian Methodology

Consider a probabilistic model with observed data y, hid-
den variables z and unknown deterministic parameters θ . It
is straightforward to show that the marginal probability of the
observed data can be decomposed into two terms

ln p( y; θ) = F(q, θ)+ KL(q‖p), (20)

where

F(q, θ) =
∫

q(z) ln

(
p( y, z; θ)

q(z)

)
d z (21)

and

KL(q‖p) = −
∫

q(z) ln

(
p(z| y; θ)

q(z)

)
d z, (22)

where q(z) is any probability density function, KL(q‖p) is
the Kullback-Leibler divergence between p(z| y; θ) and q(z).
Since KL(q‖p) ≥ 0, it follows that F(q, θ) is a lower bound of
ln p( y; θ), with the equality holds only when KL(q‖p) = 0,
which implies p(z| y; θ) = q(z). The EM algorithm can be
viewed as an iterative algorithm which iteratively maximizes
the lower bound F(q, θ) with respect to the distribution q(z)
and the parameters θ .

Assume that the current estimate of the parameters is
θOLD. The EM algorithm evaluates qNEW(z) by maximizing
F(q, θOLD) with respect to q(z) in the E-step, and then finds
new parameter estimate θNEW by maximizing F(qNEW, θ)

with respect to θ in the M-step. It is easy to see that when
qNEW(z) = p(z| y; θOLD), the lower bound F(q, θOLD) is max-
imized. Nevertheless, in practice, the posterior distribution
p(z| y; θOLD) is usually computationally intractable. To address
this difficulty, we could assume q(z) has some specific param-
eterized functional form and conduct optimization over the
designated form. A particular form of q(z) that has been widely
used with great success is the factorized form over the compo-
nent variable or the block component variable {zi } in z [20], i.e.
q(z) = ∏

i qi (zi ). We therefore can compute the approximate
posterior by finding q(z) of the factorized form that maxi-
mizes the lower bound F(q, θOLD). The maximization can be
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conducted in an alternating fashion for each hidden variable,
which leads to [20]

qi (zi ) ∝ exp
(〈ln p( y, z; θ)〉k �=i

)
. (23)

where 〈·〉k �=i denotes an expectation with respect to the distri-
butions qk(zk) for all k �= i .

Then in the M-step, a new estimate of θ is obtained by
maximizing the Q-function

Q(θ, θOLD) = 〈ln p( y, z; θ)〉q(z) (24)

B. Likelihood Function Approximation via GAMP

Let z � {x,α1,α2, κ} denote all hidden variables appearing
in our hierarchical model, and θ � {β, v} denote the unknown
deterministic parameters. As discussed in the previous subsec-
tion, the posterior of z can be approximated by a factorized form
as follows

p(x,α1,α2, κ | y;β, v)

≈ q(x,α1,α2, κ) = q(x)q(α1)q(α2)q(κ). (25)

Following (23), the approximate posteriors can be obtained as

ln q(x) = 〈ln p( y, x,α1,α2, κ;β, v)〉q(α1)q(α2)q(κ) + const,

ln q(α1) = 〈ln p( y, x,α1,α2, κ;β, v)〉q(x)q(α2)q(κ) + const,

ln q(α2) = 〈ln p( y, x,α1,α2, κ;β, v)〉q(x)q(α1)q(κ) + const,

ln q(κ) = 〈ln p( y, x,α1,α2, κ;β, v)〉q(x)q(α1)q(α2) + const.
(26)

We first consider the calculation of q(x). Keeping those
terms that are dependent on x, we have

ln q(x)

= 〈ln p( y|x;β)p(x|α1,α2, κ; v)〉q(α1)q(α2)q(κ) + const

= 1

2

I∑
i=1

〈
−αi1κi (xi − v)2 − αi2(1 − κi )(xi + v)2

〉
+ ln p( y|x;β)+ const if xi ∈ [−v, v]∀i (27)

and ln q(x) = −∞ otherwise, where the subscripts of 〈·〉q(·)
are omitted for simplicity. Since the variables {xi } in the joint
likelihood function p( y|x;β) are non-factorizable, obtaining
the posterior q(x) is rather difficult. To overcome this diffi-
culty, we employ the generalized approximate message passing
(GAMP) technique [14] to obtain an amiable approximation of
the joint likelihood function p( y|x;β).

