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In this paper a novel fractional-order hyperchaotic system is proposed. The chaotic prop-
erties of the system in phase portraits are analyzed by using linear transfer function
approximation of the fractional-order integrator block. Furthermore, synchronization
between two fractional-order systems is achieved by utilizing a single-variable feedback
method. Simulation results show that our scheme can not only make the two systems syn-
chronized, but also let them remain in chaotic states.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, study on the dynamics of fractional-order differential systems has attracted interest of many researchers.
It is demonstrated that some fractional-order differential systems behave chaotically or hyperchaotically, such as the frac-
tional-order Chua’s system, the fractional Rossler system, the fractional modified Duffing system and Chen system [1–4].
Recently, Ge et al. also reported chaos in fractional-order van der Pol system and damped Mathieu system [5–7].

To discuss fractional chaotic systems, we usually need to solve fractional-order differential equations. For the fractional
differential operator, there are two commonly used definitions: Frünwald–Letnikov (GL) definition and Riemann–Liouville
(RL) definition. The latter definition of a derivative of fractional-order a is described by [8]:
dax
dta
¼ 1

Cðn� aÞ
dn

dtn

Z t

0
ðt � sÞn�a�1xðsÞds; n� 1 6 a < n ð1Þ
where Cð�Þ is the gamma function.
Ref. [9] presented a numerical comparison between two methods, namely the variational iteration method and the Ado-

mian decomposition method, as well as a conventional fractional difference method for solving linear differential equations
of fractional-order. Ref. [10] applied the variational iteration method to nonlinear differential equations of fractional-order.
In addition, transfer function approximation in the frequency domain is also frequently used to solve fractional-order differ-
ential equations [1,11,12].

Meanwhile, chaotic applications in physics and engineering have caught much attention. A challenging problem is the
control and synchronization of chaotic systems. Besides the classical PC synchronization approach presented by Pecora
and Carroll [13], there are several other control and synchronization schemes, such as linear or nonlinear state feedback
methods [14], a chaotic parameter slight perturbation method, a forced pulse disturbance method, and others. There have
been many prior studies that addressed chaos control and synchronization methods in non-fractional-order systems [15–
22]. For example, Ref. [15] designed an extended backstepping sliding mode controller, while Ref.[16] presented a fuzzy slid-
ing mode control based method for chaos synchronization. Recently, chaos synchronization problems in fractional-order
systems are being widely investigated [23–29]. In Ref. [23], the synchronization of two fractional Lü systems is studied.
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Other examples include Ref. [24] for the chaotic fractional-order unified systems, Ref. [25] for a class of fractional-order cha-
otic systems, and Ref. [26] for the fractional rational mechanical systems. In this paper we also investigate the synchroniza-
tion of a new fractional-order hyperchaotic system.

The rest of the paper is organized as follows: In Section 2, a fractional-order hyperchaotic system is presented, and its
dynamics is discussed by phase portraits. In Section 3, synchronization between two such hyperchaotic systems is achieved
by a single state variable feedback method. Finally, in Section 4, conclusions are drawn.

2. A fractional-order hyperchaotic system

Before we discuss our fractional-order system, a 4D integral-order hyperchaotic system [30] is given by Eq. (2), and its
phase portraits are shown in Figs. 1 and 2, respectively. Specifically, Fig. 1 shows the three dimensional (3D) phase portrait
of the integral hyperchaotic system, which represents the x� y� z space projection of the hyperchaotic attractor. Fig. 2
depicts the two-dimensional (2D) phase portraits of the system, where Fig. 2a–f represent the x� y; x� z;
x�w; y� z; y�w; z�w plane projections of the phase trajectory, respectively.
dx
dt ¼ ax� y
dy
dt ¼ x� yz2

dz
dt ¼ �b1y� b2z� b3w
dw
dt ¼ zþ cw

8>>>><
>>>>:

ð2Þ
where a ¼ 0:56, b1 ¼ 1:0, b2 ¼ 1:0, b3 ¼ 6:0, c ¼ 0:8.
Based on the above descriptions, we modify the derivative operator in Eq. (2) to be with respect to a fractional-order a.

Thus Eq. (2) is converted to Eq. (3):
dax
dta ¼ ax� y
day
dta ¼ x� yz2

daz
dta ¼ �b1y� b2z� b3w
daw
dta ¼ zþ cw

8>>>>><
>>>>>:

ð3Þ
In this paper, the following simulations are all performed by using a ¼ 0:95.
Assume that the initial conditions are zero. The fractional derivative operator of order a can be represented by the Laplace

transform [1]:
L
df aðtÞ

dta

� �
¼ SaLff ðtÞg ð4Þ
Basically, the idea is to approximate the system behavior in the frequency domain. With any nonzero initial condition the
function will have a singularity at time zero, but this is not necessarily the problem unless the initial value is not infinity
[1]. The transfer function is:
Fig. 1. 3D phase portrait of an integral-order hyperchaotic system described in (2).



