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Joint Dimension Assignment and Compression
for Distributed Multisensor Estimation

Jun Fang and Hongbin Li, Member, IEEE

Abstract—We consider distributed estimation of a random
vector parameter by a wireless sensor network (WSN). To meet
stringent power and bandwidth budgets in WSN, local data
compression is performed at each sensor to reduce the number
of messages sent to a fusion center (FC). Under the constraint
of a given total number of messages, our problem is to jointly
determine the number of messages sent by each senor (a.k.a.
dimension assignment) and design the corresponding compression
matrix. The problem is formulated as a constrained optimization
problem that minimizes the estimation mean-square error (MSE)
at the FC. We analyze the problem using a subspace projection
technique, which yields an efficient iterative solution. Numerical
results are presented to illustrate the effectiveness of the proposed
algorithm.

Index Terms—Distributed estimation, joint dimension assign-
ment and compression, wireless sensor network (WSN).

I. INTRODUCTION

THE PROBLEM of distributed estimation in wireless sensor
networks (WSNs) has been of significant interest over the

past few years. Due to limited power and communication band-
width, some previous works (e.g., [1]–[4]) consider distributed
estimation using aggressively quantized versions of the original
observations. In this setup, quantization becomes an integral
part of the estimation process and is critical to the estimation
performance. Another category of methods (e.g., [5]–[9]), not
relying on the above low-rate quantization strategy, follows an
optimal decentralized compression-estimation approach to re-
duce the transmission requirement. In these methods, the data
dimensionality is reduced before each sensor sends its data to a
fusion center (FC). Upon receiving the compressed data, the FC
combines them according to some fusion criterion to obtain a
final estimate. The crux of these techniques is to design the com-
pression matrix so as to minimize the estimation mean-square
error (MSE), which has been extensively investigated by [5]–[9]
under different fusion criteria and noise correlation scenarios.
These techniques, however, require knowledge of the compres-
sion dimension associated with each sensor a priori. For the in-
homogeneous environments, sensors at different locations may
have dissimilar observation qualities, and it is necessary to turn
off sensors with low-quality observations or use an aggressive
compression dimension for these sensors. In this case, the above
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methods are limited since they require to set the compression di-
mension for each sensor, which is a tricky problem in practice.
Hence, a data compression solution with automatic dimension
allocation is desirable.

In this letter, we study joint compression dimension al-
location and linear compression design under a bandwidth
constraint. The bandwidth constraint is measured by the total
number of real-valued messages (each message is a one-dimen-
sional unquantized data sample) sent to the FC, or, equivalently,
the sum of the total compression dimensions. We develop an ef-
ficient iterative algorithm that provides us an effective solution
to the joint design problem. The proposed algorithm, unlike
[5]–[9], can jointly determine the compression dimension and
the corresponding compression matrix associated with each
sensor. It, therefore, offers not only more flexibility but also a
performance advantage over existing methods for distributed
estimation in inhomogeneous environments.

We adopt the following notations throughout this letter. The
notation stands for matrix transpose. represents the
mathematical expectation. Also, we use to represent the
trace operation of matrix , and to indicate the
range (column) space and null space of matrix , respectively.
The symbol represents the identity matrix of size .

denotes the set of matrices with real entries.

II. PROBLEM FORMULATION

Consider a WSN consisting of spatially distributed sen-
sors, in which each sensor makes a noisy observation of the un-
known vector parameter (e.g., [7]) as follows:

(1)

where is the known observation matrix defining
the input/output relation, and de-
note vector observation and noise, respectively. The unknown
parameter and the noise are assumed statistically inde-
pendent of each other, with zero-mean and covariance matrices

and , respectively, where
. We assume that there is no inter-sensor

communication and the channel links between the sensors and
the FC are ideal, i.e., noiseless. We also assume the knowledge
of the covariance matrices and at the FC. In practice,
they can be estimated from the sensors measurements in the ab-
sence/presence of signal (e.g., [5]). Note that in this letter, for
simplicity, we only confine ourselves to the linear data model
(1) and ideal channel scenarios. Dimensionality reduction under
complicated scenarios like nonlinear data model and non-ideal
channel links was studied in [9].
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Let , and
. We can rewrite (1) in a more

compact form as

(2)

where , and . If
the FC has access to all sensors data, the linear unbiased min-
imum variance (LUMV) estimate for is known as (e.g., [5],
[7])

