
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 108 (2015) 389–399
http://d
0165-16

☆ This
for rese
Contrac

n Corr
E-m

jun_liu_
braham
journal homepage: www.elsevier.com/locate/sigpro
Signal detection with noisy reference for passive sensing$

Guolong Cui a, Jun Liu a, Hongbin Li a,n, Braham Himed b

a Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
b AFRL/RYMD, 2241 Avionics Circle, Bldg 620, Dayton, OH 45433, USA
a r t i c l e i n f o

Article history:
Received 30 April 2014
Received in revised form
6 August 2014
Accepted 25 September 2014
Available online 8 October 2014

Keywords:
Cross-correlation detector
Generalized likelihood ratio test (GLRT)
Matched filter detector
Reference signal
x.doi.org/10.1016/j.sigpro.2014.09.034
84/& 2014 Elsevier B.V. All rights reserved.

work was supported in part by a subcontra
arch sponsored by the Air Force Research Lab
t FA8650-08-D-1303.
esponding author.
ail addresses: guolongcui@gmail.com (G. Cui
math@hotmail.com (J. Liu), Hongbin.Li@stev
.himed@us.af.mil (B. Himed).
a b s t r a c t

In many detection applications, the signal to be detected, referred to as target signal, is
not directly available. A reference channel (RC) is often deployed to collect a noise-
contaminated version of the target signal to serve as a reference, which is then used to
assist detecting the presence/absence of the target signal in a test channel (TC). A standard
approach is to cross-correlate (CC) the signals received in the TC and RC, respectively.
When the signal-to-noise ratio (SNR) in the RC is high, the CC behaves like the optimum
matched filter. However, when the SNR in the RC is low, the CC detector suffers significant
degradation. This paper considers the above detection problem with a noisy reference
signal. We propose four detectors based on the generalized likelihood ratio test principle,
by treating the unknown target signal to be deterministic or stochastic and under
conditions whether the noise variance is known or unknown. Our results demonstrate
that the noise in the RC has an impact on the achievable detection performance. However,
when the reference signal is noisy, three of the proposed detectors offer substantial
improvements in detection performance over the CC detector.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Detection of a signal in noise has been a topic of long-
standing interest in sensing and communications. If the
signal to be detected is perfectly known and the noise is
stationary with zero-mean and white power spectral
density, the optimal detector is the matched filter (MF)
which maximizes the output signal-to-noise ratio (SNR)
[1]. However, the signal may not be known in many
practical applications, such as underwater acoustics [2–5],
seismology [6–9], neurophysiology [10,11], and passive
radar [12–16]. Consider for example passive radar. Unlike
ct with Dynetics, Inc.
oratory (AFRL) under

),
ens.edu (H. Li),
its active counterpart, a passive radar does not transmit a
known waveform and then listen for echos. Instead, it
utilizes commercial RF signals from TV stations or cellular
towers as sources to illuminate potential targets of interest.
The RF source waveforms are generally unknown to the
passive radar receiver.

A conventional approach to the unknown signal detec-
tion problem is to deploy a reference channel (RC) for
collecting the unknown transmitted signal to serve as a
reference. In passive radar, a reference signal can be
obtained by using a directive antenna pointing toward
the commercial RF source with a known location. Given
the availability of the reference signal, a natural solution is
to mimic the MF processing, i.e., cross-correlate (CC) the
reference and the test signal observed in a test channel
(TC). Nevertheless, the reference signal is inevitably con-
taminated by noise. Under the condition that the SNR in
the RC is high, the noise is negligible and the CC detector
behaves like the MF. However, the detection performance
of the CC detector would be significantly degraded, when
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the SNR in the RC is low. In such cases, improved detection
performance is possible, if the noise in the reference signal
is properly taken into account. In this paper, we consider
signal detection with a noisy reference.

Specifically, the detection problem in the presence of a
noisy reference signal can be formulated as the following
binary hypothesis test:

H0:
xr ¼ βsþv;
xt ¼w;

(
ð1aÞ

H1:
xr ¼ βsþv;
xt ¼ αsþw;

(
ð1bÞ

where xr and xt denote N � 1 vectors composed of com-
plex (baseband equivalent) samples received in the RC and
TC, respectively; s is an N � 1 vector containing samples of
the unknown transmitted signal waveform; α and β are
unknown scaling parameters accounting for the channel
propagation effects; w and v are noise vectors in the TC
and RC, respectively, which are modeled as independent
circular1 complex Gaussian vectors with zero mean and
covariance matrix ηIN , where η denotes the noise power
and IN stands for an N-dimensional identity matrix. The
problem of interest is to decide between hypotheses H1

and H0 given observations of xr and xt made over the RC
and TC channels.

We employ two models to describe the unknown trans-
mitted signal s, namely, a deterministic model where s is
deterministic but unknown, and a stochastic model inwhich s
is a complex Gaussian vector. The stochastic model is suitable
for signal sources involving multiplexing techniques, such as
the orthogonal frequency division multiplexing (OFDM) as
used in digital audio broadcasting [17], which use multiple
random information streams to form a composite commu-
nication signal that can be adequately modeled as a Gaussian
process due to the central limit theorem (CLT).

In this paper, we develop four generalized likelihood ratio
test (GLRT) detectors for bothmodels under the assumption of
known and unknown noise power. In particular, cyclic itera-
tion algorithms are proposed to obtain the maximum like-
lihood estimates (MLEs) of unknown parameters. Numerical
simulations are presented to illustrate the detection perfor-
mance of these proposed detectors. It is shown that the
proposed GLRT detectors, except the one developed under
the assumption of unknown noise power in the stochastic
model, outperforms the CC detector, especially when the
noise in the RC is not negligible.

A comment on the model in (1) for passive sensing is now
in order. In passive radar, since the target location is unknown,
there is an unknown delay of the waveform s observed at the
TC relative to that observed at the RC. In practical sensing
scenarios, the delay is within a known interval (i.e., the target
is located within a range specified by a minimum and a
maximum detection distance), which is discretized into a
1 A circular complex random variable indicates that its real part and
imaginary part are independent and identically distributed random
variables.
number of small sub-intervals called range bins. The hypoth-
esis in (1) is tested on each bin one by one, whereby the RC
and TC observations are aligned according to the delay of the
tested range bin and detection is performed by using, e.g., any
detector discussed in this paper. Presumably, the test result
will be positive with a high probability only when the tested
range bin matches the true unknown delay. For simplicity
(and also as in the standard radar signal detection literature),
we assume that the delay alignment has already been
accomplished, and the observations in (1) have already been
delay compensated. Likewise, when detecting a moving
target, there is a Doppler uncertainty which can be handled
by discretizing the Doppler frequency into Doppler bins and
running the test on each Doppler bin one by one. It should be
noted that delay and Doppler uncertainties are present in
active radar as well, and they are often handled in a similar
manner there.

