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We consider an adaptive reduced-rank detector, referred to as the
CG-AMF detector, which is obtained by using the conjugate gradient
(CG) algorithm to solve for the weight vector of the adaptive
matched filter (AMF). The CG is a computationally efficient iterative
algorithm, which finds the projection of the AMF weight vector to
the Krylov subspace with a dimension growing with the CG
iterations. This effectively leads to a family of reduced-rank detectors
indexed by the number of CG iterations. The main purpose of this
paper is to examine the output signal-to-interference-and-noise ratio
(SINR) of the CG-AMF detector in the presence of strong
clutter/interference. Specifically, by exploiting a connection between
the CG algorithm and the Lanczos algorithm, we show the output
SINR can be asymptotically expressed in a simple form involving a
Ritz vector of the sample covariance matrix. The probability density
function (pdf) and expected value of the output SINR are then
obtained based on this approximation. Our theoretical analysis of
the CG-AMF detector is verified by computer simulation. Numerical
comparisons are also made with several popular reduced-rank
detectors using either data-independent or data-dependent rank
reduction approaches. Our results show that for a fixed training size,
the CG-AMF detector often reaches its peak output SINR with a
lower rank compared with the other reduced-rank detectors, which
implies that the CG-AMF detector has lower computational
complexity and less training requirement.
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I. INTRODUCTION

The problem of detecting a multichannel signal from
temporally and spatially correlated disturbance is
encountered in a variety of applications including radar,
sonar, wireless communications, and others [1–3]. The
problem has been extensively studied under the
framework of space-time adaptive processing (STAP) in
phased-array radar, which employs multielement antennas
and multipulse waveforms to probe and observe the radar
scene. Numerous STAP detectors have been proposed
[1, 2, 4–14]. Among them, the covariance matrix based
detectors, which need knowledge of the space-time
covariance matrix of the disturbance signal to suppress the
interferences, are the most widely used multichannel
signal detectors. Examples of such detectors include the
Reed, Mallett, and Brennan detector [4], Kelly’s
generalized likelihood ratio test (GLRT) [5], the adaptive
matched filter (AMF) detector [6, 7], the adaptive
coherence estimator detector [8], among others. All of
them involve estimating and inverting a space-time
covariance matrix of the disturbance signal for each test
cell using target-free training data, which may impose
excessive training and computational burdens when the
joint space-time dimension is large.

Aiming at mitigating the training and computational
requirements of the full-rank covariance matrix based
detectors, reduced-rank techniques have been proposed to
reduce the dimension of the input signal in advance of
detection [1, 2]. Specifically, reduced-rank methods
employ rank reduction mechanisms to decrease the
degrees of freedom (DoFs) of the detectors so as to
alleviate the estimation burden. For a fixed training size,
reduced-rank methods often offer a better estimation
accuracy than their full-rank counterparts and, despite the
loss of DoFs, may actually attain a better detection
performance.

The rank reduction of the input signal space can be
achieved by a linear transformation matrix T. There are
two broad families of reduced-rank transformations,
namely, data-independent transformations and
data-dependent transformations. The former include using
submatrices formed from the discrete Fourier transform
(DFT), discrete cosine transform (DCT), or other
data-independent linear matrices. Examples of
data-dependent reduced-rank transformations include the
eigencanceler (EIG) [9], the cross-spectral metric (CSM)
[10], and others. The main advantage of data-independent
transformations is their low computational cost.
Data-dependent schemes are normally computationally
more involved. For example, the EIG and CSM require the
eigendecomposition of a covariance or transformed
covariance matrix. Despite the higher complexity, better
performance is often obtained by using data-dependent
transformations.

The conjugate gradient (CG) algorithm is a
computationally efficient method for solving a linear
system. The CG algorithm is guaranteed to converge in a
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fixed number of iterations, and able to provide a series of
approximations of the solution in an expanding Krylov
subspace. Due to these properties, the CG algorithm has
been investigated for estimation and detection in a number
of recent studies [15–19]. Specifically, [15] considered the
use of CG for adaptive filtering. Krylov subspace
beamforming was studied in [16]. The CG algorithm was
employed to provide efficient order recursive
implementation of the post-Doppler STAP detector in
[17]. Parametric adaptive detection exploiting the
computational efficiency of the CG algorithm for linear
prediction was proposed in [18]. The CG algorithm was
used to approximate the nonadaptive matched filter in [19]
and a number of convergence properties were
established.

We consider the CG-AMF detector for adaptive
reduced-rank detection. Specifically, the computationally
efficient CG algorithm is employed to iteratively calculate
the weight vector of the AMF detector. This in turn
produces a group of CG-AMF detectors, each having a
different rank determined by the number of CG iterations.
The CG-AMF detector is closely related to the multistage
Wiener filter (MWF), which is a popular reduced-rank
detector [20, 21]. In particular, it has been found that
under certain conditions (namely, CG starts the iteration
from a zero initial condition and the MWF employs an
orthogonal transfer matrix), the two detectors are identical
in the sense that they produce the same weight vector at
each iteration [20].

The main purpose of this paper is to analyze the output
signal-to-interference-and-noise ratio (SINR) of the
CG-AMF detectors for different iterations numbers. It is
natural to ask which CG-AMF detector yields the highest
output SINR on the average. It should be noted that due to
a trade-off between DoFs and estimation accuracy when
the training size is fixed, the output SINR does not always
grow with the rank or the number of CG iterations. An
optimal rank is usually achieved well before the CG
reaches its full iterations (at which point it yields a
full-rank solution). Any additional CG iterations beyond
the optimal rank are therefore not only computationally
wasteful, but also reduce the detection performance. To
this end, we examine the statistical behavior of the output
SINR of the CG-AMF detector. Under the condition that
the signal is contaminated by strong low-rank interference,
an asymptotic expression of the probability density
function (pdf) and expected value of the output SINR are
obtained by using a connection between the CG and the
Lanczos algorithms. Computer simulations are then used
to verify the analysis and comparisons are made to several
other reduced-rank detectors.