GAMP is a simplification of loopy BP, and can be used to
compute approximate marginal posteriors and likelihoods. Here
we approximate the joint likelihood function p( y|x;β) as a
product of approximate marginal likelihoods computed via the
GAMP, i.e.

p( y|x;β) ≈ p̂( y|x;β) ∝
I∏

i=1

N(xi |r̂i , τ
r
i ), (28)

where N(xi |r̂i , τ
r
i ) is the approximate marginal likelihood

obtained by the GAMP algorithm. To calculate r̂i and τ r
i , an

Fig. 4. Proposed variational EM-GAMP framework, where the hatted distribu-
tion p̂(·) represents an approximation of p(·).

estimate of the posterior q(x) and β is required as inputs to the
GAMP algorithm (see the details of the GAMP algorithm pro-
vided below). Hence the GAMP algorithm can be embedded in
the variational EM framework: given an estimate of q(x) and
β, use the GAMP to obtain an approximation of the likelihood
function p( y|x;β); with the approximation p̂( y|x;β), the vari-
ational EM proceeds to yield a new estimate of q(x) and β,
along with estimates of other deterministic parameters (e.g. v)
and posterior distributions for the other hidden variables (e.g.
α1,α2, κ). This iterative procedure is illustrated in Fig. 4.

Note that besides the approximation p̂( y|xi ;β), GAMP also
produces approximations for the marginal posteriors of the
noiseless output u = [u1, . . . , u J ]T � Ax, which are given by

p(u j | y, β) ≈ p̂(u j | y, β)

∝ p(y j |u j ;β)N(u j | p̂ j , τ
p
j ), (29)

where p̂ j and τ p
j are quantities obtained from the GAMP algo-

rithm. Since the noise is assumed to be white Gaussian noise,
we have p̂(u j | y, β) = N(u j |̂u j , τ

z
j ), where

τ u
j = τ

p
j

τ
p
j β + 1

û j = τ u
j

(
y jβ + p̂ j

τ
p
j

)
. (30)

As will be shown later, this approximation can be used to learn
the inverse of the noise variance, β, in the M-step.

Remarks: Generalized approximate message passing
(GAMP) is a very-low-complexity Bayesian iterative technique
recently developed in [14] for obtaining approximate marginal
posteriors and likelihoods. It therefore can be naturally embed-
ded within the EM framework to provide an approximate
posterior distribution of x and reduce the computational com-
plexity, as shown in [21], [22]. Specifically, the EM-GAMP
framework of [21], [22] proceeds in a double-loop manner: the
outer loop (EM) computes the Q-function using the approxi-
mate posterior distribution of x, and maximizes the Q-function
to update the model parameters (e.g. α1,α2, κ); the inner
loop (GAMP) utilizes the newly estimated parameters to
obtain a new approximation of the posterior distribution of
x. However, this procedure is not suitable for our variational
EM framework, because from the GAMP’s point of view, the
hyperparameters {α1,α2, κ} need to be known and fixed in
order to compute an approximate posterior distribution of x,
while the variational EM treats the model parameters (e.g.
α1,α2, κ) as latent variables. Therefore, instead of computing
the approximate posterior distribution of x, in our variational
EM framework, the GAMP is simply used to obtain an amiable
approximation of the likelihood function p( y|x;β), and
this approximation involves no latent variables {α1,α2, κ}.
Besides, unlike the EM-GAMP framework where the inner
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Algorithm 1. Likelihood Approximation via GAMP

Input: means and variances of posteriors q(xi ): x̂i = 〈xi 〉q(xi ),
τ x

i = 〈xi 〉Vq(xi )
, i = 1, . . . , I , where 〈·〉Vq(·) denotes the variance

with respect to q(·), and inverse noise variance β. Initialize ŝ j

as 0, j = 1, . . . , J .
Output: approximate likelihoods N(xi |̂ri , τ

r
i ), i = 1, . . . , I ,

and posteriors of u j : N(u j |̂u j , τ
u
j ), j = 1, . . . , J .