The remainder of the paper is organized as follows. In
Section 2, two GLRT-based detectors are devised under the
deterministic model. In Section 3, we design two GLRT-based
detectors under the stochastic model. In Section 4, comp-
uter simulations are offered. Finally, we provide concluding
remarks and possible future research tracks in Section 5.

Notation: Vectors (matrices) are denoted by boldface
lower (upper) case letters. Superscripts ð�ÞT , ð�Þn, and ð�Þ†
denote transpose, complex conjugate, and complex con-
jugate transpose, respectively. Ip stands for a p-dimen-
sional identity matrix. J � J is the Frobenius norm. j � j, ∠ð�Þ,
and Rð�Þ denote the modulus, the phase, and the real part
of a complex number, respectively. λmaxð�Þ and λminð�Þ
represent the largest eigenvalue and the smallest eigen-
value of an argument, respectively. detð�Þ denotes the
determinant operation. varð�Þ and Eð�Þ are the variance
and the statistical expectation, respectively. Prf�g denotes
the probability of a random variable.

2. Deterministic model based detectors

The Neyman–Pearson criterion is widely used for signal
detection, which enables us to obtain the maximum prob-
ability of detection while not allowing the probability of false
alarm to exceed a certain value [1]. According to the Neyman–
Pearson criterion, the optimum solution to the hypothesis
testing problem in (1) is obtained by comparing the ratio of
the likelihood of the received data under hypothesis over that
under hypothesis with an appropriate detection threshold, i.e.,

Λ xt ; xrð Þ ¼ f H1
ðxt ; xrÞ

f H0
ðxt ; xrÞ

≷
H1

H0

γ; ð2Þ

where f H0
ðxt ; xrÞ and f H1

ðxt ; xrÞ are the likelihood functions
under H0 and H1, respectively, and γ denotes the detection
threshold. Based on the Gaussian assumptions on v and w,
the probability density functions (PDFs) for deterministic s can
be written as

f H0
xt ; xrð Þ ¼ 1

π2Nη2N
exp �‖xr�βs‖2þ‖xt‖2

η

� �
; ð3Þ

and

f H1
xt ; xrð Þ ¼ 1

π2Nη2N
exp �‖xr�βs‖2þ‖xt�αs‖2

η

� �
; ð4Þ
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under H0 and H1, respectively. For notational simplicity, the
dependence of the PDFs f H0

ðxt ; xrÞ and f H1
ðxt ; xrÞ on

unknown parameters is suppressed. Similar notation will be
adopted throughout this paper.

Let us examine the unknown parameters in the detec-
tion problem. The channel parameters α and β and the
transmitted waveform s are generally unknown. However,
the noise variance η may or may not be known depending
on if a prior calibration/measurement is available. The
noise may include the receiver thermal noise which can be
easily measured [18], and/or the external noise which can
be estimated in a way similar to that in cognitive radio, i.e.,
by measuring the power level of a channel which is known
to be idle [19].

The LRT (2) cannot be implemented due to the presence of
unknown parameters. We consider the generalized LRT
(GLRT), which is equivalent to replacing the unknown para-
meters with their MLEs. In the following, we develop two
GLRT detectors with known and unknown η, by assuming
that α, β, and s are deterministic but unknown.

2.1. GLRT with known noise power η

First, we examine the case of known η. The GLRT
detector can be obtained as

maxfα;β;sg f H1
ðxt ; xrÞ

maxfβ;sg f H0
ðxt ; xrÞ

≷
H1

H0

γ1: ð5Þ

Taking the logarithm of (5) leads to

max
fα;β;sg

ℓ1�max
fβ;sg

ℓ0 ≷
H1

H0

ln γ1; ð6Þ

where ℓ1 ¼ ln f H1
and ℓ0 ¼ ln f H0

. As derived in Appendix
A, the MLEs of α and β conditioned on s under H1 are,
respectively,

α̂1 ¼
s†xt
s†s

and β̂1 ¼
s†xr
s†s

: ð7Þ

The MLE of s under H1 is the eigenvector corresponding to the
largest eigenvalue of the matrix F1 ¼ xrx

†
rþxtx

†
t . It should be

pointed out that there exists an ambiguity in the norm of the
vector s, due to the multiplicative relation between the
unknown α or β and s. Therefore, JsJ cannot be uniquely
determined. Nevertheless, this ambiguity does not affect the
GLRT. Substituting these MLEs into ℓ1 results in

max
fα;β;sg

ℓ1 ¼ �2N ln π�2N ln η

�
‖xt‖2þ‖xr‖2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‖xt‖2�‖xr‖2Þ2þ4jx†txrj2

q
2η

:

ð8Þ
In a similar way, the MLE of s under H0 is the

eigenvector corresponding to the largest eigenvalue of
the matrix F2 ¼ xrx

†
r . The MLE of β under H0 is the same

as that under H1. Taking these MLEs into ℓ0 yields

max
fβ;sg

ℓ0 ¼ �2N ln π�2N ln η�1
η
‖xt‖2: ð9Þ

Substituting (8) and (9) into (6), and after some
algebraic manipulations, the GLRT can be finally obtained
as

T1 ¼
1
η

‖xt‖2�‖xr‖2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‖xt‖2�‖xr‖2Þ2þ4jx†txrj2

q� �

≷
H1

H0

γ01; ð10Þ

where γ01 is a suitably modified version of the threshold in
(5). It is noted that the above detector is similar to the
detector recently introduced in [20].

2.2. GLRT with unknown noise power η

Consider the case of unknown η, where the GLRT
detector can be written as

maxfα;β;s;ηg f H1
ðxt ; xrÞ

maxfβ;s;ηg f H0
ðxt ; xrÞ

≷
H1

H0

γ2: ð11Þ

Taking the logarithm of (11) produces

max
fα;β;s;ηg

ℓ1�max
fβ;s;ηg

ℓ0 ≷
H1

H0

ln γ2: ð12Þ

Further development requires the MLEs of the unknown
parameters under each hypothesis. These MLEs are
given next.

