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Abstract—Identifying agents in a linear mixture is a fun-
damental problem in spectral sensing applications including
chemical and biological agent identification. In general, the size
of the spectral signature library is usually much larger than the
number of agents really present. Based on this fact, the sparsity
of the mixing coefficient vector can be utilized to help improve
the identification performance. In this paper, we propose a new
agent identification method by using a sparse Bayesian model. The
proposed iterative algorithm takes into account the nonnegativity
of the abundance fractions and is proved to be convergent. Numer-
ical studies with a set of ultraviolet (UV) to infrared (IR) spectra
are carried out for demonstration. The effect of the signature
mismatch is also studied using a group of terahertz (THz) spectra.

Index Terms—Agent identification, false alarm, linear mixture,
mismatch, signature, sparse Bayesian model, spectral sensing.

I. INTRODUCTION

D ETECTION and identification of components from mix-
tures have been studied in various fields and applications,

such as blind source separation for speech recognition [1], spec-
tral unmixing in hyperspectral sensing [2], [3], agent detection
with Raman spectroscopy [4], or fluctuation enhanced sensing
(FES) [5], [6], and so on. Classical detection algorithms, such as
the Matched Subspace Detector (MSD) [7], require the knowl-
edge of the noise and interference characteristics in terms of
their probability density functions (pdfs) or statistics estimated
from the received data. However, in many practical scenarios,
the background information is often unavailable or difficult to
estimate, making these detection methods inapplicable. Canon-
ical correlation analysis [8] and the non-negative constrained
least squares (NCLS) algorithm [5], [6] have been proposed for
detection without using a priori knowledge of the background
interference.

Due to its simplicity, the linear mixture model is often as-
sumed in identification problems [2], [5], [6], [8]
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where is a vector containing observations to be ana-
lyzed, is a matrix with each column representing
the spectral signature of a possible target, is the mixing
coefficient vector consisting of the concentration ratio or abun-
dance fraction of each component in the mixture, and
is the noise standing for the measurement or modeling error.
The objective of identification is to determine what components
are in the mixture and, furthermore, estimate the components’
abundance fractions.

To solve the agent identification problem, a signature library
is often employed that includes signatures of all possible tar-
gets. Usually the number of signatures in the library is signif-
icantly larger than that composing the real mixture. Based on
this fact, we propose to exploit the sparsity of the mixing co-
efficient vector to help improve the identification performance.
The iterative algorithm considers the non-negativity of the abun-
dance fractions and is proved to be convergent. Using a sparse
Bayesian model, our proposed method obtains an estimate of
the abundance fraction vector with only a few nonzero en-
tries, and the zero entries of the estimate can be interpreted as
the absence of certain agents. Therefore, the mission of agent
identification is accomplished by parameter estimation and con-
ducted in a quite simple and direct way. Meanwhile, conven-
tional agent identification methods [5], [6], [8] yield an estimate
of that is generally not sparse. They have to select and apply
a threshold on the estimate to decide if a component is present
or not. The choice of the threshold is difficult due to lack of the-
oretical analysis.

Experiments using a set of ultraviolet (UV) to infrared (IR)
spectra are carried out. Results show excellent estimation accu-
racy of the abundance fractions and good identification perfor-
mance. In addition, the influence of signature mismatch is also
studied. The terahertz (THz) spectra of a group of bacteria are
used for demonstration.

This paper is organized as follows. In Section II, the agent
identification scheme using a sparse Bayesian model is de-
scribed, along with a discussion on how to address the issue of
signature mismatch. Section III contains the numerical results.
Conclusions are drawn in Section IV.

II. PROPOSED AGENT IDENTIFICATION SCHEME

Since the size of the signature library is much larger than
the number of agents present in the real sample, the true abun-
dance fraction vector is a sparse vector with many zero en-
tries. By assuming as a random variable with some prior pdf
and incorporating the sparsity constraint into the estimator, a
Bayesian approach can be developed with improved estimation
accuracy over conventional methods. In the following, we solve
the sparse abundance fraction vector in the Bayesian frame-
work, which has been investigated extensively in the machine
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learning community [9]–[11]. Henceforth, the Gaussian distri-
bution
is written in an abbreviated form as .