Step 1. For each j :

τ
p
j =

∑
i

A2
j iτ

x
i

p̂ j =
∑

i

A ji x̂i − τ
p
j ŝ j

Step 2. For each j :

û j = 〈u j 〉p
(

u j |y j , p̂ j ,τ
p
j

)
τ u

j = 〈u j 〉V
p

(
u j |y j , p̂ j ,τ

p
j

)
ŝ j = û j − p̂ j

τ
p
j

τ s
j = 1

τ
p
j

(
1 − τ u

j

τ
p
j

)

Step 3. For each i :

τ r
i =

⎛⎝∑
j

A2
j iτ

s
j

⎞⎠−1

r̂i = x̂i + τ r
i

∑
j

A ji ŝ j

loop (GAMP) is implemented in an iterative way, in our
proposed variational EM-GAMP framework, as detailed in
Algorithm 1, the GAMP only needs to go through one iteration
to obtain an approximation of the likelihood function. In fact,
the GAMP algorithm described here is a simplified version of
the original GAMP algorithm by retaining only its first three
steps and skipping its iterative procedure. Note that the original
GAMP algorithm involves a four-step iterative process, in
which the fourth step computes the posterior of x by using the
approximate likelihood function obtained from the first three
steps.

Note that we can also treat {α1,α2, κ} as determinis-
tic parameters and resort to the EM-GAMP framework for
Bayesian inference. Nevertheless, in this case, we need to esti-
mate a set of binary parameters {κi } in the M-step. This is
essentially a combinatorial search problem and the binary esti-
mation may cause the algorithm to get stuck in undesirable local
minima.

GAMP is known to work well for A with i.i.d zero-mean sub-
Gaussian entries, but may fail for a rank-deficient A. One may
refer to the method [23] to improve the stability of the GAMP
against the ill-condition of the matrix A. Nevertheless, GAMP

is expected to perform well in wireless communication scenar-
ios since indoor and urban outdoor environments are typically
rich in scattering and entries of MIMO channel matrices are
usually assumed to be i.i.d Gaussian [15], [24].

C. E-Step: Update of Hidden Variables

Update of q(x): As discussed above, p( y|x;β) is approxi-
mated as a factorized form of I independent scalar likelihoods,
which enables the computation of q(x) (27). Specifically, using
(28), (27) can be simplified as

ln q(x)

= 1

2

I∑
i=1

〈
−αi1κi (xi − v)2 − αi2(1 − κi )(xi + v)2

〉

− 1

2

I∑
i=1

(xi − r̂i )
2 /
τ r

i + const

= −
I∑

i=1

(
1

2

(〈κi 〉〈αi1〉 − 〈κi 〉〈αi2〉 + 〈αi2〉 + 1/τ r
i

)
x2

i

+ (
(〈κi 〉〈αi1〉 + 〈κi 〉〈αi2〉 − 〈αi2〉) v + r̂i/τ

r
i

)
xi

)+const

∀i, xi ∈ [−v, v]. (31)

and ln q(x) = −∞ otherwise. It can be seen that ln q(x) has
a factorized form, which implies that hidden variables {xi }
have independent posterior distributions. Also, it can be readily
verified that the posterior q(xi ) follows a truncated Gaussian
distribution

q(xi ) =
{

N(xi |μi ,σ
2
i )

φi
if xi ∈ [−v, v],

0 otherwise,
(32)

where the variance σ 2
i , mean μi and the normalization constant

φi are given respectively as

σ 2
i = (〈κi 〉〈αi1〉 − 〈κi 〉〈αi2〉 + 〈αi2〉 + 1/τ r

i

)−1
, (33)

μi = (
(〈κi 〉〈αi1〉+ 〈κi 〉〈αi2〉 − 〈αi2〉) v + r̂i/τ

r
i

)
σ 2

i , (34)