Fig. 2. 2D phase portraits of the integral-order hyperchaotic system described in (2).
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FðSÞ ¼ 1
Sa ð5Þ
Here we select following the transfer function approximation method presented in Ref. [3]:
1

S0:95 �
1:281S2 þ 18:6004Sþ 2:0833

S3 þ 18:4738S2 þ 2:6574Sþ 0:003
ð6Þ
By simulations we have obtained the 3D and 2D phase portraits of the fractional-order system, as shown in Figs. 3 and 4,
respectively. These figures clear show that the fractional-order hyperchaotic system exhibits chaotic behaviors.
Fig. 3. 3D phase portrait of the fractional-order hyperchaotic system in Eq. (3).



Fig. 4. 2D phase portraits of the fractional-order hyperchaotic system in Eq. (3).
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3. Synchronization between two hyperchaotic systems

Consider another hyperchaotic system, which is described by:
dax0
dta ¼ ax0 � y0

day0

dta ¼ x0 � y0 � z02
daz0
dta ¼ �b1y0 � b2z0 � b3w0

daw0
dta ¼ z0 þ cw0

8>>>>><
>>>>>:

ð7Þ
Suppose that Eqs. (3) and (7) denote two independent systems with the same parameters but different initial conditions:
ðx0; y0; z0;w0Þ ¼ ð0:7;0:1;0:3;0:1Þ, and ðx00; y00; z00;w00Þ ¼ ð1:2;0:6;0:8;0:5Þ. The time waveforms of the two systems are shown
in Fig. 5. From this figure we can see that the two systems remain in independent hyperchaotic states. However, if one of
them is regarded as the driving system, the other as the response system, and a feedback control uðtÞ is applied in one of
the response state equations, then the synchronization of the two systems can proceed as described in Eq. (8), where
uðtÞ ¼ x� x0, ðx; y; z;wÞ denotes the variables of the response system, and ðx0; y0; z0;w0Þ denotes the variables of the driving
system.
dax
dta ¼ ax� y� uðtÞ
day
dta ¼ x� yz2

daz
dta ¼ �b1y� b2z� b3w
daw
dta ¼ zþ cw
dax0
dta ¼ ax0 � y0

day0

dta ¼ x0 � y0 � z02
daz0
dta ¼ �b1y0 � b2z0 � b3w0

daw0
dta ¼ z0 þ cw0

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð8Þ
The synchronization errors between the two systems obtained by simulation are shown in Fig. 6. Specifically, Fig. 6a–d de-
note the errors of xðtÞ � x0ðtÞ, yðtÞ � y0ðtÞ, zðtÞ � z0ðtÞ, wðtÞ �w0ðtÞ, respectively.

Fig. 6 demonstrates that the two systems are synchronized after some time. The phase portraits of the driving and re-
sponse systems are shown in Figs. 7–9, respectively.



Fig. 5. The time waveform x(t) and x0(t) of the two hyperchaotic systems with different initial conditions, where ðx0; y0; z0;w0Þ ¼ ð0:7;0:1; 0:3; 0:1Þ, and
ðx00; y00; z00;w00Þ ¼ ð1:2; 0:6; 0:8;0:5Þ.

Fig. 6. The synchronization error functions of four state variables versus time t.
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Figs. 7 and 8 depict the 2D portraits of the driving and the response systems, respectively. Fig. 9a and b depict the 3D
phase portraits of the driving and response systems, respectively. From these figures, we see that the two systems remain



Fig. 7. 2D phase portraits of the driving system.

Fig. 8. 2D phase portraits of the response system.
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in chaotic states. This is different from Ref. [26]. The synchronization of the two systems is implemented in Ref. [26], where
the systems after synchronization are no longer chaotic, but exhibit some periodic dynamic behaviors. Although some other



Fig. 9. 3D phase portraits of the driving and response systems.

968 H. Deng et al. / Chaos, Solitons and Fractals 41 (2009) 962–969
studies [25,27–29] achieved the synchronization in chaotic states, they are limited to those fractional-order systems with
only three state variables. There are few studies on the synchronization of fractional-order hyperchaotic systems [31,32].

4. Conclusion

In this paper a fractional-order hyperchaotic system with order 3.8 (a = 0.95) is proposed. Its dynamical behaviors are
studied. Moreover, synchronization between two such hyperchaotic systems has been achieved via a simple feedback con-
trol. Simulation results show that the two systems can maintain complex chaotic states after synchronization.
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