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Exploiting Spectral Regrowth for
Channel Identification
Kuang Cai, Hongbin Li, and Joseph Mitola, III

Abstract—In modern communication systems, power amplifiers
(PAs) are important components and inherently nonlinear. The
nonlinearity of the PA causes bandwidth expansion of the com-
munication signal, often referred to as spectral regrowth, at the PA
output. Conventionally, spectral regrowth is treated as a distortion,
and a range of compensation and filtering techniques have been
considered to mitigate its effect. In this paper, we propose to exploit
spectral regrowth to enhance channel identification accuracy. Our
approach is motivated by the fact that the nonlinearly amplified
communication signal carries more bandwidth and allows better
probing of the channel. We introduce an iterative algorithm which
jointly estimates the PA characteristics and the channel impulse
response. The effectiveness of the proposed algorithm is illustrated
by computer simulation.

Index Terms—Channel identification, nonlinear power ampli-
fier, spectral regrowth.

I. INTRODUCTION

P OWER AMPLIFIERS (PAs) are important components
in communication systems. PAs are also major sources

of nonlinearity in such systems. A PA produces bandwidth ex-
pansion of the communication signal. This phenomenon, called
spectral regrowth or spectral regeneration [1]–[4], is caused
by the creation of mixing products between the individual fre-
quency components of the communication signal. Spectral re-
growth is conventionally treated as a distortion since it may con-
tribute to adjacent channel interference [5], [6]. This has led to
numerous studies on how to mitigate the effect of spectral re-
growth via predistortion and filtering techniques [7]–[13].
However, spectral regrowth can be beneficial from the

perspective of channel characterization and identification. It is
known how well the channel can be estimated is fundamentally
related to the bandwidth of the probing signal. This is the basic
idea behind radar which often employs a wideband chirp signal
to sound the environment. While a narrowband communication
signal is by design not an ideal channel probing signal, the extra
bandwidth induced by nonlinear power amplification holds the
potential of improving channel estimation.
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In this letter, we investigate how to exploit spectral regrowth
for channel identification in communications. An important
question that needs to be addressed is how much of the spectral
regrowth content can be utilized to benefit channel identifi-
cation. The question arises from the fact that for a PA with
moderate nonlinearity, the power spectral density (PSD) of
the PA output decreases with increasing frequency in outband.
To answer this question, we consider a receiver front end
(baseband equivalent) equipped with a lowpass filter (LPF)
which has a variable cutoff frequency. By increasing the cutoff
frequency, more of the spectral regrowth content of the signal
is utilized for channel identification and, meanwhile, there is
more noise entering the system. It is therefore necessary to
examine the trade-off and determine the best cutoff frequency
from both estimation accuracy and complexity points of view.
Both the PA characteristics and the multipath channel are

assumed unknown in this work. We develop a joint estimator
which iteratively estimates the PA characteristics and the mul-
tipath channel coefficients. To benchmark the performance of
the proposed estimator, we also derive the Cramér-Rao bound
(CRB) for the estimation problem, which gives the best achiev-
able performance of any unbiased estimator.
The rest of the paper is organized as follows. In Section II,

we introduce the system model and formulate the problem of
interest. In Section III, we present our proposed method. The
related numerical results are presented in Section IV. Finally,
the paper is concluded in Section V.
Notation: Vectors (matrices) are denoted by boldface lower

(upper) case letters; denotes the convolution; denotes the
Kronecker product; superscripts and denote the trans-
pose and conjugate transpose respectively; denotes an
identity matrix; denotes an estimate of .