φi = �((v − μi )/σi )−�((−v − μi )/σi ) . (35)

Update of q(α1): Keeping only the terms that depend on α1,
the variational optimization of q(α1) yields

ln q(α1)

= 〈ln p(x|α1,α2, κ; v)p(α1)〉q(x)q(α2)q(κ) + const

=
I∑

i=1

〈ln p(xi |αi1, αi2, κi ; v)p(αi1)〉q(x)q(α2)q(κ) + const

= −
I∑

i=1

〈κi 〉 ln ηi1 +
I∑

i=1

((
a + 1

2
〈κi 〉 − 1

)
lnαi1

−
(

b + 1

2
〈κi 〉

〈
(xi − v)2

〉)
αi1

)
+ const. (36)

We see that ln q(α1) also has a factorized form ln q(α1) =∑
i ln q(αi1). Note that ηi1 (defined in (15)) is a function of
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αi1, which makes the inference of q(αi1) difficult. To address
this difficulty, we use the latest computed value to replace
ηi1 i.e. let ln ηi1 ≈ ln η(t)i1 . Note that similar approximations
were also adopted in [22] to facilitate the inference. With this
approximation, we obtain

ln q(αi1)

=
(

a + 1

2
〈κi 〉 − 1

)
lnαi1 −

(
b + 1

2
〈κi 〉

〈
(xi − v)2

〉)
αi1

+ const. (37)

Therefore q(αi1) follows a Gamma distribution

q(αi1) = Gamma(αi1 |̃ai1, b̃i1) (38)

with

ãi1 = a + 1

2
〈κi 〉 (39)

b̃i1 = b + 1

2
〈κi 〉

〈
(xi − v)2

〉
. (40)

Update of q(α2): Following a procedure similar to the
derivation of q(α1), we have

q(αi2) = Gamma(αi2 |̃ai2, b̃i2) (41)

with

ãi2 = a + 1

2
(1 − 〈κi 〉) (42)

b̃i2 = b + 1

2
(1 − 〈κi 〉)

〈
(xi + v)2

〉
. (43)

Update of q(κ): The approximate posterior distribution
qκ(κ) can be computed as

ln q(κ)

= 〈ln p(x|α1,α2, κ; v)p(κ)〉q(x)q(α1)q(α2) + const

=
I∑

i=1

〈ln p(xi |αi1, αi2, κi ; v)p(κi )〉q(xi )q(αi1)q(αi2) + const

=
I∑

i=1

(
1

2

(
〈lnαi1〉 − 〈lnαi2〉 −

〈
(xi − v)2

〉
+

〈
(xi + v)2

〉)
+ 〈ln ηi2〉 − 〈ln ηi1〉 + ln

π

1 − π

)
κi + const. (44)

We see that ln q(κ) = ∑
i ln q(κi ) and, moreover, the posterior

q(κi ) obeys a Bernoulli distribution, i.e. κi takes values zero or
one, and the corresponding probability can be computed from
(44). To simplify computation, we can use the approximation
〈ln ηil〉 ≈ ln η(t)il , l = 1, 2.

In summary, the variational Bayesian inference involves
updates of the approximate posterior distributions for hidden
variables x, α1, α2 and κ in an alternating fashion. Some
of the expectations and moments used during the update are
summarized as

〈xi 〉 = μi − σ 2
i

φi

(
N(v|μi , σ

2
i )− N(−v|μi , σ

2
i )

)
, (45)

〈x2
i 〉 = ui 〈xi 〉+σ 2

i − σ
2
i

φi

(
N(v|μi , σ

2
i )+N(−v|μi , σ

2
i )

)
,

(46)

〈αil〉 = ãil/b̃il , l = 1, 2, (47)

〈lnαil〉 = ψ(̃ail)− ln b̃il , l = 1, 2, (48)

〈κi 〉 = q(κi = 1), (49)

where

ψ(a) � ∂ ln�(a)

∂a
(50)

is known as the digamma function [25].
Discussions: We can gain some insight into our proposed

algorithm by examining the update rules for precision param-
eters {αi1, αi2}. Since a and b are set very small, the update
rules (47) for {αi1, αi2} are approximately given by