The rest of the paper is organized as follows. Section II
presents the signal detection problem and an overview of
reduced-rank detection. The CG-AMF detector is
introduced in Section III. Section IV presents the
asymptotic performance analysis of the CG-AMF
detector. Section V contains numerical simulations to
verify our analysis and compare the CG-AMF detector

with other reduced-rank detectors. Finally, conclusions are
given in Section VI.

Notation: Vectors and matrices are denoted by
boldface lowercase and uppercase letters, respectively.
Transpose, complex conjugate, and complex conjugate
transpose are, respectively, represented by (.)T, (.)∗, and
(.)H. C and R denote the complex and real number fields.
CN (μ, R) denotes the multivariate complex Gaussian
distribution with mean μ and covariance matrix R, � {.}
denotes the real part of a complex variable.

II. DATA MODEL AND REDUCED-RANK DETECTION

Consider the following signal detection problem [1, 2,
4–10, 18, 19, 21]:

H0 : x = d

H1 : x = αs + d
(1)

where x ∈ C
M×1 denotes the observation, s denotes a

deterministic signal of an unknown complex amplitude α,
and d denotes a disturbance signal that is assumed to be
spatially and temporally correlated. The disturbance d is
often modeled as a Gaussian random vector with
zero-mean and space-time covariance matrix R ∈ C

M×M.

As a result, x ∼ CN (αs, R), where α = 0 under H0 and
α �= 0 under H1.

The above problem is referred to as the STAP problem
in array radar literature. Specifically, the M × 1 vector x
contains the samples obtained with an array of J elements
and over N temporal pulses, M = JN denotes the joint
space-time dimension, s is the space-time steering vector,
and d contains clutter and noise. For a side-looking
uniform linear array, the space-time steering vector s is
given by s = st ⊗ ss where st = (1/

√
N )[1 ei2πfd · · ·

ei2π (N−1)fd ]T is the spatial steering vector with a
normalized Doppler frequency fd, ss = (1/

√
J )[1 ei2πfs

· · · ei2π (J−1)fs ]T is the spatial steering vector with a
normalized spatial frequency fs, and ⊗ denotes the
Kronecker product.

The adaptive matched filter (AMF) test [7] is a popular
solution to the detection problem (1), which is given by∣∣ŵH x

∣∣2

ŵH s

H1

≷
H0

ηAMF (2)

where ηAMF denotes the test threshold, and the linear
weight vector of the AMF detector is

ŵ = R̂−1s (3)

where R̂ denotes the sample covariance matrix which is an
estimate of R obtained from L training data {xl}Ll=1, which
are assumed to be independent and identically distributed
(IID) with the same covariance matrix R:

R̂ = 1

L

L∑
l=1

xlxH
l . (4)

The AMF is a full-rank detector that uses all M DoFs
for detection. In general, a STAP detector is not
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recommended in training-limited scenarios, since the
performance loss due to estimation error can be substantial
when L is small. Reduced-rank detection offers an
alternative approach when training data is limited. There
are two broad families of reduced-rank detectors:
data-independent methods and data-dependent methods.
The former methods apply a data-independent
transformation matrix T ∈ C

k×M, k < M to the received
signal x followed by its computational efficiency standard
detection. For example, a reduced-rank version of the
AMF has a weight vector given by

ŵ = TH (TR̂T
H

)−1Ts. (5)

Among others, submatrices of the DFT and DCT matrices
are popular choices for data-independent reduced-rank
processing due to their computational efficiency. Many
pre-Doppler and post-Doppler reduced-rank techniques
(e.g., [1]) also belong to the data-independent categories.

While a data-independent reduced-rank detector uses a
deterministic and fixed transformation matrix T, a
data-dependent reduced-rank detector employs some rank
reduction approach that is derived from the observed
signal. For example, the EIG [9] utilizes the noise
eigenvectors Ên ∈ C

M×k of the sample covariance matrix
R̂, where k is any integer between 1 and the maximum
number of noise eigenvectors of R̂. Ên spans a noise
subspace that is orthogonal to the dominant interference
contained in the observed signal. It also plays the role of
rank reduction like the T matrix for data-independent
reduced-rank methods. The weight vector of the EIG can
be expressed as

ŵE = ÊnÊH
n s. (6)

Another well-known example of data-dependent
reduced-rank detector is the CSM-based detector [10],
whose weight vector is given by

ŵCSM = [IM − AH U(UH AR̂A
H

U)−1UH AR̂]s (7)

where A is a signal blocking matrix satisfying As = 0, and

U is formed from the k eigenvectors of AR̂A
H

that
maximize the quantity |qH

i AR̂s|2/λi, with qi and λi

denoting the eigenvectors and eigenvalues of AR̂A
H

,

respectively.
In general, data-dependent reduced-rank AMF

detectors such as the EIG and CSM outperform the
data-independent reduced-rank AMF detectors, especially
in training limited cases (L is small). However, these
detectors require eigenvalue decomposition and are
computationally intensive. Meanwhile, the CG algorithm
offers a computationally efficient approach to
reduced-rank detection. A recent study of the CG
algorithm used with the nonadaptive matched filter (MF)
for reduced-rank detection leads to not only computational
complexity reduction but also interesting insights of CG
for reduced-rank detection [19]. The problem of interest to
this work is to examine the performance of the CG for

adaptive reduced-rank detection relative to other
data-dependent reduced-rank detectors.