II. PROBLEM STATEMENT

Consider a basedband linearly modulated signal con-
sisting of symbols given by

(1)

where is the th symbol, the pulse shaping filter and
the symbol period. The signal is power amplified and sent

across a multipath channel with impulse response . Assume
that the channel spans symbol periods:

(2)
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Fig. 1. Baseband system model.

where . Then, the received signal is

(3)

where denotes the nonlinear PA input/output relation and
the additive Gaussian white channel noise. Let
. Consider the polynomial model which is commonly

used to characterize memoryless PAs in baseband [4], [5], [14],
[15]:

(4)

where denotes the th polynomial coefficient which is
unknown and needs to be estimated. The memoryless model
is employed for many PAs used in practice, such as the trav-
eling wave tube (TWT) amplifier, solid state power amplifier
(SSPA) and soft-envelope limiter (SEL) [16]. Referring to (4),
the higher order ( ) components bring in spectral regrowth.
Suppose that the message signal has a bandwidth . It is
easy to see that the PA output has an expanded bandwidth

.
The problem of interest is to jointly estimate the multipath

channel response and PA characteristics from the re-
ceived signal given knowledge of the training symbols
and pulse shaping filter .

III. PROPOSED METHOD

A. Receiver Structure and Discrete-Time Model

The nonlinearly amplified signal has more bandwidth
than the original signal and can potentially lead to better
channel identification performance. To quantify the effect of
bandwidth on channel identification, we apply an LPFwith vari-
able cutoff frequency (in Hz) as the receiver front end filter.
We examine the estimation performance as a function of . The
LPF output can be written as

(5)

where is the impulse response of the LPF. Fig. 1 shows the
diagram of the system model in baseband.
The system output is sampled at the Nyquist rate relative

to the LPF bandwidth. Let denote the sampling
interval, the oversampling rate, and the
filtered noise. From (3) and (5), the output sample is given by

(6)

Suppose the estimation is based on an observation of for
symbol intervals, where the initial symbol inter-

vals and tailing symbol intervals are not used for estimation.
To obtain a discrete-time model, we approximate the integral in
(6) by summation with a small step size . Let .
Note that is chosen as a small fraction of such that as
well as and , which are dimensions of sev-
eral vectors/matrices defined below, are integers. Then, (6) can
be expressed by

(7)

Let , , and .
The output samples, filtered noise samples and the channel re-
sponse in vector form are given by:

(8)

Then, we have the system output in matrix/vector form as

(9)

where is an matrix

...
...

. . .
...

and is an matrix given by

...
...

. . .
...

B. Joint Channel and PA Estimation

Equation (9) shows how the receiver output depends on the
channel response . Next, we explicitly show the dependence of
on the PA characteristics . In particular, by defining:

,

(10)

we can write as

(11)

where , and is an matrix

...
...

. . .
...

Referring to (11), our system model (9) becomes

(12)
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A simple approach is to estimate as an unknown vector
without considering its structure. Specifically, since the noise
samples are obtained at the Nyquist sampling rate

and therefore are independent and identically distributed
Gaussian, the unstructured maximum likelihood estimate
(MLE) reduces to the least squares estimate (LSE):

(13)

Let be decomposed as

(14)

We can construct the following rank-1 matrix

(15)

Note that there is an inherent multiplicative ambiguity in sep-
arating and . To resolve the ambiguity, we assume some
knowledge of the PA is available, e.g., the linear gain of the
PA, which is often known in practice. Such knowledge can be
obtained through a calibration process [17]. Then, we can sep-
arate the estimates of and from the singular value decom-
position (SVD) of (15) (more details later).
The above non-structured estimator was found to be unsat-

isfactory, in particular when the signal-to-noise ratio (SNR) is
low. Next, we present an enhanced estimator by iteratively es-
timating and in succession, using the non-structured esti-
mates to initialize the iteration. Specifically, note that

(16)

where . Then, we can write (12) as

(17)

Equation (17) shows that given either or , the other can be
estimated by the LSE. Hence, our iterative estimation algorithm
consists of the following steps:

Step 1 (Initialization). Set . Compute the SVD of
(15)

(18)

Denote the first column of and its first element as
and , respectively. Using the fact that is known (say,

), we have ;
Step 2. Set . Referring to (17), apply LSE to
compute the estimates of and as follows:

(19)

where and are constructed from and
, respectively, and the last normalizing step is to im-

pose the prior knowledge of ;
Step 3. Repeat Step 2 until the estimates of and con-
verge. In our simulation, we noticed the algorithm usually
converges in iterations.