A. Weight Prior

To promote sparsity, a super-Gaussian prior with the fol-
lowing form is adopted in [12]:

(2)

where . Given such a prior, the maximum a poste-
riori (MAP) estimator for the abundance fraction vector can be
shown to be

(3)

where represents the norm and is a tradeoff parameter
to balance between the degree of sparsity and the data fitting
error. As the value of approaches 0, (3) reduces to the fol-
lowing optimization for the MAP estimator:

(4)

where the quasi-norm counts the number of nonzero
entries in . Formulation (4) is a non-convex optimization
problem. It can be solved by an exhaustive search which is
highly impractical. Instead, when , an alternative opti-
mization is

(5)

where represents the norm defined as
. Note that (5) is convex and can be solved efficiently

[13]–[15]. Using (5), the true sparse weight vector can be
identified with a high probability under mild conditions, for
example, when the amplitudes of the nonzero weights are
sufficiently large [16], or the degree of coherence between
columns of the matrix is small enough [17]. Analysis of
such conditions and properties of (5) is a major subject in the
community of compressive sensing [18], where a theoretic
framework exists.

The sparse Bayesian learning of [9]–[11] makes use of a hi-
erarchical weight prior

(6)

where denotes the th element of and the conditional den-
sity is a zero-mean Gaussian distribution with variance

. The hyperparameter is the inverse variance (precision)
of the Gaussian density function. With the Gamma-distributed
hyperprior [9]

(7)

where is the shape parameter, is the inverse scale parameter
and is the gamma function, the hierar-
chical prior after carrying out the integration in (6) is a student-t
distribution [10]. Selecting various values for and will result
in special hyperpriors and hence different prior distributions.

For example, with and , the hyperprior turns into
a log-uniform distribution: . This
is a noninformative hyperprior and employed in the relevance
vector machine (RVM) [10] to promote sparsity. With , the
hyperprior turns into an exponential distribution, which leads
to a Laplacian prior [11]. Compared with the Bayesian model
using the Laplacian prior and the -norm constrained minimiza-
tion (5), which have to tune some parameters during estima-
tion, the Bayesian model using the noninformative hyperprior
can estimate all the parameters automatically. Therefore, in the
following sections, we choose and in the sparse
Bayesian model to estimate the abundance fraction vector.

B. Sparse Bayesian Model

In the Bayesian framework, based on a prior distribution
which is formulated over the unknown parameters to describe
the problem of interest, the posterior distribution can be derived
by applying Bayes’ rule [19].

First, the noise vector in (1) is assumed to be Gaussian dis-
tributed with zero mean and variance , where denotes
the -dimensional identity matrix. A prior over the abundance
fraction vector is assumed to be

(8)

where means the random vector conditioned on the pa-
rameter , contains all hyperparameters
and is a diagonal matrix indicating the inverse
variance (precision) of each mixing coefficient. The likelihood
of the observed data can be written as

(9)

By Bayes’ rule, the posterior over the weight vector can be
shown to be (see Appendix A for the derivation)

(10)

where

(11)

C. Abundance Fraction Vector Estimation

Given and , the abundance fraction vector can be esti-
mated by minimizing the Bayesian mean square error (MSE)
[20]

(12)

The solution is well known to be the posterior mean [20]

(13)

That is, the optimal Bayesian MSE estimator is the mean of the
posterior pdf . With the Gaussian posterior (10), it
can be shown easily that the Bayesian MSE estimator is equiv-
alent to the MAP estimator [20]. Therefore, we have

(14)
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Compared with the maximum-likelihood (ML) estimator
, the Bayesian MSE estimator (14) has

an extra term related with the hyperparameters so it depends on
both the data and the prior knowledge. This is expected to be
able to improve the estimation accuracy.

D. Hyperparameters Estimation

The hyperparameters need to be determined before calcu-
lating the optimal Bayesian MSE estimator (14). One way to
find the hyperparameters is to use the type-II maximum likeli-
hood [9].

Specifically, the marginal likelihood is (see Appendix A for
the derivation)

(15)

where . By differentiating the log mar-
ginal likelihood with respect to and and setting them to
zero, the hyperparameters are given by (see Appendix B for the
derivation)

(16)

where , is the th entry of and is the th
diagonal element of . Since the calculation of and requires
the values of and , the hyperparameters and the posterior
statistics are solved in an iterative way as follows.
Step 1) Initialize and .
Step 2) Calculate and using (11).
Step 3) Update and using (16).
Step 4) Removing signatures corresponding to or

from .
Step 5) Repeat Steps 2–4 until convergence.