III. CG-AMF DETECTOR

The CG algorithm was employed in [19] along with
the nonadaptive MF for reduced-rank detection. It is
straightforward to extend it for adaptive reduced-rank
detection. In particular, the CG algorithm can iteratively
provide a sequence of approximations ŵk, k = 1, 2, . . . ,

to the AMF weight vector ŵ. Each ŵk can be used to form
a detector as in (2). A summary of the iterative algorithm
that can be used to compute the CG-AMF detector is in
Table I. A few comments on the algorithm are in order. At
the k-th CG iteration, the goal is to find the best
approximation to the AMF weight vector (3) over the
k-dimensional Krylov subspace:

K(R̂, s, k)
�= span{s, R̂s, R̂2s, · · · , R̂k−1s}. (8)

The Krylov subspace is also spanned by a set of basis
vectors d̂1, . . . , d̂k referred to as the conjugate direction
vectors which are R̂−conjugate, i.e., d̂H

i R̂d̂j = 0 for i �= j.
The R̂−conjugate property leads to decoupled coefficients
α̂k. As a result, after the k-th conjugate direction vector d̂k

becomes available, the weight vector only needs to be
updated along the direction of d̂k, by using (10), and the
k-th coefficient α̂k can be thought of as a step-size
corresponding to the amount of change along the direction
of d̂k. The gradient vector γ̂k+1 computed by (11) is
effectively the residual s − R̂ŵk+1. Given the gradient, the
next conjugate direction vector d̂k+1 can be efficiently
computed by (12). More details about the CG iterations
can be found in [22].

The CG algorithm converges to the full-rank AMF
solution in no more than M iterations [22]. Even faster
convergence is possible if the covariance matrix is
structured. For example, it is known that if the covariance
matrix R̂ contains a rank-r component plus an identity
matrix, then the CG algorithm converges in no more than
r + 1 iterations [22].

In a training-limited environment, however,
convergence to the full-rank adaptive solution is often not
the desired objective, since the full-rank solution may
suffer considerable estimation error induced performance
loss. Meanwhile, a reduced-rank solution may yield better
detection performance. Since the CG iteration yields a
family of reduced-rank CG-AMF detectors ŵk, it is
naturally of interest to investigate the statistical behavior
of these CG-AMF detectors and determine how the
detection performance changes as a function of the
number of CG iterations.

IV. PERFORMANCE ANALYSIS

In this section, we consider the performance of the
CG-AMF detector in terms of its output SINR. Since in
adaptive detection, the output SINR is a random variable,
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TABLE I
Conjugate-Gradient AMF Detector

Input:
M × M sample covariance matrix R̂
M × 1 signal vector s

Output:
M × 1 CG-AMF weight vectors ŵk, k = 1, 2, . . .

Algorithm:
1) Initialization:

Initial conjugate-direction vector: d̂1 = s
Initial gradient vector: γ̂1 = −s
Initial weight vector: ŵ0 = 0

2) Iterations:
for k = 1, 2, . . ., till convergence (k ≤ M)
do

a) Update the step size α̂k :

α̂k = ‖γ̂k‖2

d̂H
k

R̂d̂k
(9)

b) Update the solution ŵk :
ŵk = ŵk−1 + α̂k d̂k (10)

c) Update the gradient vector γ̂k+1:
γ̂k+1 = γ̂k + α̂kR̂d̂k (11)

d) Update the conjugate-direction vector d̂k+1:

d̂k+1 = d̂k
‖γ̂k+1‖2

‖γ̂k‖2 − γ̂k+1 (12)

end for

it is necessary to consider the statistical distribution of the
output SINR.

A. Output SINR of the CG-AMF Detector

The CG-AMF weight vector ŵk after k iterations is in
the k-dimensional Krylov subspace K(R̂, s, k). The
normalized gradient vectors q̂1, q̂2, · · · , q̂k, where
q̂i = γ̂i

‖γ̂i‖2
, 1 ≤ i ≤ k, also span the same k-dimensional

Krylov subspace:

K(R̂, s, k) = span{q̂1, q̂2, · · · , q̂k}. (13)

Therefore, by defining the matrix of residuals Q̂k ∈ C
M×k

as

Q̂k = [
q̂1 q̂2 · · · q̂k

]
(14)

ŵk can be compactly expressed as

ŵk = Q̂k â (15)

where â = [ â1 â2 · · · âk ]T contains the coefficients which
can be determined as follows.

Specifically, ŵk can be considered as the
R̂−orthogonal projection of ŵ = R̂−1s onto the Krylov
subspace K(R̂, s, k) [22], which means that the R̂−norm
of the approximation error is minimized over all vectors in
the Krylov subspace or, equivalently, the column space of
Q̂k. That is,

‖ŵ − ŵk‖R̂ = min
â

‖ŵ − ŵk‖R̂

= min
â

∥∥∥R̂
1
2 ŵ − R̂

1
2 ŵk

∥∥∥ (16)

where the R̂−norm is defined as ‖ · ‖R̂ = ‖R̂
1
2 (·)‖. Denote

by ε the approximation error

ε
�= R̂

1
2 ŵ − R̂

1
2 ŵk = R̂− 1

2 s − R̂
1
2 Q̂k â. (17)

Since R̂
1
2 ŵk is the orthogonal projection of the vector

R̂
1
2 ŵ onto R̂

1
2 K(R̂, s, k), we have ε⊥R̂

1
2 Q̂k, namely,(

R̂− 1
2 s − R̂

1
2 Q̂k â

)H

R̂
1
2 Q̂k = 0 (18)

from which we obtain

â =
(

Q̂H
k R̂Q̂k

)−1
Q̂H

k s. (19)

Therefore, the CG-AMF weight vector can be written as

ŵk = Q̂k

(
Q̂H

k R̂Q̂k

)−1
Q̂H

k s (20)

where Q̂k plays the same role as the data-dependent
reduced-rank transform matrix T in Section II.