C. CRB

To benchmark the proposed estimator, we calculate the cor-
responding Cramér-Rao bound which provides a lower bound
on all unbiased estimators. Collect all unknown parameters in
one vector:

(20)

Note that the LPF filter output noise is spectrally white with
covariance matrix

(21)

where is the double-sided PSD of . Referring to (17),
the Fisher information matrix (FIM) is given by [18]

(22)

Due to the aforementioned multiplicative ambiguity between
and , is singular and cannot be inverted to yield the CRB.

A useful constrained CRB can be obtained by imposing the prior
knowledge of , which is also employed in our estimator. The
constrained CRB is computed by using the approach discussed
in [19]. Specifically, construct a constraint function:

(23)

where . Let

(24)

Find out a matrix whose columns form a basis for the
nullspace of , and denote it as . The constrained CRB
is given by

(25)

IV. NUMERICAL RESULTS

In our simulation, we use binary phase shift keying (BPSK)
using root-raised-cosine (RRC) pulse with roll-off factor

. The nonlinear PA is a 5-th order amplifier with co-
efficients taken from [20, Table 1]. The impulse response of
the multipath channel is given by:

. The SNR is defined as:
, where denotes the signal energy per symbol.

We compare the estimation performance at five different
cutoff frequencies, , , , and , where

denotes the message signal bandwidth. Note that
corresponds to the conventional approach which

does not employ the spectral regrowth for identification, where
the other cases use the spectral regrowth. For all cases, we
use training symbols for estimation. As performance
metric, we use the normalized mean squared error (MSE)

obtained from 2000 independent trials,
where denotes either the channel or PA coefficients .
Fig. 2 shows the results for PA characteristics and channel es-

timation. It is observed that for both PA and channel estimation,
the proposed estimator asymptotically (for high SNR) achieves
the CRB and is therefore statistically efficient. The estimation
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Fig. 2. MSE and CRB for the estimation of (a) PA coefficients; and (b) channel response.

accuracy is improved when the spectral regrowth is utilized.
However, the benefit of spectral regrowth is seen to diminish
as the cutoff frequency of the LPF increases. In particular, al-
most identical estimation accuracy in terms of both theMSE and
CRB is obtained at and . As noted before,
as the cutoff and sampling frequency increases, on one hand we
have more signal samples and include more of the useful signal
energy for estimation, while on the other hand each sample is
noisier as the noise variance increases with (see (21)). The
diminishing gain is precisely due to the trade-off effect between
the signal and noise as the bandwidth of the filter changes. For
the considered case, it appears or is the best
choice for estimation for the considered setup since a larger
brings little performance improvement but incurs a higher

complexity. Finally, it is noted that the proposed algorithm con-
verges typically in less than 5 iterations for all cases considered,
and the convergence rate is slightly faster (in 2 to 3 iterations)
for larger and/or higher SNR.

V. CONCLUSION

In communication systems with nonlinear PA components,
spectral regrowth is conventionally treated as a distortion. Since
useful signal energy is contained in the expanded bandwidth due
to spectral regrowth, utilizing spectral regrowth holds the ben-
efit of improving the channel estimation accuracy. In this work,
we proposed an iterative channel identification algorithm by ex-
ploiting spectral regrowth. Our results show that compared with
the conventional approach which cuts out the outband energy
of the received signal, significant improvement can be obtained
by using three to four times the message signal bandwidth for
channel identification. However, it is noted that increasing the
bandwidth beyond this range seems not recommended due to
the diminishing gain and additional complexity incurred to the
estimation algorithm.
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