It is obvious that under H1,

max
fα;β;s;ηg

ℓ1 ¼max
fηg

max
fα;β;sg

ℓ1

� �
: ð13Þ

Using (8), we can show that the MLE of η under H1 is

η̂1 ¼
‖xt‖2þ‖xr‖2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‖xt‖2�‖xr‖2Þ2þ4jx†txr j2

q
4N

: ð14Þ

Replacing η in (8) with its MLE η̂1 under H1 leads to

max
fα;β;s;ηg

ℓ1 ¼ �2N ln π�2N ln η̂1�2N: ð15Þ

In a similar way, we have

max
fβ;s;ηg

ℓ0 ¼max
fηg

max
fβ;sg

ℓ0

� �
: ð16Þ

Applying (9), we obtain the MLE of η as

η̂0 ¼
1
2N

‖xt‖2: ð17Þ

Accordingly,

max
fβ;s;ηg

ℓ0 ¼ �2N ln π�2N ln η̂0�2N: ð18Þ

Substituting (15) and (18) into (12) followed by simple
manipulations, we obtain the GLRT for the case of
unknown noise level as

T2 ¼
‖xt‖2

‖xt‖2þ‖xr‖2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‖xt‖2�‖xr‖2Þ2þ4jx†txrj2

q ≷
H1

H0

γ02; ð19Þ

where γ02 is a suitably modified version of the threshold
in (11).

3. Stochastic model based detectors

The previous section has considered the GLRT design
by treating the transmitted signal s to be deterministic
but unknown. In some cases, it is possible to obtain
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some partial information of s, i.e., its statistical property.
For instance, the signal from a multicarrier/OFDM mod-
ulation based transmitter is often modeled as a Gaussian
process due to the CLT [21]. In the following, the samples
s(n) for n¼ 0;…;N�1 are modeled as independent and
identically distributed (i.i.d.) circular complex Gaussian
random variables with zero-mean and unit variance.
Note that the variance of s(n) can be absorbed by the
channel parameters α and β. Hence, there is no loss of
generality to assume that s(n) has unit variance. In such
a model, the PDF of s is

f sð Þ ¼ 1
πN exp �‖s‖2

� �
: ð20Þ

Define

α¼ a expðjϕ1Þ and β¼ b expðjϕ2Þ: ð21Þ
Then, the likelihood function for random s under H0 can
be obtained by averaging (3) over s, i.e.,

f sH0
xt ; xrð Þ ¼

Z
f H0

xt ; xrð Þf sð Þ ds

¼ 1

π2NηNðb2þηÞN

� exp �ðb2þηÞ‖xt‖2þη‖xr‖2

ηðb2þηÞ

 !
; ð22Þ

where the superscript “s” means that the PDF is for the
stochastic model. In a similar way, the likelihood func-
tion for andom s under H1 can be obtained by averaging (4)
over s, i.e.,

f sH1
xt ; xrð Þ ¼ 1

π2NηNða2þb2þηÞN

� exp �ðb2þηÞ‖xt‖2þða2þηÞ‖xr‖2�2abRðejϕx†txrÞ
ηða2þb2þηÞ

" #
;

ð23Þ
where ϕ¼ϕ1�ϕ2 denotes the phase difference between α
and β.

Obviously, the LRT in (2) cannot be implemented due to the
unknown parameters a, b, and ϕ. In the following, we derive
two GLRT detectors in two cases: known and unknown η.

3.1. GLRT with known noise power η

Assume that the noise power η is known a priori. Then,
the GLRT can be expressed as

maxfa;b;ϕg f
s
H1
ðxt ; xrÞ

maxfbg f
s
H0
ðxt ; xrÞ

≷
H1

H0

γ3: ð24Þ

Under H0, let

∂ln f sH0
ðxt ; xrÞ

∂b
¼ 0: ð25Þ

Substituting (22) into (25), and after some algebraic
manipulations, the MLE of b can be obtained by

b̂0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖xr‖2
N

�η

r
: ð26Þ

Under H1, the numerator in the left-hand side of (24) can be
computed as

max
fa;b;ϕg

f sH1
ðxt ; xrÞ ¼max

fa;bg
gsH1

n o
; ð27Þ

where

gsH1
¼max

fϕg
f sH1

ðxt ; xrÞ: ð28Þ

It is easy to obtain that the MLE of ϕ under H1 is
ϕ̂ ¼ �∠ðx†txrÞ. Using this MLE, we have

gsH1
¼ 1

π2NηNða2þb2þηÞN

� exp �ðb2þηÞ‖xt‖2þða2þηÞ‖xr‖2�2abjx†txrj
ηða2þb2þηÞ

 !
:

ð29Þ
As derived in Appendix C, the MLEs of a and b are the
solutions to the following equations:

pðajb;ηÞ ¼ 0 and qðbja;ηÞ ¼ 0; ð30Þ
where pðajb;ηÞ and qðbja;ηÞ are given by, respectively,

pðajb;ηÞ ¼Nηa3þbjx†txr ja2�bjx†txrjðb2þηÞ
þ ðNηþ‖xr‖2�‖xt‖2Þðb2þηÞ�η‖xr‖2
h i

a; ð31Þ

and

qðbja;ηÞ ¼Nηb3þajx†txr jb2�ajx†txrjða2þηÞ
þ ðNηþ‖xt‖2�‖xr‖2Þða2þηÞ�η‖xt‖2
	 


b: ð32Þ
Unfortunately, closed-form solutions to (30) are not available.
In the following, we present a cyclic iteration algorithm to find
them (similar cyclic algorithms for parameter estimation are
employed in [22,23]). Specifically, at themth iteration, we first
compute pðam�1jbm�1;ηÞ and qðbm�1jam�1;ηÞ, and their
gradients p0ðam�1jbm�1;ηÞ and q0ðbm�1jam�1;ηÞ, where

p0ðam�1jbm�1;ηÞ ¼ 3Nηa2m�1þ2bm�1jx†txr jam�1

þðNηþ‖xr‖2�‖xt‖2Þðb2m�1þηÞ�η‖xr‖2; ð33Þ
and

q0ðbm�1jam�1;ηÞ ¼ 3Nηb2m�1þ2am�1jx†txr jbm�1

þðNηþ‖xt‖2�‖xr‖2Þða2m�1þηÞ�η‖xt‖2: ð34Þ
Next, we calculate the mth iteration values am and bm using
the Newton–Raphson method [24]. This process is repeated
until convergence. We summarize this algorithm as follows:

Cyclic algorithm I.

Input: xt , xr and η.
Output: The MLEs â and b̂ .
1. For m¼1, initialize a and b as

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖xt‖2
N

�η

r
and b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖xr‖2
N

�η

r
: ð35Þ
2. Let m’mþ1, using the Newton–Raphson method [24], the mth
iteration values am and bm can be computed as

am ¼ am�1�
pðam�1jbm�1; ηÞ
p0ðam�1jbm�1 ; ηÞ

;

bm ¼ bm�1�
qðbm�1jam�1; ηÞ
q0ðbm�1jam�1 ; ηÞ

;

8>>><
>>>: ð36Þ
respectively, where p, p0 , q, and q0 are given in (31), (33), (32),
and (34), respectively.
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3. If jam�am�1jrε and jbm�bm�1jrε, where ε is a parameter

used to control convergence, output â ¼ am and b̂ ¼ bm .
Otherwise, repeat step 2 until convergence.