For the full-rank AMF detector, the output SINR is
given by

ρ
�= |α|2 ∣∣ŵH s

∣∣2

ŵH Rŵ
. (21)

Replacing ŵ in (21) by ŵk of (20), we have the output
SINR of the CG-AMF detector with k CG iterations as

ρk = |α|2 ∣∣sH Q̂k

(
Q̂H

k R̂Q̂k

)−1
Q̂H

k s
∣∣2

sH Q̂k

(
Q̂H

k R̂Q̂k

)−1
Q̂H

k RQ̂k

(
Q̂H

k R̂Q̂k

)−1
Q̂H

k s
. (22)

B. Low-Rank Approximation

Henceforth, we consider the case when the disturbance
covariance matrix has some low-rank structure.
Specifically, we assume that R has the following structure:

R = Ri + σ 2
n I (23)

where Ri is a rank-r (r < M) positive semidefinite matrix
and I is an identify matrix. The above structure of the
covariance matrix is frequently encountered in practice.
For example, in airborne radar applications, R may consist
of two components, namely a low-rank Ri due to the
presence of clutter and jamming and a scaled identity σ 2

n I
due to the presence of a thermal noise with variance σ 2

n .

The rank r is typically much smaller than the joint
spatial-temporal dimension M = JN where J is the number
of array elements and N is the number of pulses.
Specifically, if the disturbance is primarily due to ground
clutter and thermal noise, then according to Brennan’s rule
[23], the rank of the covariance matrix for the
full-dimensional MF is approximately

r ≈ �J + (N − 1)β� (24)

where β = 2vgTr/d, vg is the platform velocity, Tr is the
pulse repetition period, d is the antenna element spacing,
and �·� rounds a real-valued number towards infinity.
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In airborne radar detection, the clutter is often the
dominating factor compared with the noise. Let λ(R) =
{λ1, . . ., λM} denote the spectrum of R with the
eigenvalues in descending order: λ1 ≥ · · · ≥ λr

� λr+1 = · · · = λM = σ 2
n , where the first r dominant

eigenvalues are due to the clutter while the rest are due to
the noise. Similarly, let λ(R̂) = {λ̂1, · · · , λ̂M} denote the
spectrum of the sample covariance matrix R̂ with
descending order: λ̂1 ≥ · · · ≥ λ̂r � λ̂r+1 ≥ · · · ≥ λ̂M. For
a sufficiently large L, the number of training signals [cf.
(4)], the eigenvalues of R̂, like R, are clustered with r
dominant ones and the rest close to the noise variance σ 2

n .

Our goal here is to obtain a useful approximation of
the output SINR (22) of the CG-AFM detector for
analysis, when the covariance matrix is low rank and the
clutter is dominating. Our approach is based on a
connection of the CG iterations and the Lanczos
tridiagonalization. Specifically, the normalized gradient
vectors q̂i in Q̂k are also called Lanczos vectors which
tridiagonalize R̂ [22, 24–26],

Q̂H
k R̂Q̂k = T̂k (25)

where T̂k is a tridiagonal matrix. Consider the eigenvalue
decomposition of T̂k ∈ C

k×k

T̂k = Û�̂ÛH (26)

where the diagonal matrix �̂ consists of the k eigenvalues
of T̂k in descending order: θ̂1 ≥ θ̂2 ≥ · · · ≥ θ̂k, and the
unitary matrix Û = [ û1 û2 · · · ûk ] contains the
corresponding eigenvectors. Based on (26) and the
Lanczos decomposition (25), we can diagonalize R̂ as

P̂H R̂P̂ = �̂ (27)

in which the column orthogonal matrix
P̂ = Q̂kÛ = [ p̂1 p̂2 · · · p̂k] contains the Ritz vectors of R̂,

and θ̂i are the Ritz values of R̂ or the “Lanczos estimates”
of the eigenvalues of R̂. The Ritz values are known to
converge rapidly (with respect to k) to the extremal
eigenvalues, i.e., eigenvalues at the edges of the spectrum
λ(R̂) [22, 27–29]. For the considered case, the spectrum
λ(R̂) has two clustered groups. One contains the M – r
noise eigenvalues, which are uniformly spread around the
noise variance σ 2

n , and the one contains the r clutter
eigenvalues, which are significantly larger and may be
considered as “outliers” compared with the noise
eigenvalues. For such a case, the Ritz values are known to
converge to the outlier eigenvalues first [30]. In particular,
under the condition k ≤ r + 1, where k denotes the
number of CG iterations, θ̂k converges to the smallest
(i.e., extremal) eigenvalue λ̂M, θ̂1 converges to the largest
(i.e., extremal) λ̂1, whereas each of the k – 2 Ritz values
{θ̂2, · · · , θ̂k−1} converges to one of the outlier eigenvalues
in {λ̂2, · · · , λ̂r}. The rapid convergence of the Ritz values
implies that with a few iterations, we have

θ̂1 ≥ θ̂2 ≥ · · · ≥ θ̂k−1 � θ̂k. Therefore, we have

(Q̂H
k R̂Q̂k)−1 = T̂−1

k = Û�̂
−1

ÛH

=
k∑

i=1

ûi θ̂
−1
i ûH

i ≈ ûkθ̂
−1
k ûH

k . (28)

It follows that the output SINR (22) of the CG-AMF
detector can be simplified as

ρk ≈ |α|2 ∣∣sH Q̂kûkθ̂
−1
k ûH

k Q̂H
k s

∣∣2

sH Q̂kûkθ̂
−1
k ûH

k Q̂H
k RQ̂kûkθ̂

−1
k ûH

k Q̂H
k s

= |α|2 p̂H
k ssH p̂k

p̂H
k Rp̂k

(29)

where p̂k = Q̂kûk is the Ritz vector corresponding to the
minimum Ritz value of R̂.

C. Statistical Analysis

The output SINR ρk is a random variable. To
understand its statistical behavior, we derive its pdf by
using (29). Our approach is similar to standard subspace
perturbation analysis, e.g., as in [31], but we have to cater
to the particular structure of (29) which involves CG
iterations and Lanczos transform. To begin with, we
consider the following eigendecompositions:

Tk = QH
k RQk = U�UH (30)

T̂k = Q̂H
k R̂Q̂k = Û�̂ÛH (31)

and

T̃k = QH
k R̂Qk = Ũ�̃ŨH (32)

where Qk is the Lanczos transform matrix obtained from
the true covariance matrix R, the diagonal matrices
� = diag[ θ1 θ2 · · · θk ], �̂ = diag[ θ̂1 θ̂2 · · · θ̂k] and
�̃ = diag[ θ̃1 θ̃2 · · · θ̃k] contain the k eigenvalues of
Tk, T̂k , and T̃k in descending order, and finally the unitary
matrices U, Û, and Ũ contain the corresponding
eigenvectors of Tk, T̂k , and T̃k, respectively.