(3)

with the estimation covariance matrix of given by

(4)

where and
. Also, is assumed to be a positive-defi-

nite matrix with arbitrary spatial correlation (in some works,
e.g., [7], can be positive semi-definite). Although (3) gives
the best estimate, this scheme requires sending all sensors data
to the FC, which may be impractical for WSNs with stringent
power and bandwidth budgets. A feasible solution is to reduce
the transmission requirement through local data dimensionality
reduction (also called “compression”). Due to the information
redundancy arising from spatial correlation, this scheme is able
to bring significant bandwidth savings while providing an ac-
ceptable estimation accuracy.

Since the compression dimension associated with each sensor
is unknown and has to be determined, the previous works [5]–[9]
are no longer applicable. To cope with such a situation, we in-
troduce the following compression strategy to accommodate the
unknown compression dimensions

(5)

where

...
(6)

is an full row rank compression matrix, and is
the pre-specified total number of messages to be sent to the FC.

, a selection matrix used to select sensor th’s
data, is a submatrix consisting of rows through of , where

. That is, is given by

(7)

is a row vector which is used to linearly com-
press the selected sensor’s data into a message.

We see that (6) provides a flexible framework to model the
compression matrix with unknown compression dimensions be-
cause every row of is free to choose any sensor. If multiple
rows of , say, rows, select the same sensor , it is equiva-
lent to reducing sensor ’s data dimensionality to ; if no
row corresponds to a certain sensor, this sensor is not selected.

Using the compressed data , the LUMV estimate of and its
estimation covariance matrix are given as follows, respectively:

(8)

(9)

Naturally, we may wish to find an optimal compression matrix
to minimize the estimation mean-square error (MSE). That is

(10)

We next study the optimization problem (10).

III. PROPOSED APPROACH

Because of the structure shown in (6), the optimization
problem (10) is equivalent to determining the sensor indices

and the corresponding compression vectors .
Joint searching over the sensor indices and the corresponding
compression vectors, however, is practically infeasible since it
involves a complexity that grows exponential with . An alter-
native way, like in [9], is to simplify the problem by reducing
the number of optimization variables. Specifically, we study
how to determine the th row of when the remaining
rows are fixed, through which we can develop an efficient
iterative algorithm to search for an effective, albeit suboptimal,
solution.

Let , where can be obtained through
eigenvalue decomposition (EVD) or Cholesky factorization. We
can rewrite the cost function in (10) as

(11)

where in ; in is used to represent a ma-
trix transformation that transforms the rows of the full row rank
matrix into an orthonomal basis, i.e., we find a nonsingular
matrix such that admits:

follows from the definition .
Without loss of generality, we discuss the determination of the
first row of , supposing that its last rows are given. We
write

(12)

where and denote the first row and
the last rows of , respectively, is a subma-
trix consisting of rows through of , in which

and . We note that and are
functions of the sensor index . Combining (10)–(12)), hence,
the optimization becomes

(13)
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Note that the matrix transformation in (13) is not unique
since if satisfies , then

also works for any orthogonal matrix , and it
makes no difference to the cost function. Our goal is to seek one
transformation that decouples the optimization variable from the
invariables. This can be accomplished by using a subspace pro-
jection technique as described next.

We construct the orthogonal projection onto and
, respectively, as

(14)

(15)

Then, we have the following result.
Proposition 1: For any full row rank matrix given in (12),

its matrix transformation can be written as

(16)

where

(17)

is a scalar normalizing the vector , and
represents any matrix transformation that transforms

the rows of into an orthonormal basis.
Proof: See the Appendix.

Observe that (16) has successfully separated the optimization
variable from the invariable as we desired. By utilizing Propo-
sition 1, the optimization (13) can therefore be re-expressed as

(18)

where the second term is independent of and and thus
can be ignored. The above optimization can be further reduced
to a one-dimensional search by replacing with its optimum

for every possible . Given a specified , the optimum
is determined by

(19)

We now discuss how to solve (19). Notice that for a spec-
ified is fixed, and is a
unit-norm vector which is a linear combination of the rows
of . Let denote the reduced
singular value decomposition, where ,
and is the rank of . Thus, we can write

(20)

where is an -dimensional row vector of unit
norm, i.e., . Therefore, (19) is equivalent to