〈αi1〉 = 1

〈(xi − v)2〉 (51)

〈αi2〉 = 1

〈(xi + v)2〉 (52)

We see that the posterior mean of the precision, say 〈αi1〉, is
inversely proportional to the distance between the entry and the
boundary point v. When xi is close to the boundary point v,
the posterior mean of the precision αi1 will become large. As
a consequence, the prior distribution becomes sharp around the
boundary point v. Hence the prior has the potential to push the
entry xi closer to the boundary point v, which in turn results
in a larger 〈αi1〉 according to (47). This feedback mechanism
keeps pushing most of the entries towards the boundary until
they are eventually located on one of the boundary points. Our
simulation results further corroborate our above discussions:
the proposed algorithm yields a solution with a substantial
percentage of entries lying exactly on the boundary points.

D. M-Step: Update of Deterministic Parameters

As indicated earlier, in the variational EM framework, the
deterministic parameters θ = {β, v} are estimated by maximiz-
ing the Q-function, i.e.

θNEW = max
θ

Q(θ, θOLD) = 〈ln p( y, z; θ)〉q(z) (53)

Update of β: We fist discuss the update of the parameter β,
the inverse of the noise variance. Since the GAMP algorithm
provides an approximate posterior distribution for the noiseless
output u � Ax, we can simply treat u as hidden variables when
computing the Q-function, i.e.

Q(β, β(t)) =
J∑

j=1

〈ln p(y j |u j ;β)〉 p̂(u j | y,β) + const

= J

2
lnβ − 1

2
β

J∑
j=1

〈
(y j − u j )

2
〉
+ const. (54)
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The new estimate of β is obtained by maximizing the Q-
function, which can be solved by setting the derivative of
Q(β, β(t)) with respect to β to zero. The derivative is given as

∂Q(β, β(t))

∂β
= J

2β
− 1

2

J∑
j=1

〈
(y j − u j )

2
〉
. (55)

Setting it to zero, we obtain

β(t+1) = J∑J
j=1

〈
(y j − u j )2

〉 . (56)

Update of v: We now discuss how to update the bound-
ary parameter v. The boundary parameter v can be updated by
maximizing the Q-function with respect to v. Nevertheless, the
optimization is complex since the Q-function involves comput-
ing the expectation of the normalization terms ηil , i = 1, . . . , I ,
l = 1, 2, with respect to the posterior distributions p(αil). Here
we propose a heuristic approach to update v. The basic idea
is to find an appropriate value of v such that the mismatch
‖ y − Ax̂‖2

2 is minimized, where x̂ denotes the estimated signal
which is chosen as the mean of the posterior distribution q(x).
Note that when the boundary parameter v is small, the mismatch
could be large since there may not exist a solution to satisfy
the constraint y = Ax given that ‖x‖∞ ≤ v. Therefore we can
firstly set a small value of v, then gradually increase v by a step-
size such that the mismatch keeps decreasing and eventually
becomes negligible. Define δ(x̂) � ‖ y − Ax̂‖2

2. Specifically,
the step-size �v can be obtained by solving the following
optimization problem:

�v = min
�v

δ(x̂(t) + γ�v), (57)

where x̂(t) denotes the estimate (i.e. posterior mean of q(x)) of
the signal at iteration t , and γ � [γ1, . . . , γI ]T is defined as

γi =
{

1, if x̂ (t)i ≥ 0

−1, if x̂ (t)i < 0
. (58)

The rationale behind the optimization (57) can be explained as
follows. Since our proposed algorithm yields a solution with
most of its entries located on the boundary points, if we increase
the boundary v by a sufficiently small step-size �v, we can
expect that the signal x will expand accordingly. We wish to
find a step-size �v such that the expanded signal will result in
a reduced mismatch. The problem (57) is a scalar least-square
problem, and its solution is given by

�v = ( y − Ax̂(t))T Aγ

‖Aγ ‖2
2

. (59)