Note that both the numerator and denominator of (29)
involve a quadratic form of the Ritz vector p̂k , which
consists of a data-dependent Lanczos transform matrix Q̂k

and a data-dependent eigenvector ûk and, therefore, is
rather complicated. To simplify the problem, we consider
the approximation p̂k ≈ Qkũk with ũk denoting the
eigenvector corresponding to the minimum eigenvalue of
T̃k. This leads to

ρk ≈ |α|2 ũH
k QH

k ssH Qkũk

ũH
k QH

k RQkũk

= |α|2 ũH
k s1sH

1 ũk

ũH
k Tkũk

(33)

where s1 = QH
k s is the Lanczos transformed steering

vector.
Next, we represent ũk in terms of the subspace of Tk.

Define the k × k matrix

�̄
�= UH T̃kU (34)
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which is in general complex-valued and nondiagonal. It
can be considered a perturbed version of the diagonal �.
Let us define the perturbation matrix

H �=
√

L(�̄ − �). (35)

From (32) and (34), we have

�̄ = UH Ũ�̄ŨH U = Y�̃Y
H

(36)

where the unitary matrix Y �= UH Ũ is the product of two

unitary matrices: UH and Ũ. Let Z �= √
L (Y − Ik) and

then

Y = Ik + 1√
L

Z. (37)

Substituting (37) back into (36), we have

�̄ =
(

Ik + 1√
L

Z
)

�̃

(
Ik + 1√

L
Z

)H

=
(

Ik + 1√
L

Z
) (

� + 1√
L

D
) (

Ik + 1√
L

Z
)H

= � + 1√
L

(
Z + D + ZH

) + M (38)

where D �= √
L

(
�̃ − �

)
and

M �= 1
L

(
ZD + DZH + Z�ZH

) + 1√
L3

ZDZH . Since
M ∼ O(1/L) which contains quantities that are in the order
of 1/L and higher order terms, it can be neglected for large
L. Thus we have

�̄ ≈ � + 1√
L

(
Z� + D + �ZH

)
. (39)

It follows from (39) and (35) that

H ≈ Z� + D + �ZH . (40)

Henceforth, we assume k > 1. The case of k = 1 is of little
interest, since the detector reduces to a nonadaptive
detector whose weight vector is s. For k > 1, we partition
the k × k matrix of eigenvalues � as

� =
[

�1 0
0 θk

]
(41)

where θ k is the minimum eigenvalue. Similarly, Z can be
partitioned as

Z =
[

Z1,1 z1,2

z2,1 z2,2

]
(42)

where Z1,1 ∈ C
(k−1)×(k−1), z1,2 ∈ C

(k−1)×1,

z2,1 ∈ C
1×(k−1), and z2,2 is a scalar. Let the matrix H be

partitioned in a similar way. It is easy to see from
(40)–(42) and the fact that D = √

L
(
�̃ − �

)
is a diagonal

matrix that

h1,2 = θkz1,2 + �1zH
2,1. (43)

The above expression can be further simplified by using
the following result.

LEMMA 1 Within the approximation of O(1/L),

z1,2 ≈ −zH
2,1. (44)

PROOF See Appendix A.
Applying the relationship (44) to (43), we obtain that

z1,2 = (θkIk−1 − �1)−1 h1,2. (45)

The next result establishes the asymptotic distribution of
z1,2.

LEMMA 2 The limiting distribution of the (k – 1) × 1
vector z1,2 = [ z1,k z2,k · · · zk−1,k ]T is normal with zero
mean and

E[zm,kz
∗
n,k] =

{
θkθm

(θk−θm)2 , m = n

0, m �= n
(46)

where m, n = 1, 2, ···, k – 1.

PROOF See Appendix B.
Partition the eigenvector matrix of Tk as U = [U1 uk],

where uk ∈ C
k×1 is the eigenvector corresponding to the

minimum eigenvalue θ k of Tk, and U1 ∈ C
k×(k−1) contains

the other eigenvectors. Note that U1 and uk are orthogonal,
i.e., UH

1 uk = 0. Similarly, let Ũ = [ Ũ1 ũk ]. Recall
Ũ = UY and (37). It follows that

ũk = U1y1,2 + uky2,2
(47)

= 1√
L

U1z1,2 + uk

(
1 + z2,2√

L

)
where y1,2 and y2,2 are the partitioning components of Y.

We now consider the numerator of the output SINR
(33). Expanding ũk using (47), we can write the numerator
as

|α|2 ũH
k s1sH

1 ũk = |α|2 sH
1

( 2√
L

� {
U1z1,2uH

k

}
+ ukuH

k

)
s1 + O(1/L). (48)

Suppose that the interference is mainly located in the
sidelobe directions (i.e., no major mainlobe interference).
Then, the projection of the transformed steering vector s1

to the interference subspace spanned by U1 is small
compared with the projection to the noise subspace
spanned by uk. That is, |uH

k s1|2 � sH
1 U1z1,2uH

k s1. This
leads to the following approximation for the numerator of
ρk:

|α|2 ũH
k s1sH

1 ũk ≈ |α|2 uH
k s1sH

1 uk. (49)

Similarly, the denominator of ρk can be simplified by
using (47):

ũH
k Tkũk =

[
1√
L

U1z1,2 + uk

(
1 + z2,2√

L

)]H

Tk[
1√
L

U1z1,2 + uk

(
1 + z2,2√

L

)]
= 1

L
zH

1,2�1z1,2 + θk

(
1 + z2,2√

L

)∗ (
1 + z2,2√

L

)
(50)
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where the second equality is obtained by using the
eigenpair relations: UH