Notice that the above iterative algorithm might be

sensitive to the initial values of a and b. In fact, there are
three roots of pðajb;ηÞ ¼ 0 for a with given b and η
(a similar phenomenon occurs with b for given a and η).
Therefore, it is possible to converge to different local roots
for different initial values. In practice, care should be taken
when selecting the initial values a1 and b1. The intuitive
selection for the initialization of a (or b) is its MLE only
using xt (or xr), i.e. (35). Numerical simulations in the
following demonstrate that these initializations of a and b
enable us to obtain satisfactory solutions.

The average MLEs of a and b obtained by the Cyclic
algorithm I with M¼100 independent experiments are pre-
sented in Fig. 1, where the true values a¼1, b¼0.8, η¼ 1 and
the samples s(n) for n¼ 0;…;N�1 are independently
selected from the circular complex Gaussian distribution with
zero mean and unit variance. It can be observed that the
proposed cyclic iteration algorithm can obtain satisfactory
estimates close to the true a and b in several iterations.

So far, the estimates of a, b, ϕ are assumed to have
already been obtained. Applying these estimates to (24),
we obtain the GLRT detector for the stochastic model to be

L1 ¼
‖xr‖2N

ðâ2þ b̂
2þηÞN

�exp
‖xt‖2â

2�ðâ2þηÞ‖xr‖2þ2âb̂jx†txrj
ηðâ2þ b̂

2þηÞ

0
@

1
A ≷

H1

H0

γ03; ð37Þ

where γ03 is a suitably modified version of the threshold in
(24).

3.2. GLRT with unknown noise power η

Here, we turn to the case of unknown ηwhere the GLRT
detector becomes

maxfa;b;ϕ;ηg f
s
H1
ðxt ; xrÞ

maxfb;ηg f
s
H0
ðxt ; xrÞ

≷
H1

H0

γ4: ð38Þ
Under H0, let

∂ ln f sH0
ðxt ; xrÞ

∂b
¼ 0 and

∂ ln f sH0
ðxt ; xrÞ

∂η
¼ 0: ð39Þ

Substituting (22) into (39), we obtain the MLEs of b and η
as, respectively,

η̂0 ¼
‖xt‖2

N
and b̂0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖xr‖2�‖xt‖2

N

r
: ð40Þ

Under H1, the numerator in the left-hand side of (38) can
be computed as

max
fa;b;ϕ;ηg

f sH1
ðxt ; xrÞ ¼max

fa;b;ηg
gsH1

n o
; ð41Þ

where gsH1
is given in (29). In Appendix C, we derive the

MLEs of a, b and η to be the solutions to the following
equations:

pðajb;ηÞ ¼ 0; qðbja;ηÞ ¼ 0 and hðηja; bÞ ¼ 0; ð42Þ

where pðajb;ηÞ and qðbja;ηÞ are defined in (31) and (32),
respectively, hðηja; bÞ is given by

hðηja; bÞ ¼ 2Nη3þ 3Na2þ3Nb2�‖xr‖2�‖xt‖2
� �

η2

þ Nða2þb2Þ2�2 b2‖xt‖2þa2‖xr‖2�2abjx†txrj
� �h i

η

� b2‖xt‖2þa2‖xr‖2�2abjx†txrj
� �

ða2þb2Þ: ð43Þ

Unfortunately, (42) does not have a closed-form solution.
Therefore, a cyclic iteration algorithm similar to that of
Section 3.1 is proposed to obtain the MLEs of a, b, and η,
which is summarized as follows:

Cyclic algorithm II.
Input: xt and xr .

Output: The MLEs â , b̂ , and η̂ .
1. For m¼1, initialize a, b and η as

η1 ¼ r0; a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖xt‖2
N �η1

q
; b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖xr‖2
N �η1

q
;

ð44Þ
where r0 is any positive real number.

2. Let m’mþ1, using the Newton–Raphson method [24], the mth

iteration values am, bm, and ηm can be respectively computed as

am ¼ am�1�
pðam�1jbm�1 ; ηm�1Þ
p0ðam�1jbm�1; ηm�1Þ

;

bm ¼ bm�1�
qðbm�1jam�1 ; ηm�1Þ
q0ðbm�1jam�1; ηm�1Þ

;

ηm ¼ ηm�1�
hðηm�1jam�1 ; bm�1Þ
h0ðηm�1jam�1; bm�1Þ

;

8>>>>>>>><
>>>>>>>>:

ð45Þ
wherep, p0 , q, q0 , and h are given in (31), (33), (32), (34), and (43),
respectively. h0 can be obtained by taking the derivative of (43)

with respect to ηm-1, i.e.,

h0ðηm�1jam�1 ;bm�1Þ ¼ 6Nη2m�1þNða2m�1þb2m�1Þ2

þ2 3Na2m�1þ3Nb2m�1�‖xr‖2�‖xt‖2
� �

ηm�1

�2 b2m�1‖xt‖
2þa2‖xr‖2�2am�1bm�1jx†txr j

� �
: ð46Þ

3. If jam�am�1jrε, jbm�bm�1jrε and jηm�ηm�1jrε, where ϵ is
a preassigned parameter to control convergence, output â ¼ am ,

b̂ ¼ bm , and η̂ ¼ ηm . Otherwise, repeat step 2 until convergence.
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It should be pointed out that Cyclic algorithm II might
also be sensitive to the initial values of a, b, and η. Many
numerical simulations conducted with Cyclic algorithm
II imply that satisfactory solutions to (45) can be
obtained in several iterations by initializing η as an
arbitrary positive quantity and using the same initializa-
tions of a and b as those in the Cyclic algorithm I. As an
example, one simulation result is presented in Fig. 2,
where the initial value of η is set to be 2 and these curves
are plotted by averaging over M¼100 independent
experiments.

After obtaining these MLEs under H0 and H1, one can
insert them into (38). As a result, the GLRT detector for the
stochastic model in (38) can be written as

L2 ¼
‖xr‖2N‖xt‖2N

η̂Nðâ2þ b̂
2þ η̂ÞN

�exp
�ðb̂2þ η̂Þ‖xt‖2þðâ2þ η̂Þ‖xr‖2�2âb̂jx†txrj

η̂ðâ2þ b̂
2þ η̂Þ

0
@

1
A ≷

H1

H0

γ04; ð47Þ

where γ04 is a suitable modification version of threshold in
(38).