Then v can be updated as

v(t+1) = v(t) +�v. (60)

E. Summary

In summary, our algorithm is developed by resorting to the
variational EM strategy. The GAMP technique is embedded in

Algorithm 2. EM-TGM-GAMP

Initialization: β(0) = 103, v(0) = ‖ y‖∞/‖A‖∞, initialize the
means of q(x), q(α1), q(α2), q(κ) as 0, 1, 1, 1

2 1 respectively,
set the variance of q(x) as 1, and set iteration number t = 0.
Repeat the following steps until t ≥ tMAX

1. Based on the mean and variance of q(x) and β(t), cal-
culate the approximate distributions p̂( y|x;β(t)) and
p̂(u j | y, β(t)), j = 1, . . . , J , via Algorithm 1.

2. Using the approximate likelihood p̂( y|x;β(t)), update
the posteriors of hidden variables: q(x), q(α1), q(α2) and
q(κ) via (32)–(49).

3. Compute the new estimate β(t+1) using (56), and obtain
the v(t+1) via (58)–(60).

4. Increase t = t + 1 and return to step 1.

the variational EM framework to obtain an approximation of
the joint likelihood function p( y|x, β) which has a factorized
form in terms of the variables {xi }. Specifically, the algorithm
involves an iterative process as follows: given an estimate of
q(x) and β, we use the GAMP to obtain an approximation
of the likelihood function p( y|x;β); with the approximation
p̂( y|x;β), the variational EM proceeds to yield a new esti-
mate of q(x) and β, along with the approximate posteriors
of the other hidden variables and an estimate of the bound-
ary parameter v. For clarity, we summarize our proposed in
Algorithm 2.

Note that the dominating operations of the proposed algo-
rithm in each iteration only involve simple matrix-vector mul-
tiplications, which scales as O(J I ) (J < I ). Thus the proposed
algorithm has a computational complexity comparable to the
FITRA algorithm [12] which also has a computational com-
plexity of O(J I ) per iteration. Besides, as will be shown in our
experiments, the proposed algorithm has a much faster conver-
gence rate than the FITRA algorithm, which is more favorable
for real-time implementation needed for practical systems.

V. SIMULATION RESULTS

We now carry out experiments to illustrate the effectiveness
of the proposed truncated Gaussian mixture (TGM) model-
based variational EM-GAMP algorithm2 (referred to as the
EM-TGM-GAMP). We compare our approach with the FITRA
algorithm [12], the zero-forcing (ZF) precoding scheme, and
the amplitude clipping scheme [4] in which the ZF is first
employed and then the peaks of the resulting signal are clipped
with a specified threshold.

In our simulations, we consider a MIMO system which has
M = 100 antennas at the BS and serves K = 10 single-antenna
users. A 16-QAM constellation is considered, and the num-
ber of OFDM tones is set to N = 128, in which only |T| =
114 tones are used for data transmission [18]. We assume
that the channel is frequency-selective and modeled as a tap-
delay line with D = 8 taps. The time-domain channel response
matrices Ĥd , d = 1, . . . , D, have i.i.d. circularly symmetric

2Codes are available at http://www.junfang-uestc.net/codes/EM-TGM-
GAMP.rar
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Fig. 5. Time/Frequency representation for different schemes. (a), (c), (e) and (g) are time-domain signals for ZF, clipping, FITRA and EM-TGM-GAMP,
respectively (PAPR: ZF = 10.6 dB, Clipping = 4.3 dB, FITRA = 2.4 dB, and EM-TGM-GAMP = 0.8 dB). (b), (d), (f) and (h) are frequency-domain signals
for respective schemes (MUI: ZF = −∞ dB, Clipping = −15.3 dB, FITRA = −64.1 dB, and EM-TGM-GAMP = −73.6 dB; OBR: ZF = −∞ dB, Clipping =
−13.8 dB, FITRA = −60 dB, and EM-TGM-GAMP = −70.5 dB).