1 TkU1 = �1, uH
k Tkuk = θk and the

orthogonality relation: UH
1 uk = 0. Since

(1 + z2,2/
√

L)∗(1 + z2,2/
√

L) ≈ 1 [see (64) in Appendix
A], the denominator reduces to

ũH
k Tkũk ≈ 1

L
zH

1,2�1z1,2 + θk. (51)

Finally, the output SINR after applying (49) and (51) is
given by

ρk ≈ L |α|2 uH
k s1sH

1 uk

zH
1,2�1z1,2 + Lθk

. (52)

Define

μ
�= zH

1,2�1z1,2 =
k−1∑
m=1

θmz∗
m,kzm,k. (53)

From lemma 2, {zm,k} are independent zero-mean
Gaussian random variables. Therefore, μ is a weighted
complex central Chi-square random variable. The output
SINR ρk is a one-to-one function of μ with a distribution
summarized in the following result.

THEOREM 1 Under the condition that the covariance
matrix R has a rank-r component as specified in (23), the
asymptotic pdf of the output SINR ρk of the CG-AMF
detector for 1 < k ≤ r + 1 is given by

f (ρk) =
κ

(
κ

ρkθk
− L

)k−2
exp

(
L − κ

ρkθk

)
ρ2

k θk�(k − 1)
,

(54)
0 < ρk ≤ κ

θkL

where κ = L |α|2 |u1,k|2s2 with u1,k denoting the first
element of the eigenvector uk.

PROOF See Appendix C.

Following theorem 1, it is shown in Appendix D that
the statistical mean of the output SINR ρk is given by

E [ρk] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
κeLE1(L)

θk
, k = 2∑k1−1

j1=0

∑k1−j1−1
j2=0

κ(−1)j1 Lj1+j2

θk(k1−j1)j1!j2!

+ κeL(−L)k1 E1(L)
θkk1! , k > 2.

(55)

where k1 = k – 2 and the exponential integral E1(L) is
defined as

E1(L)
�=

∫ ∞

L

v−1e−vdv. (56)

Some comments on the calculation of E1(L) are in order.
The series representation of the exponential integral is
given by [32]

E1(L) = −a − ln L +
∞∑

i1=0

(−1)i1+1Li1

i1i1!
(57)

where a is the Euler constant. A truncated version of this
formula can be used to approximate E1(L) with good
accuracy for small L. For large L, a better approximation
is [33]

E1(L) ≈ e−L

L

I2−1∑
i2=0

i2!

(−L)i2
(58)

where I2 is an integer that is used to control the precision
of E1(L). It has an error of order O(I2!L−I2 ) and is only
valid for large values of L. Our simulation results in
Section V use I2 = 20 for training size L > 64, which
yields good accuracy.

It would be useful to use (55) to find an estimate of the
optimum iteration number k that attains the peak output
SINR. Note that (55) cannot be computed in practice since
it depends on θ k, namely the smallest eigenvlaue of the
transformed true covariance matrix Tk = QH

k RQk as
defined in (30), which is generally unknown in adaptive
detection. A reasonable approximation is to replace θ k by
θ̂k which is computed from the sample covariance matrix,
i.e., θ̂k is the smallest eigenvalue of T̂k = Q̂H

k R̂Q̂k. With
this substitution, we can use (55) to find out approximately
how the output SINR ρk varies with the number of CG
iterations k, and identify a suitable k.

V. NUMERICAL RESULTS

Computer simulation is employed to verify the
analytical results presented in the previous section. In
addition, we compare the proposed CG-AMF detector and
several conventional reduced-rank STAP detectors
including the EIG [9], CSM [10], and DCT based
detectors. The simulation uses a normalized spatial
frequency fs = 0.3 and a normalized Doppler frequency
fd = 0.3 for the target. The performance is assessed at
different interference/noise levels specified by the
reference SINR defined by

SINR = |α|2 sH R−1s (59)

which coincides with the output SINR obtained by the
clairvoyant MF, which requires knowledge of R. For
testing we use the KASSPER data set [34], which is a
simulated data set that includes practical airborne radar
parameters and issues found in a real-world clutter
environment. The radar platform considered in this data
set has 11 horizontal antenna elements. For simplicity, we
use only the outputs of the first J = 4 channels for
processing. The number of pulses is N = 16.

For the CG-AMF detector, we verify our analysis in
Section IV with computer simulation. Note that our
analysis is based on the assumption that the covariance
matrix R has a rank-r component as in (23). In many
real-world scenarios including the KASSPER data,
although R usually does not have the exact low-rank
structure, (23) is a useful approximation of R, in which the
rank-r component Ri contains the effect of dominant
interference or clutter sources that have to be effectively
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Fig. 1. Output SINR of CG-AMF with rank k = 11 versus training
size L.

Fig. 2. Output SINR versus detection rank k with L = 64 training
signals.

mitigated for detection. We assess the performance of the
CG-AMF detector and verify our analysis in such cases.

We first examine the accuracy of our analysis. Fig. 1
shows the mean of the output SINR versus the training
size for the CG-AMF detector with rank k = 11, and
reference SINR = 20 dB. We compare the asymptotic
mean output SINR (55) with the output SINR computed
by Monte Carlo simulation. When L > 64, we use (55)
along with (58) to calculate the mean output SINR, with I2

being set as 20. The variable-precision arithmetic (VPA)
function in MATLAB is employed to ensure the
calculation accuracy in this case. It can be seen that as the
training size increased, the theoretical results converged
rapidly to the numerical results. For instance, when the
training size is 128, the gap between asymptotic analysis
and simulation is less than 0.15 dB.