4. Simulation results

In this section, simulation results are provided to illus-
trate the performance of the proposed GLRT detectors. For
comparison purposes, the CC detector and the MF detector
are considered. The CC detector TCC is expressed as [15]

TCC ¼ x†txr
2 ≷
H1

H0

γ;


 ð48Þ

and the MF detector TMF is [1]

TMF ¼ x†t s
2 ≷
H1

H0

γ:


 ð49Þ

Notice that the MF detector uses a priori knowledge about
the transmitted signal s, which is not available to all the
other detectors. Therefore, the MF detector serves as a
benchmark of the best possible performance in the presence
of a noisy reference. For ease of comparison, analytical
expressions for the probabilities of false alarm and detection
of the CC detector and the MF detector are provided (see
Appendices D and E). It should be pointed out that the high
non-linearity of the proposed detectors leads to the difficulty
in analytically assessing their detection performance. Hence,
we use Monte Carlo (MC) techniques for the performance
evaluation of the proposed detectors.

In the following, numerical simulations are given on
the assumption that s(n) for n¼ 0;…;N�1 are i.i.d. circu-
lar complex zero-mean Gaussian random variables with
unit variance. Define the input SNR in the TC by

SNR¼ 10 log10
a2

η
; ð50Þ

and the input SNR in the RC by

SNRr ¼ 10 log10
b2

η
: ð51Þ

Note that these SNRs are defined at the per-sample basis.
For simplicity, the GLRT detectors proposed in Section 3 for
the stochastic model are referred to as Bayesian GLRT (B-
GLRT) detectors, since a prior distribution is assumed on
the transmitted waveform.

The detection probability curves of TCC in (48) and TMF

in (49) are plotted with both the MC techniques and the
corresponding analytical expressions in Fig. 3, where
N¼100, η¼ 0 dB, SNRrAf�10;0g dB, and Pfa ¼ 10�2. Note
that the MF detector does not require the RC, and thus its
performance is irrelevant to SNRr . It can be seen that the
results obtained by the analytical expressions match those
obtained by the MC simulations pretty well. In addition,
the detection performance of TCC in (48) depends signifi-
cantly on the SNRr in the RC. The larger the SNRr , the
better the detection probability. The gap is about 8 dB at
Pd¼0.9 between the case of SNRr ¼ �10 dB and the
case of SNRr ¼ 0 dB. In particular, the MF detector TMF

provides an upper bound of detection performance. It can
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be observed that the gap at Pd¼0.9 is about 3.1 dB
between TCC with SNRr ¼ 0 dB and TMF.

The detection performance of the proposed GLRT detectors
is presented in Fig. 4, where η¼ 0 dB, SNRr ¼ �10 dB, and
Pfa ¼ 10�2. Note that the detection probability curves of these
detectors proposed in Sections 2 and 3 are evaluated with
resorting to Monte Carlo (MC) techniques due to the non-
availability of analytical expressions for the probabilities of
false alarm and detection of these detectors. For comparison
purposes, the CC detector TCC in (48) and the MF detector TMF

in (49) are also provided. One can observe that the perfor-
mance of the GLRT detectors in (10) and (19) is much better
than that of TCC for low SNRr (e.g., SNRr ¼ �10 dB in this
example). The gap at Pd¼0.9 is about 4 dB between detector
(10) and TCC, and is about 3.2 dB between detector (19) and
TCC. Interestingly, the B-GLRT detector in (37) outperforms the
GLRT detector in (10) in the case of known η. However, the
performance of the B-GLRT in (47) is much worse than that of
the GLRT in (19) in the case of unknown η, and is even worse
than that of TCC.

In Figs. 5 and 6, we study the impact of different values
of SNRr on all the detectors considered. The other para-
meters are selected to be the same as in Fig. 4. Inspections
of the two figures highlight that the value of SNRr has an
obvious influence on the detection performance of these
detectors except the MF detector. The larger the SNRr , the
better the detection performance. The relationship among
the detection performance of these detectors remains the
same as in Fig. 4, but the performance differences become
smaller and smaller when SNRr increases. Particularly, the
GLRT detectors, the B-GLRT detectors and TCC almost have
the same detection performance at SNRr ¼ 0 dB. The
detection performance loss of these detectors with respect
to TMF is approximately 3 dB.

Note that the detection thresholds of the GLRT and
B-GLRT with known noise variance η depend on the
accuracy of the knowledge of η. In practice, the noise
variance may be unknown and needs to be estimated. To
consider the effect of the estimation error, denote by
η̂ ¼ εη the estimated noise power, where ε reflects how
accurate the estimate is. Call B¼ 10 log10 ε the noise
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uncertainty factor. In the following, we test the proposed
detectors which employ the mismatched noise variance η̂
to set the thresholds. The detection performance of the
proposed detectors as a function of N (i.e., the number of
samples) is illustrated for the mismatched case in Fig. 7,
where SNRr ¼ �10 dB and SNR¼ �2 dB. It can be seen
that each detector performs better as N increases. With
perfectly known noise power (i.e., B¼0 dB), the B-GLRT
detector with known η performs the best, and the B-GLRT
detector with unknown η provides the worst performance.
However, for the mismatched case of B¼1.5 dB, the
performance of the CC, GLRT and B-GLRT detectors devel-
oped with known η degrades significantly. In particular,
the GLRT with known η performs worse than the GLRT
with unknown η in the current case. In addition, the CC
and B-GLRT with known η give performance worse than
the B-GLRT with unknown η.

5. Conclusions

In this paper, we have considered the two-channel
detection problem with a noisy RC. In the model where
the transmit signal is deterministic but unknown, two GLRT
detectors are proposed with known and unknown noise
power. For the transmit signal that can be approximated as
a Gaussian process, two B-GLRT detectors with known and
unknown noise power are developed by using cyclic itera-
tion algorithms to find the MLEs of the unknown para-
meters. Due to the nonlinearity of the proposed detectors,
theoretical analysis of these detectors is intractable. Their
performance is assessed by MC simulations.

In our comparisons, we have included the conventional
CC detector and the clairvoyant MF detector as benchmark.
Simulation results demonstrate that the proposed four
detectors except the one developed with unknown noise
power in the stochastic model (i.e., the B-GLRT detector
with unknown η) outperform the conventional CC detec-
tor, especially with low SNRr in the RC. It is also shown
that the performance of the B-GLRT detector with known η
is better than that of the corresponding deterministic
model based GLRT detector, and the MF detector provides
an upper bound on the detection performance. However,
in the presence of errors in the noise power estimate, the
performance of the GLRT and B-GLRT with known η may
degrade significantly. In addition, the detection perfor-
mance of the proposed detectors highly depends on the
SNRr in the RC. The larger the SNRr , the higher the
detection probabilities. As the SNRr increases, the perfor-
mance difference between the proposed detectors and the
MF detector becomes smaller.