Gaussian distributed entries with zero mean and unit variance.
The frequency-domain response matrix Hn can be obtained as

Hn =
D∑

d=1

Ĥd exp

(− j2πdn

N

)
. (61)

For the FITRA algorithm, the regularization parameter is set to
be λ = 0.25 as suggested by [12]. Also, unless explicitly stated
otherwise, the maximum number of iterations of the FITRA and
the EM-TGM-GAMP are set to be 2000 and 200, respectively.

The complementary cumulative distribution function
(CCDF) is used to evaluate the PAPR reduction performance.
The CCDF denotes the probability that the PAPR of the
estimated signal exceeds a given threshold PAPR0, i.e.

CCDF(PAPR0) = Pr(PAPR > PAPR0). (62)

Also, to evaluate the multiuser interference of the transmit
signals, we define the MUI as

MUI =
∑

n∈T ‖sn − Hnwn‖2
2∑

n∈T ‖sn‖2
2

. (63)

Besides, the out-of-band (power) ratio (OBR) is introduced
to measure the out-of-band radiation of the solution, which is
defined as

OBR = |T| ∑
n∈Tc ‖wn‖2

2

|Tc| ∑
n∈T ‖wn‖2

2

. (64)

Note that, for the ZF procoding scheme, we have OBR = 0 and
MUI = 0, while for the other three schemes, we always have
OBR > 0 and MUI > 0.

It is interesting to examine the signals estimated by respec-
tive schemes. In the (a), (c), (e) and (g) of Fig. 5, we depict
the real-part of the first transmit antenna’s time-domain signal
(i.e. â1) estimated by respective schemes (the imaginary part
behaves similarly). We observe that our proposed algorithm
yields a solution with most of its entries (about 84.4%) located
on the boundary points, which corroborates our previous claim
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Fig. 6. PAPR and symbol error rate (SER) performance for various schemes. (a) CCDF of the PAPR, (b) SER performance.

that the proposed truncated hierarchical Gaussian mixture
model encourages a quasi-constant magnitude solution. Such
a solution, clearly, has a low PAPR as it looks like a constant-
modulus signal. The solution of the FITRA algorithm has
fewer entries (about 49.2%) located on the boundary points.
For the ZF scheme, its solution exhibits a large variation with
a few high peaks. The solution of the clipping scheme is only a
slightly alleviated version of the ZF solution. Numerical results
also verify our observations: our proposed algorithm has the
lowest PAPR (PAPR associated with the first transmit antenna)
of 0.8 dB, the FITRA algorithm and the clipping scheme have
higher PAPRs of 2.4 dB and 4.3 dB, repectively, while the ZF
scheme has the highest PAPR of 10.6 dB. We see that our
proposed algorithm renders a much lower PAPR than the other
three schemes. The (b), (d), (f) and (h) of Fig. 5 depict the
magnitudes of the frequency-domain signal a1 vs. the OFDM
tone index. Both the EM-TGM-GAMP and the FITRA have
small MUIs and out-of-band radiations: their MUIs are given
by −73.6 dB and −64.1 dB, respectively, and OBRs are given
by −70.5 dB and −60 dB, respectively. In contrast, the clipping
scheme incurs a much higher MUI and out-of-band distortion,
with its MUI and OBR given by −15.3 dB and −13.8 dB,
respectively.

To better evaluate the PAPR reduction performance, we plot
the CCDF of the PAPR for respective schemes in Fig. 6(a). The
number of trials is chosen to be 1000 in our experiments. Note
that PAPRs associated with all M antennas are taken in account
in calculating the empirical CCDF. We also include the results
of our proposed algorithm obtained at the 20th iteration. We can
see that our proposed algorithm with 200 iterations achieves a
substantial PAPR reduction: it reduces the PAPR by more than
11 dB compared to the ZF scheme (at CCDF(PAPR) = 1%), by
about 2 dB compared to the FITRA algorithm with 2000 iter-
ations, and by about 3.2 dB compared to the clipping scheme.
Also note that the proposed algorithm with only 20 iterations
can obtain a PAPR that even is lower than the FITRA, mean-
while exhibiting a decent MUI and OBR (here MUI and OBR
are averaged over 1000 independent runs) given by −41.8 dB
and −21.7 dB, respectively.