The size of the training data used in Figs. 2 to 4 is L =
JN = 64. Fig. 2 depicts the output SINR of the various
reduced-rank detectors versus the rank used in detection
when the reference SINR = 20 dB. The theoretical results

Fig. 3. Probability of detection for clairvoyant MF, fully adaptive AMF,
and reduced-rank CG-AMF detectors with L = 64 and Pf = 10−2.

are computed based on (55). The CG iteration yields an
estimate of the rank of the Ri component in (23) to be
r = 11. Note that our analysis is valid up to k = r + 1,
which is why the analytical result is shown only up to k =
12. Meanwhile, It is seen that our analysis is able to
predict the optimal rank of the CG-AMF detector, which
yields the highest output SINR. The gap between the
analysis and the simulation is due to the relative small L,
which does not meet the asymptotic condition assumed in
our analysis. Meanwhile, it should be noted that the
DCT-based reduced-rank detector exhibits significant
performance degradation compared with the other three
data-dependent reduced-rank detectors at low rank. As for
the data-dependent methods, they all have a similar
maximum SINR, and the CG-AMF detector reaches its
maximum output SINR at k = 11. Since both the EIG and
CSM require a full eigendecomposition which has a
complexity of O(J3N3), while the complexity of each CG
iteration is just O(J2N2), the CG-AMF scheme is
computationally more efficient than the EIG and CSM.

The probability of detection of the MF, AMF, and
CG-AMF detectors with 7, 11, 24, and 64 CG iterations,
respectively, are shown in Fig. 3 as a function of the
reference SINR. The probability of false alarm is set as
Pf = 0.01. It can be seen that the optimal CG-AMF
detector is obtained with 11 CG iterations as predicted in
Fig. 2. Additional iterations should not be pursued since it
leads to deteriorated detection performance and higher
complexity. Normally, with full iterations k = 64, the
CG-AMF should converge to the AMF detector; there is a
gap between the two, since with L = JN = 64 as
considered here, the sample covariance matrix R̂ is poorly
conditioned, which causes some numerical errors.

Fig. 4 presents the performance comparisons among
the CG, EIG, and CSM based reduced-rank detectors with
different ranks. It shows that by setting the optimal rank
for each detector, namely, k = 11 for CG-AMF, k = 13 for
EIG, and k = 12 for CSM, respectively, these detectors
yield similar detection performance. When we reduce the

CHEN ET AL.: CONJUGATE GRADIENT ADAPTIVE MATCHED FILTER 185



Fig. 4. Probability of detection forreduced-rank EIG, CSM, and
CG-AMF detectors with L = 64 and Pf = 10−2.

Fig. 5. Output SINR versus detection rank k with L = 128 training
signals.

rank for EIG and CSM to k = 11, their performance
degrades significantly.

In Fig. 5, the training size is increased to L = 2 NJ =
128, which leads to improvements on the output SINR of
all four reduced-rank methods, and the difference between
the analysis and the simulation result of the CG-AMF
detector decreases. Interestingly, the optimal rank of the
computationally efficient CG-AMF detector, which yields
the maximum output SINR, is smaller than that of the
CSM and EIG based detectors.

We also increase the size of training data to L = 2 JN
for Fig. 6. It shows that the CG-AMF detector with the
optimal rank k = 12 offers the best detection performance.
Note that the performance of the CG-AMF detector with
full rank k = 64 is identical to that of the AMF detector.

Finally, we examine the performance of the CG-AMF
detector with varying normalized target Doppler
frequency fd. Fig. 7 shows the angle-Doppler power
spectrum of the KASSPER data at range bin 503, which
shows a clutter hot spot around 0.1 Hz of the Doppler

Fig. 6. Probability of detection for reduced-rank EIG, CSM, and
CG-AMF detectors with L = 128 and Pf = 10−2.

Fig. 7. Angle-Doppler spectrum of KASSPER data at range bin 503.

frequency. Detection performance degradation is expected
when the target is within the hot-spot region, although
some detectors may have a stronger capability to detect
endo-clutter targets than others. To see this, we consider a
target located at 190 deg in azimuth angle but with varying
fd. Fig. 8 depicts the SINR loss of various detectors
measured relative to the peak output SINR of the optimum
MF detector. It is seen that all detectors, including the MF,
experience a higher SINR loss as the target is in the
hot-spot region. However, the CG-AMF detector with
k = 11, which is the optimum rank from earlier results,
yields overall the best performance and is closest to the
MF detector among all adaptive reduced-rank detectors
considered.

VI. CONCLUSIONS

We considered an adaptive reduced-rank approach by
employing the iterative CG algorithm and the AMF. The
resulting reduced-rank CG-AMF detector is a projection
of the full-rank AMF to a Krylov subspace with a
dimension determined by the number of CG iterations.
Asymptotic analysis of the output SINR of the CG-AMF
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Fig. 8. SINR loss versus normalized Doppler frequency with L = 64
training signals.

detector was carried out by exploiting a relation between
the CG algorithm and the Lanczos method. Our results
show that, in the training limited cases, not only is the
CG-AMF detector computationally more efficient (thanks
to the efficiency of the CG), but it also often enjoys the
benefit of reaching the peak output SINR with a lower
rank, when compared with several other popular
reduced-rank solutions.

APPENDIX A. PROOF OF LEMMA 1

Partition Y similarly as Z in (42):

Y =
[

Y1,1 y1,2

y2,1 y2,2

]
. (60)

It follows from (37) that

Y =
[

Ik−1 + 1√
L

Z1,1
1√
L

z1,2

1√
L

z2,1 1 + z2,2√
L

]
. (61)

Since Y is unitary, i.e., YHY = Ik, we have

1 = y2,1yH
2,1 + y2,2y

H
2,2

= 1

L
z2,1zH

1,2 +
(

1 + z2,2√
L

) (
1 + z2,2√

L

)∗
(62)

and

0 = Y1,1yH
2,1 + y1,2y

H
2,2

= 1√
L

(
z1,2 + zH

2,1

) + 1

L

(
Z1,1zH

2,1 + z1,2 zH
2,2

)
. (63)

By neglecting the terms in the order of O(1/L), we have(
1 + z2,2√

L

) (
1 + z2,2√

L

)∗
≈ 1 (64)

and
1√
L

(
z1,2 + zH

2,1

) ≈ 0. (65)

Then, (44) follows immediately from (65).