Possible future research tracks include extending the
framework to passive multistatic radar detection [25] as
well as considering detection in signal-dependent clutter
environments [26].

Appendix A. Proof of (8) and (9)

Using ℓ1 defined in (6), we have

max
fα;β;sg

ℓ1 ¼max
fsg

maxfα;βgℓ1

n o
: ð52Þ
With a fixed s, the MLEs of α and β in (52) are obtained
as [25]

α̂1 ¼
s†xt
s†s

and β̂1 ¼
s†xr
s†s

; ð53Þ

respectively. Substituting (53) into (52) yields

max
fsg

ℓ1 ¼ �2N ln π�2N ln η

�1
η

‖xr‖2þ‖xt‖2�maxfsg
s†F1s
s†s

� �
; ð54Þ

where

F1 ¼ xrx†r þxtx
†
t ¼XX† ;

with X¼ ½xr ; xt �. The maximization of (54) with respect to s
is equivalent to maximizing the Rayleigh quotient
s†F1s=s†s. This maximum value is the largest eigenvalue
of F1, i.e.,

maxfsg
s†F1s
s†s

¼ λmax F1ð Þ ¼ λmax Φ� �
; ð55Þ

where Φ¼X†X. Note that the employment of the 2-
dimensional matrix Φ instead of the N-dimensional
matrix F in (55) is more computationally effective. The
analytical solution to (55) is given by (see Appendix B)

λmax Φ� �¼ ‖xt‖2þ‖xr‖2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‖xt‖2�‖xr‖2Þ2þ4jx†rxt j2

q
2

:

ð56Þ
Substituting (56) into (54), we can obtain (8).

Similarly, ℓ0 defined in (6) can be computed as

max
fβ;sg

ℓ0 ¼max
fsg

max
fβg

ℓ0

� �
: ð57Þ

It is straightforward that the MLE of β under H0 for a fixed
s is given by

β̂0 ¼
s†xr
s†s

: ð58Þ

Inserting (58) into (57) results in

max
fsg

ℓ0 ¼ �2N ln π�2N ln η

�1
η

‖xr‖2þ‖xt‖2�max
s

s†F2s
s†s

� �
; ð59Þ

where F2 ¼ xrx
†
r . It is easy to show that

max
fsg

s†F2s
s†s

¼ ‖xr‖2: ð60Þ

Taking (60) into (59), we get (9).

Appendix B. The eigenvalues of matrix Φ

Obviously, Φ¼X†X can be expressed as

Φ¼
‖xr‖2 x†rxt
x†txr ‖xt‖2

" #
: ð61Þ

Denote by λ the eigenvalues ofΦ. It follows that λ needs to
satisfy the characteristic equation cðλ;ΦÞ, i.e.,

cðλ;ΦÞ ¼ det λI�X†X
� �

¼ 0: ð62Þ
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Substituting (61) into (62) produces

cðλ;ΦÞ ¼ λ2�ð‖xt‖2þ‖xr‖2Þλþ‖xr‖2‖xt‖2�jx†txr j2
¼ 0: ð63Þ

The solutions to (63) are

λ1 ¼
‖xt‖2þ‖xr‖2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‖xt‖2�‖xr‖2Þ2þ4jx†txrj2

q
2

;

λ2 ¼
‖xt‖2þ‖xr‖2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‖xt‖2�‖xr‖2Þ2þ4jx†txrj2

q
2

: ð64Þ

Note that the 2-dimensional matrix Φ only has two
eigenvalues. Hence, the maximum and minimum eigenva-
lues are, respectively,

λmaxðΦÞ ¼ λ1 and λminðΦÞ ¼ λ2: ð65Þ

Appendix C. Proof of (31), (32), and (43)

Under H1, the logarithm of gsH1
defined in (29) can be

written as

ln gsH1
¼ �2N ln π�N ln η�N ln a2þb2þη

� �

�ðb2þηÞ‖xt‖2þða2þηÞ‖xr‖2�2abjx†txr j
ηða2þb2þηÞ

: ð66Þ

To obtain the MLEs of a, b, and η, let

∂ ln gsH1

∂a
¼ 0;

∂ ln gsH1

∂b
¼ 0; and

∂ ln gsH1

∂η
¼ 0: ð67Þ

Substituting (66) into (67), we have

∂ ln gsH1

∂a
¼ � 2Na

a2þb2þη
�2a‖xr‖2�2bjx†txr j

ηða2þb2þηÞ

þ2a
ðb2þηÞ‖xt‖2þða2þηÞ‖xr‖2�2abjx†txr j

ηða2þb2þηÞ2
¼ 0; ð68Þ

∂ ln gsH1

∂b
¼ � 2Nb

a2þb2þη
�2b‖xt‖2�2ajx†txrj

ηða2þb2þηÞ

þ2b
ðb2þηÞ‖xt‖2þða2þηÞ‖xr‖2�2abjx†txrj

ηða2þb2þηÞ2
¼ 0; ð69Þ

and

∂ ln gsH1

∂η
¼ �N

η
� N

a2þb2þη
�‖xt‖2þ‖xr‖2

ηða2þb2þηÞ

þ a2þb2þ2η
� �ðb2þηÞ‖xt‖2þða2þηÞ‖xr‖2�2abjx†txrj

η2ða2þb2þηÞ2

¼ 0: ð70Þ
After some algebraic manipulations, (67) can be equiva-
lently transformed to (42).