The SER performance of respective schemes is shown in
Fig. 6(b), where the signal-to-noise ratio (SNR) is defined as
SNR = ‖x‖2

2/M No, No denotes the variance of the receiver
noise (c.f. (4)). We observe that the proposed algorithm incurs
an SNR-performance loss of 2.5 dB and 1.7 dB (at SER =
10−3) compared to the ZF and FITRA schemes, respectively.
This performance loss, as discussed in [12], is primarily due to
an increase in the norm of the obtained solution x, i.e. ‖x‖2

2. It
is not difficult to see that the solution obtained by our proposed
method has a larger norm than the solution of the FITRA since
our solution has more entries located on the boundary points.
Also note that the ZF scheme renders the least-norm solu-
tion. In order to maintain the same SNR, our solution requires
a stronger normalization, which causes the SER performance
loss compared to the ZF and FITRA schemes. It can also be
observed that the SER performance gap can be reduced if we
only perform 20 iterations for our proposed method, in which
case the resulting solution has fewer entries located on the
boundary points and hence the increase of the norm of the solu-
tion is not that significant. Note that the performance loss of the
clipping scheme is mainly caused by the residual MUI.

We now examine the convergence rates of our proposed
method and the FITRA algorithm. The (a), (b) and (c) of Fig. 7
show the PAPR, MUI and OBR vs. the number of iterations,
respectively. Results are averaged over 1000 independent runs
and the PAPR results are averaged over PAPRs associated with
all transmit antennas. Our numerical results show that the aver-
age MUI and OBR of our proposed method at the 200th itera-
tion are −72.5 dB and −69.1 dB respectively, while the average
MUI and OBR of the FITRA algorithm at the 2000th iteration
are −63.3 dB and −60.3 dB. With less than 200 iterations, our
proposed algorithm achieves better MUI cancelation than the
FITRA algorithm with even 2000th iterations. From Fig. 7(a),
we also notice that our proposed algorithm has a fast conver-
gence rate and is able to obtain a low-PAPR solution within
only 200 iterations, whereas it takes the FITRA algorithm about
2000 iterations to achieve a reasonably low PAPR.

Lastly, we investigate the PAPR-reduction performance
under different number of transmit antennas, where the number
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Fig. 7. Convergence rates of different metrics for EM-TGM-GAMP and
FITRA. (a) PAPR, (b) MUI, (c) OBR.

Fig. 8. (a) PAPR vs. number of transmit antennas, (b) MUI vs. number of
transmit antennas, (c) OBR vs. number of transmit antennas.

of users is fixed to be K = 10, and the number of transmit
antennas at the BS varies from 20 to 120. Fig. 8 plots the PAPR,
MUI and OBR as the number of transmit antennas varies, where
results are averaged over 1000 independent runs and the PAPR

results are averaged over PAPRs associated with all trans-
mit antennas. We observe that both algorithms achieve a low
PAPR when sufficient DoFs at the base station are available.
Nevertheless, the proposed method is capable of exploiting the
available DoFs more efficiently as the number of of transmit
antennas increases.

VI. CONCLUSIONS

We considered the problem of joint PAPR reduction and mul-
tiuser interference (MUI) cancelation in OFDM based massive
MIMO downlink systems. A hierarchical truncated Gaussian
mixture prior model was proposed to encourage a low PAPR
solution/signal. A variational EM algorithm was developed to
obtain estimates of the hyperparameters associated with the
prior model, as well as the signal. Specifically, the GAMP tech-
nique was embedded into the variational EM framework to
facilitate the algorithm development. The proposed algorithm
only involves simple matrix-vector multiplications at each iter-
ation, and thus has a low computational complexity. Simulation
results show that the proposed algorithm achieves notable
improvement in PAPR reduction as compared with the FITRA
algorithm [12], and meanwhile renders better MUI cancelation
and lower out-of-band radiation. The proposed algorithm also
demonstrates a fast convergence rate, which makes it attractive
for practical real-time systems.
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