APPENDIX B. PROOF OF LEMMA 2

Let h1,2 = [ h1,k h2,k · · · hk−1,k ]T . From (45), we have

zm,k = hm,k

θk − θm

m = 1, 2, · · · , k − 1. (66)

Thus, we have

E[zm,kz
∗
n,k] = E[hm,kh

∗
n,k]

(θk − θm)2
. (67)

Using (30), (32), (34), and (35), we can rewrite the
eigenvalue perturbation matrix as

H =
√

L(�̄ − �) =
√

L(UH T̃kU − UH TkU)

= (
UQk

)H
BQkU �= CH BC (68)

where B = √
L(R̂ − R). It was shown in [35] and [31]

that the asymptotic distribution of B is Gaussian with zero
mean and covariance:

E[bi,j b
∗
m,n] = ri,mr∗

j,n (69)

where bi,j and ri,m are the elements of B and R,
respectively.

Since H is a linear transform of B, it follows that H is
also asymptotically Gaussian with zero mean.
Furthermore, it is clear from (66) that zm,k is a Gaussian
random variable with zero mean. Let
b �= vec(B) ∈ C

M2×1, where vec(.) denotes the operation
of stacking the columns of a matrix on top of one another.
An equivalent expression of (69) is given as

E[bbH ] = R∗ ⊗ R. (70)

Applying the matrix Kronecker product result [36]

vec(ABC) = (CT ⊗ A)vec(B) (71)

we have

h �= vec(H) = (
CT ⊗ CH

)
b. (72)

Therefore,

E[hhH ] = (
CT ⊗ CH

)
E[bbH ]

(
CT ⊗ CH

)H

= (
CT ⊗ CH

) (
R∗ ⊗ R

) (
CT ⊗ CH

)H

= (
CH RC

)∗ ⊗ (
CH RC

) = �∗ ⊗ � (73)

which indicates that E[hi,jh
∗
m,n] = βi,mβ∗

j,n, where β i,m

are the elements of �. Moreover, as � is a diagonal matrix
containing the eigenvalues of Tk, we have β i,m = θ iδi,m

and β j,n = θ jδj,n, where δi,n denotes the Kronecker delta.
Therefore,

E[hm,kh
∗
n,k] = βm,nβ

∗
k,k = θkθmδm,n. (74)

Substituting (74) in (67) leads to (46). This completes the
proof.
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APPENDIX C. PROOF OF THEOREM 1

Since θ k � θm, (46) can be approximated as

E
[
zm,kz

∗
m,k

] ≈ θk

θm

. (75)

Let vm =
√

θm

θk
zm,k, m = 1, · · · , k − 1. These new

variables are independent, Gaussian random variables
with zero mean and unit variance. Then we can rewrite μ

as defined in (53) in terms of vm as

μ = θk

k−1∑
m=1

vmv∗
m. (76)

Thus, ζ = μ / θ k is a complex central Chi-squared random
variable with k – 1 DoFs [37], i.e., ζ ∼ χ2

k−1, and

fζ (ζ ) = ζ k−2e−ζ

� (k − 1)
, ζ ≥ 0. (77)

The output SINR in (52) can be expressed in terms of ζ by

ρk = g(ζ ) = κ

(ζ + L)θk

, ζ ≥ 0 (78)

where κ = L |α|2 uH
k s1sH

1 uk. Recall that s1 = QH
k s and the

first column of Qk is a normalized s with unit norm (i.e.,
normalized γ̂1 in Table I), s1 is a k × 1 vector with the
first element given by ‖s‖2 , while all other k-1 elements
are zeros. Therefore, κ can be further simplified as
κ = L |α|2 |u1,k|2 ‖s‖2 .

Since the function g(ζ ) is monotonic with the inverse
function:

g−1(ρk) = ζ = κ

ρkθk

− L, 0 < ρk ≤ κ

θkL
. (79)

The pdf of ρk can be calculated in terms of the following
equation:

fρk
(ρk) =

∣∣∣∣dg−1(ρk)

dρk

∣∣∣∣ fζ

(
g−1(ρk)

)
, 0 < ρk ≤ κ

θkL
.

(80)
It follows that the pdf of the SINR is given by

f (ρk) =
κ

(
κ

ρkθk
− L

)k−2
exp

(
L − κ

ρkθk

)
ρ2

k θk�(k − 1)
,

(81)
0 < ρk ≤ κ

θkL
.

APPENDIX D. MEAN OF THE OUTPUT SINR

The mean of the output SINR can be computed by
using (77) and (78):

E[ρk] =
∫ ∞

0
g(ζ )fζ (ζ )dζ = κeL

θkk1!

∫ ∞

L

(v − L)k1e−v

v
dv

(82)
where k1 = k – 2. For k = 2, (82) reduces to

E[ρ2] = κeL

θ2
E1(L) (83)

where E1(L) is the exponential integral defined in (56). For
k > 2, (82) can be computed as follows:

E[ρk] = κeL

θkk1!

∫ ∞

L

k1∑
j1=0

(
k1

j1

)
vk1−1−j1 (−L)j1e−vdv

= κeL

θkk1!

k1−1∑
j1=0

(−L)j1

(
k1

j1

)
�(k1 − j1, L)

+ κeL

θkk1!
(−L)k1E1(L) (84)

where �(k1 – j1, L) denotes the incomplete gamma

function and is defined as �(k1 − j1, L)
�= ∫ ∞

L

vk1−j1−1e−vdv. Alternatively, �(k1 – j1, L) can be
expressed as

�(k1 − j1, L) = (k1 − j1 − 1)!e−L

k1−j1−1∑
j2=0

Lj2

j2!
. (85)

Substituting (85) into (82) yields the closed-form solution
in (55).
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