Appendix D. Performance analysis of CC detector
Proposition D.1. Let s¼ ½sð0Þ; sð1Þ;…; sðN�1Þ�T . Assume
that s(n), n¼ 0;…;N�1, are i.i.d. circular complex zero-
mean white Gaussian random variables with unit variance.
For a large number of samples N, the probabilities of false
alarm and detection of the CC detector in (48) are approxi-
mated as, respectively,

Pfa ¼ exp � γ
σ2
CC0

( )
; ð71Þ

and

Pd ¼Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jμCC1

j2
σ2
CC1

vuut ;

ffiffiffiffiffiffiffiffiffiffi
2γ
σ2
CC1

s0
@

1
A; ð72Þ

where μCC1
, σ2

CC1
and σ2

CC0
are given in (78), (79), and (80),

respectively, and Qmða; bÞ is the generalized Marcum
Q-function of order m, i.e. [27, Eq. (4.33)]

Qm a; bð Þ ¼
Z 1

b

tm

am�1 exp �t2þa2

2

� �
Im�1 atð Þ dt; ð73Þ

with Im�1ðxÞ denoting the modified Bessel function of the first
kind of order m�1, i.e.,

Im�1 xð Þ ¼ ∑
1

n ¼ 0

1
n!ΓðmþnÞ

x
2

� �2nþm�1
: ð74Þ

Proof. Let T 0
CC be the CC operation between xr and xt , i.e.,

T 0
CC ¼ x†txr ¼ ∑

N�1

n ¼ 0
x†t ðnÞxrðnÞ; ð75Þ

where xr ¼ ½xrð0Þ; xrð1Þ;…; xrðN�1Þ�T and xt ¼ ½xtð0Þ;
xtð1Þ;…; xtðN�1Þ�T . According to the CLT [28], T 0

CC with
large N can be well approximated as a complex Gaussian
random variable. Using (1), one can obtain that under H1,

x†t ðnÞxrðnÞ ¼ ðαsðnÞþwðnÞÞ†ðβsðnÞþvðnÞÞ
¼ αnβjsðnÞj2þαnsnðnÞvðnÞ
þβsðnÞwnðnÞþwnðnÞvðnÞ: ð76Þ

It is easy to check that

E½x†t ðnÞxrðnÞ� ¼ αnβ;

varðx†t ðnÞxrðnÞÞ ¼ 2a2b2þηb2þa2ηþη2: ð77Þ

Thus, the mean μCC1
and variance σ2

CC1
of T 0

CC under H1 can
be computed as, respectively,

μCC1
¼Nαnβ; ð78Þ

and

σ2
CC1

¼Nð2a2b2þηb2þa2ηþη2Þ: ð79Þ

Under H0, the mean is zero, and the variance σ2
CC0

is

σ2
CC0

¼Nðηb2þη2Þ: ð80Þ

As a result, the false alarm probability of the CC detector
TCC in (48) can be computed as

Pfa ¼ Pr TCCZγjH0
� �¼ Pr

 
jT 0

CCj2
σ2
CC0

Z
γ

σ2
CC0

H0

!
:

 ð81Þ

It can be shown that jT 0
CCj2=σ2

CC0
is a complex central Chi-

square random variable with 1 degree of freedom (DOF)
[29, Appendix A]. Hence, Pfa in (71) can be obtained.
Moreover, the detection probability of the CC detector in
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(48) can be expressed as

Pd ¼ Pr TCCZγjH1
� �¼ Pr

 
jT 0

CCj2
σ2
CC1

Z
γ

σ2
CC1

H1

!
;

 ð82Þ

where jT 0
CCj2=σ2

CC1
is a complex non-central Chi-square

random variable with 1 DOF and non-centrality parameter
λCC1 ¼ jμCC1

j2=σ2
CC1

. Thus, Pd in (72) can be derived. □

Note that the generalized Marcum function Qmða; bÞ can
be easily computed by the most popular computing soft-
wares with built-in routines, e.g., the function marcumq
(a,b,m) in MATLAB.
Appendix E. Performance analysis of MF detector

The analytical expressions for the probabilities of false
alarm and detection of the MF detector with deterministic
s are available in [1,30]. The following proposition offers
the counterpart by assuming s to be random.

Proposition E.1. Assume that s(n), n¼ 0;…;N�1, are i.i.d.
circular complex zero-mean white Gaussian random vari-
ables with unit variance. For large N, the probabilities of false
alarm and detection of the MF detector given in (49) can be
approximated as, respectively,

Pfa ¼ exp � γ
σ2
MF0

( )
; ð83Þ

and

Pd ¼ Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jμMF1 j2
σ2
MF1

vuut ;

ffiffiffiffiffiffiffiffiffiffi
2γ
σ2
MF1

s0
@

1
A; ð84Þ

where σ2
MF0

and μMF1 along with σ2
MF1

are given in (86) and
(87), respectively.

Proof. Let T 0
MF be the CC operation between xt and s, i.e.,

T 0
MF ¼ x†t s¼ ∑

N�1

n ¼ 0
x†t ðnÞsðnÞ: ð85Þ

Due to the CLT, T 0
MF for large N under H0 can be approxi-

mated as a complex zero-mean Gaussian random variable
with variance

σ2
MF0 ¼Nη: ð86Þ

Similarly, T 0
MF under H1 can be approximated as a complex

Gaussian random variable whose mean μMF and variance
σ2
MF1

are given by, respectively,

μMF1 ¼Nαn and σ2
MF1 ¼Nð2a2þηÞ: ð87Þ

Hence, Pfa can be expressed as

Pfa ¼ Pr TMFZγjH0
� �¼ Pr

 
jT 0

MFj2
σ2
MF0

Z
γ

σ2
MF0

H0

!
;

 ð88Þ

where jT 0
MFj2=σ2

MF0
is a complex central Chi-square random

variable with 1 DOF [29, Appendix A]. Thus, Pfa in (83) can
be obtained. Moreover, Pd can be expressed as

Pd ¼ Pr TMFZγjH1
� �¼ Pr

 
jT 0

MFj2
σ2
MF1

Z
γ

σ2
MF1

H1

!
;

 ð89Þ

where jT 0
MFj2=σ2

MF1
is a complex non-central Chi-square

random variable with 1 DOF and non-centrality parameter
λMF1 ¼ jμMF1 j2=σ2

MF1 . Thus, Pd in (84) can be derived. □

References

[1] S.M. Kay, Fundamentals of Statistical Signal Processing, Volume II:
Detection Theory, Prentice-Hall, Upper Saddle River, NJ, 1998.

[2] G.C. Carter, Coherence and time delay estimation, Proc. IEEE 75
(February (2)) (1987) 236–255.

[3] S. Stein, Differential delay/Doppler ML estimation with unknown
signals, IEEE Trans. Signal Process. 41 (August (8)) (1993) 2717–2719.

[4] B. Xerri, J.-F. Cavassilas, B. Borloz, Passive tracking in underwater
acoustic, Signal Process. 82 (August (8)) (2002) 1067–1085.

[5] B.A. Yocom, B.R. La Cour, T.W. Yudichak, A Bayesian approach to
passive sonar detection and tracking in the presence of interferers,
IEEE J. Ocean. Eng. 36 (July (3)) (2011) 386–405.

[6] L.C. Wood, S. Treitel, Seismic signal processing, Proc. IEEE 63 (April
(4)) (1975) 649–661.