To help understand the behavior of this iterative procedure,
we consider the case where columns of are orthonormal so
that . In this case, . It is ap-
parent that as approaches infinity, tends to be zero. In ad-
dition, (16) infers that larger entries in are always updated by
multiplying with larger coefficients during iteration. Therefore,
the above procedure can reinforce some of the entries in while
suppressing others to generate sparsity. Note that in Step 4, be-
sides removing signatures with , those agents with neg-
ative abundance fraction estimations are also determined to be
absent. This is based on the physical meaning that the abundance
fraction must be nonnegative. Later experiments will show that
this is an effective way to reduce the error of the abundance frac-
tion estimation and the false-alarm rate.

As shown in Appendix C, by expectation maximization (EM)
[21], the same update formulations can be derived for the hy-
perparameters. If we do not force the negative abundance es-
timations to zero, the convergence of the above iteration can
be guaranteed by the inherent property of the EM algorithm.
In Appendix C, we prove that in the updating procedure of the
sparse Bayesian method, forcing the negative abundance esti-
mations to zero will not change the convergence of the iteration.

E. Agent Identification

In the sparse estimate of , irrelevant components are ex-
actly zero. Therefore, the criterion for identifying agents is quite
straightforward. Zero coefficients indicate the absence of the
corresponding components. Nonzero coefficients are the esti-
mated abundance fractions of agents present in the mixture. In
summary, the agent identification scheme is as follows.
Step 1) Construct the regression matrix by signatures of

all possible targets stored in the spectral signature
library and the observation vector by the spectrum
of the sample to be identified.

Step 2) Solve the weight vector by , where
is evaluated by the iterative procedure described in
Section II-D.

Step 3) Identify the presence and absence of agents by the
value of . If is equal to zero, the agent as-
sociated with the spectrum in the th column of
is absent. Otherwise, the agent is determined to be
present with the estimated abundance fraction .

F. Signature Mismatch

Stochastic variations of signatures usually occur when the
target spectra are measured in real systems and environments.
We show an example here. The THz spectra of nine bacteria are
measured three times. The principal component analysis (PCA)
plot for these spectra is shown in Fig. 1. It is observed that the
principal components (extracted features) of different bacteria
are far away from each other but those for the three measure-
ments of the same bacteria gather together closely. We compute
the spectral correlation coefficients of the same bacteria and find
that all of them are approaching one (larger than 0.999) while
those values between different bacteria are much smaller. The
large correlation coefficients imply that we can model the nom-
inal signature (the one stored in the signature library) as follows:

(17)

where represents the true signature (the one generating the
mixture), denotes a multiplicative factor whose value is
around one, and denotes the additive fluctuation at different
frequency bins, which is modeled as a zero-mean Gaussian
distributed random vector with the covariance matrix equal to

. Hence, the data model using the nominal signatures is
reformulated as

(18)

where

(19)

We can see that the zero elements in and are at the same
positions, so that the unknown multiplicative factor has no influ-
ence on the sparsity of the abundance fraction vector. Moreover,
the new noise term follows the Gaussian distribution with zero
mean and variance . Therefore, the fluctuation
of signatures can be attributed to the measurement noise and
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Fig. 1. PCA plot for the THz spectra of nine bacteria.

implies the decrease of the signal-to-noise ratio (SNR). Mean-
while, it can be observed that if the multiplicative perturbation
exists, the influence of perturbations on the SNR is related with
the magnitudes of the nonzero entries in . If the sum of the
abundance fractions of all components is equal to one, the noise
power is

(20)

III. NUMERICAL STUDIES

In our numerical studies, the abundance fractions of agents
are estimated by the following methods: the sparse Bayesian
model (SBM) using the noninformative hyperprior and taking
into account the nonnegativity of the abundance fractions, as de-
scribed in Section II-D, the NCLS algorithm and the orthogonal
matching pursuit (OMP) method. Among these approaches, the
NCLS algorithm has been used in [5] and [6] for agent identifi-
cation based on the least squares optimization and the nonnega-
tive constraint. The OMP method selects the relevant atoms by
correlating them with the residual in a constructive way [13].

A. Experiments With Accurate Spectral Signatures

To illustrate the identification performance of the proposed
method, in the following experiments, the UV to IR spectral re-
flectance of 30 materials are downloaded from the USGS spec-
tral library (http://speclab.cr.usgs.gov/spectral.lib06/) and used
to form the regression matrix . A spectral mixture is manually
formed by superimposing the reflectance of three materials with
the equivalent abundance fraction 1/3. As typical SNRs of the
actual spectrometers are not below 30 dB when the water ab-
sorption bands have been removed [3], our simulations assume
that the observations are corrupted by the white Gaussian noise
(WGN) with the SNR of 30 dB, where [3], [4]

SNR (21)

Fig. 2. Spectral reflectance of the three substances and the mixture with the
SNR of 30 dB.

The spectral reflectance of the three substances and the mixture
are plotted in Fig. 2.

Based on the definitions given in [6], the probability of detec-
tion is computed by

(22)

while the probability of false alarm is computed by

(23)

where represents the number of trials in which the condi-
tion in the subsequent bracket is satisfied and is the threshold
ranging within [0.01, 1] with the uniform log spacing. We mea-
sure the probabilities of detection and false alarm as the average
with respect to the whole present and absent agents instead of
a single one because the identification performance may vary
among agents. Note that the definitions of and are dif-
ferent from those found in standard detection literatures (e.g.,
[19]). The choice of is closely related with the accuracy of the
abundance estimation. To avoid confusion and observe the con-
nection between the detection performance and the estimation
accuracy, instead of plotting the receiver operating curve (ROC),
the curves of and versus are shown in Figs. 3, 4. It is
observed that both the NCLS and the OMP methods cannot beat
SBM in terms of the identification performance.

Fig. 5 shows the histogram plotted by counting the abundance
estimates of all the three present agents obtained in 10 000 trials.
The -axis denotes the frequency of the estimates occurring in a
narrow interval so the profile of the histogram is an estimate of
the posterior distribution of the abundance. It can be seen that
the mode of the posterior distribution estimated by the NCLS
algorithm has a significant bias from the true abundance. Fig. 6
is plotted in the same way for the 27 absent agents. It is observed
that SBM achieves a higher probability of producing estimate

for those zero-valued true abundances.
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Fig. 3. Probability of detection obtained by the SBM, NCLS, and OMP
methods.

Fig. 4. Probability of false alarm obtained by the SBM, NCLS, and OMP
methods.

Fig. 5. Histogram of the abundance estimates for the agents present in the mix-
ture, with the dashed line denoting the true abundance fraction.

The above results are obtained by using observa-
tions (spectral bands). In some scenarios, the spectral resolution
could be lower. By changing the interval of the wavelength, the
identification performance under different numbers of observa-
tions is measured. The mean square error (MSE) of the esti-

Fig. 6. Histogram of the abundance estimates for the absent agents, with the
dashed line denoting the true abundance fraction.

Fig. 7. Mean square error (MSE) of the estimated abundance fractions for the
present agents.

mated abundance fractions for agents that are present is calcu-
lated by running 10 000 trials:

(24)

The curves in Fig. 7 show that SBM has the smallest MSE even
under very low spectral resolution.

All the above results show that the performance of the OMP
method is undesirable. We notice that the maximum coherence
of the spectral signatures between different agents in the spectral
library is up to 0.998. The condition number of the matrix - is
over 2820. This highly ill-conditioned situation can not satisfy
the sparse recovery condition studied in [13] for the OMP algo-
rithm even with high SNR. This is the main reason why OMP
fails to find a good approximation for the sparse solution in our
application.

B. Experiments With Mismatched Spectral Signatures

Numerical studies are carried out to demonstrate the agent
identification performance when the spectral signatures are not
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Fig. 8. Probability of detection obtained by the SBM, NCLS, and OMP
methods with accurate and mismatched signatures.

Fig. 9. Probability of false alarm obtained by the SBM, NCLS, and OMP
methods with accurate and mismatched signatures.

exactly consistent with the spectra generating the mixture. The
THz absorption spectra (within [0.18, 0.22] THz) of nine bac-
teria are used to form the spectral library in this experiment.
As shown in Fig. 1, the spectra of one bacterium collected in
two measurements are not exactly the same. In simulations,
one of them is used to form the mixture while another one is
saved in the signature library to simulate the mismatches occur-
ring in real applications. The probabilities of detection and false
alarm with accurate and mismatched signatures are compared
in Figs. 8, 9. It is observed that all the methods exhibit some
performance degradation with a decrease of the probability of
detection and an increase of the probability of false alarm when
mismatched signatures are used. We also notice that SBM out-
performs the other two approaches even in the case of signature
mismatch.