[7] D. Draganov, K. Wapenaar, J. Thorbecke, Seismic interferometry:
reconstructing the earths reflection response, Geophysics 71 (July
(4)) (2006) SI61–SI70.

[8] B. Artman, Imaging passive seismic data, Geophysics 71 (July (4))
(2006) SI117–SI187.

[9] A. Roueff, P. Roux, P. Refregier, Wave separation in ambient seismic
noise using intrinsic coherence and polarization filtering, Signal
Process. 89 (April (4)) (2009) 410–421.

[10] E. Pereda, R.Q. Quiroqa, J. Bhattacharya, Nonlinear multivariate analysis
of neurophysiological signals, Prog. Neurobiol. 77 (2005) 1–37.

[11] W. Muhammad, O. Mester, H. Rix, D. Farina, A pseudopoint estima-
tion of time delay and scale factor for M-wave analysis, IEEE Trans.
Biomed. Eng. 50 (April (4)) (2003) 459–468.

[12] J. Garnier, G. Papanicolaou, Passive sensor imaging using cross
correlations of noisy signals in a scattering medium, SIAM J. Imaging
Sci. 2 (2) (2009) 396–437.

[13] L. Wang, B. Yazici, Passive imaging of moving targets using sparse
distributed apertures, SIAM J. Imaging Sci. 5 (3) (2012) 769–808.

[14] H.D. Griffiths, C.J. Baker, Passive coherent location radar systems.
Part 1: performance prediction, IEE Proc. Radar Sonar Navig. 152
(June (3)) (2005) 124–132.

[15] P.E. Howland, D. Maksimiuk, G. Reitsma, FM radio based bistatic
radar, IEE Proc. Radar Sonar Navig. 152 (June (3)) (2005) 107–115.

[16] L. Wang, C.E. Yarman, B. Yazici, Doppler-hitchhiker: a novel passive
synthetic aperture radar using ultranarrowband sources of opportunity,
IEEE Trans. Geosci. Remote Sens. 49 (October (10)) (2011) 3521–3537.

[17] Digital Video Broadcasting (DVB): Frame Structure Channel Coding and
Modulation for a Second Generation Digital Terrestrial Television Broad-
casting System (DVB-T2), Technical Report ETSI-EN-302-755-V1.1.1, Eur-
opean Telecommunications Standards Institute, France, September 2009.

[18] M. Steiner, K. Gerlach, Fast convergence adaptive processor or a
structured covariance matrix, IEEE Trans. Aerosp. Electron. Syst. 36
(October (4)) (2000) 1115–1126.

[19] P. Paysarvi-Hoseini, N.C. Beaulieu, Optimal wideband spectrum
sensing framework for cognitive radio systems, IEEE Trans. Signal
Process. 59 (March (3)) (2011) 1170–1182.

[20] D.E. Hack, L.K. Patton, B. Himed, M.A. Saville, Detection in passive
MIMO radar networks, IEEE Trans. Signal Process. 62 (June (11))
(2014) 2999–3012.

[21] K. Polonen, V. Koivunen, Detection of DVB-T2 control symbols in
passive radar systems, in: Proceedings of 2012 IEEE 7th Sensor Array
and Multichannel Signal Processing Workshop (SAM), Hoboken, NJ,
USA, June 2012, pp. 309–312.

[22] C.Y. Chen, P.P. Vaidyanathan, MIMO radar waveform optimization
with prior information of the extended target and clutter, IEEE
Trans. Signal Process. 57 (September (9)) (2009) 3533–3544.

[23] A. Aubry, A. De Maio, A. Farina, M. Wicks, Knowledge-aided (potentially
cognitive) transmit signal and receive filter design in signal-dependent
clutter, IEEE Trans. Aerosp. Electron. Syst. 49 (January (1)) (2013) 93–117.

[24] S.M. Kay, Fundamentals of Statistical Signal Processing, Volume I:
Estimation Theory, Prentice-Hall, Upper Saddle River, NJ, 1998.

[25] K.S. Bialkowski, I.V.L. Clarkson, S.D. Howard, Generalized canonical
correlation for passive multistatic radar detection, in: Proceedings of

http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref2
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref2
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref3
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref3
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref4
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref4
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref5
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref5
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref5
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref6
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref6
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref7
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref7
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref7
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref8
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref8
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref9
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref9
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref9
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref10
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref10
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref11
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref11
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref11
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref12
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref12
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref12
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref13
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref13
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref14
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref14
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref14
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref15
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref15
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref16
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref16
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref16
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref18
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref18
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref18
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref19
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref19
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref19
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref20
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref20
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref20
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref22
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref22
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref22
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref23
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref23
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref23


G. Cui et al. / Signal Processing 108 (2015) 389–399 399
2011 IEEE Statistical Signal Processing Workshop (SSP), Nice, France,
June 2011, pp. 417–420.

[26] F. Colone, R. Cardinali, P. Lombardo, Cancellation of clutter and multipath
in passive radar using a sequential approach, in: Proceedings of 2006
IEEE Conference on Radar, Verona, NY, USA, April 2006, pp. 393–399.

[27] M.K. Simon, M.-S. Alouini, Digital Communications over Fading
Channels: A Unified Approach to Performance Analysis, John Wiley
& Sons, Inc., New York, 2000.

[28] J.A. Rice, Mathematical Statistics and Data Analysis, 3rd ed. Duxbury
Press, Belmont, CA, USA, 2007.
[29] C.D. Richmond, Performance of the adaptive sidelobe blanker
detection algorithm in homogeneous environments, IEEE Trans.
Signal Process. 48 (May (5)) (2000) 1235–1247.

[30] K.J. Sohn, H. Li, B. Himed, Parametric Rao test for multichannel
adaptive signal detection, IEEE Trans. Aerosp. Electron. Syst. 43 (July
(3)) (2007) 920–933.

http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref27
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref27
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref27
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref28
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref28
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref29
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref29
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref29
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref30
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref30
http://refhub.elsevier.com/S0165-1684(14)00458-7/sbref30

	Signal detection with noisy reference for passive sensing
	Introduction
	Deterministic model based detectors
	GLRT with known noise power η
	GLRT with unknown noise power η

	Stochastic model based detectors
	GLRT with known noise power η
	GLRT with unknown noise power η

	Simulation results
	Conclusions
	Proof of (8) and (9)
	The eigenvalues of matrix Φ
	Proof of (31), (32), and (43)
	Performance analysis of CC detector
	Performance analysis of MF detector
	References