IV. CONCLUSION

A new agent identification method using a sparse Bayesian
model has been introduced and investigated in this paper. By

making use of the sparsity constraint of the abundance frac-
tion vector, the proposed method yields significantly improved
identification performance. The nonnegativity of the abundance
fractions is taken into account and the convergence of the itera-
tive algorithm is proved. The influence of the spectral signature
mismatch has also been studied. The sparse agent identification
scheme is applied to two sets of real data to demonstrate the per-
formance in comparison with a few benchmark methods.

APPENDIX

For self completeness, the derivations for the weight poste-
rior, the marginal likelihood and the hyperparameters are pro-
vided in detail in Appendices A and B although similar mathe-
matics can be found in literatures (e.g., [9], [10], [20]). More-
over, the convergence of the iterative algorithm introduced in
Section II-D is proved in Appendix C.

A. Derivation of the Weight Posterior (10) and the Marginal
Likelihood (15)

By rearranging the exponential terms in (8) and (9), the
product of the likelihood and the weight prior can be written as

(25)

where

(26)

Using the Woodbury matrix identity [22], we get

(27)

It is easy to show that

(28)

According to Sylvester’s determinant theorem [22], we have

(29)

Therefore, (28) is equal to . According to Bayes’
rule, we know that

(30)

Comparing (25) and (30), it is clear that the expressions for
the weight posterior distribution and the marginal likelihood are
given by (10) and (15), respectively.
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B. Derivation of the Hyperparameters (16)

In order to calculate and , the hyperparameters and
need to be estimated first. They can be obtained by maximizing

, which is proportional to .
When log-uniform hyperpriors are assumed, the optimization
reduces to maximizing the marginal likelihood .
Ignoring the terms irrelevant with the hyperparameters, the
logarithm of the marginal likelihood (15) is

(31)

Let . Based on (29), we can derive

(32)

Therefore, the first term in the right side of (31) is rewritten as

(33)

By replacing by the form expressed in (26), the second term
of (31) becomes

(34)

Substituting (33) and (34) into (31), we get the log marginal
likelihood as follows:

(35)
The derivative of with respect to is

(36)

where Tr denotes the trace of the matrix and represents a
diagonal matrix with all entries equal to 0 except the th diagonal
element. Setting (36) to zero yields

(37)

where . In practice, the latter form of the above
update equations shows a higher convergence rate.

The derivative of with respect to is

(38)

By

(39)

we know that

(40)

Substituting (40) into (38) and setting (38) to zero, we obtain

(41)

C. Proof of the Convergence of the Iterative Algorithm in
Section II-D

Treating the abundance fraction vector as a hidden vari-
able, and are chosen to maximize the log marginal likeli-
hood
by the EM algorithm [9], [21].

First, we consider the update of assuming a fixed . Define

(42)
According to Jensen’s inequality [21], we have

(43)

This inequality implies that any which can increase the left-
hand side will definitely increase the right-hand side. By the EM
algorithm, is chosen to maximize instead
of . Therefore, ignoring independent terms in ,

is updated by

(44)

where

(45)

With (8) and (10), is derived to be

(46)

By , we can derive

(47)

In the current estimate , we assume that the negative en-
tries are denoted by , . Forcing nega-
tive abundance estimations to zero, all the affected variables are
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expressed by new notations with the superscript . The change
of is

(48)

where

(49)

and

(50)

Removing signatures corresponding to is equivalent to
and , so we can infer

that

(51)

Since is chosen to maximize , we have

(52)

The above inequalities lead to

(53)

This inequality implies that is nondecreasing as is
updated for each iteration even if we force the negative abun-
dance estimations to zero.

Second, we consider the update of for given . With the
same idea, is chosen by

(54)

where

(55)

By differentiating with respect to , the update equa-
tion for can be derived as

(56)

This is the same as that derived in Appendix B. Forcing the
negative abundance estimations to zero, at the

th step is changed by

(57)

where

(58)

and

(59)

By (47), it is easy to show that and hence
. Moreover, since the true abundances

are nonnegative, the residual obtained by must be
smaller than . These inequalities lead to

(60)

Based on (53) and (60), we know that is nondecreasing
as and are updated for each iteration considering the non-
negativity of the abundance fractions. For the Gaussian mar-
ginal likelihood, is bounded from above. Therefore,
we can arrive at the conclusion that the iterative algorithm in
Section II-D converges.
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