(21)

where the row vector can be obtained as the eigenvector as-
sociated with the largest eigenvalue. Let can be
easily solved from

(22)

Equation (22) admits an unique exact solution when
and numerous exact solutions when . For the latter case,
we can pick any one of the solutions. After obtaining for
each is finally determined as

(23)

From the above discussion, we see that through the decou-
pling transform of Proposition 1, the optimization (13) can be
solved via (21)–(23). This effectively establishes an iterative al-
gorithm by successively optimizing and replacing each row of

. The algorithm is summarized as follows.
1) Randomly generate a selection matrix as an initializa-

tion.
2) At iteration : via (21)–(23), determine

given: ; determine given:

for .
Here we use to denote the th row of .

3) Go to Step 2 if , where
denotes the cost function defined in (10), is a prescribed
tolerance value; otherwise, stop.

Clearly, in this algorithm, every iteration results in a nonde-
creasing cost function value. Although not guaranteed to con-
verge to the global maximum, this algorithm converges to a sta-
tionary point and provides us a practical compression matrix
design.

IV. NUMERICAL RESULTS

We present numerical results to illustrate the estimation per-
formance of the proposed algorithm. In our simulations, we set

, and for any . The obser-
vation matrices are randomly generated with its elements
independently chosen as Gaussian random variables with zero
mean and variance . To simulate an inhomogeneous environ-
ment with varying signal-to-noise ratio (SNR), we let
for three sensors and for the rest of the two sensors.
Also, the signal and noise covariance matrices are chosen to be

and , respectively. Note that the sensors’
observations are still spatially correlated with covariance matrix

.
We compare our proposed method with the noncompression

scheme and the method [8] which requires the compression
dimensions to be set a priori. For the setup considered herein,
the methods of [5] and [9] yield similar performance as that
of [8] and are thus omitted. The noncompression scheme
uses all sensors data with its estimation covariance matrix
given by (4), which provides a benchmark (lower bound) on
the achievable performance of all rate-constrained methods.
For [8], we examine the case where the compression dimen-
sions assigned to all sensors are identical. Fig. 1 shows the
mean-square error (MSE) of the three schemes as a function
of the number of messages sent to the FC, . The results are
averaged over 200 Monte Carlo runs, and the observation
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Fig. 1. MSEs versus the total number of messages l sent by all sensors.

matrices are independently generated for each run. In
Fig. 1, the three points on the curve of the method [8] corre-
spond to

, and , respec-
tively, where denotes the compression dimension associated
with sensor . From Fig. 1, we see that our proposed method
has a performance advantage over the method [8] with identical
compression dimension assignment. The performance gain
is primarily due to the fact that our scheme is able to make
more efficient use of the total compression dimensions by
taking into account sensor disparity. In particular, it automat-
ically assigns more dimensions to sensors with high-quality
observations than to noisier sensors. For example, the di-
mension assignments obtained from one realization by our
proposed method are as follows:

: :
. We also observe that, for

a moderate , our proposed algorithm attains an estimation
accuracy comparable to that of the noncompression scheme.
Notice that for the noncompression scheme, a total number of

messages are sent to the FC. Hence, a considerable
bandwidth savings is achieved by our proposed method.

V. CONCLUSION

The problem of distributed parameter estimation is studied in
this letter. In order to meet the bandwidth constraint in wireless
sensor networks, each sensor compresses its data before trans-
mitting it to the fusion center. We developed an efficient itera-
tive algorithm that jointly determines the compression dimension
and the corresponding compression matrix associated with each
sensor. Simulation results show that our proposed algorithm can
effectively capture the observation quality difference across the
sensors and provide efficient dimension assignment. Also, it can
achieve a considerable bandwidth savings at a small performance
degradation as compared with the noncompression scheme.

APPENDIX

PROOF OF PROPOSITION 1

To prove (16), we need to show that the rows of the matrix on
the right-hand side of (16) is an orthonormal basis for the row

space of . For notational convenience, let

We, firstly, verify that the rows of are normalized or-
thogonal vectors. Since for any

, we have and consequently
. Therefore, we have

(24)

We now show that and have the same row space. To this
end, we demonstrate that every row of can be represented
by a linear combination of the rows of , and vice versa. Since
we can write , where is an
invertible matrix, we only need to examine the first row of the
respective matrices. We have

(25)

and further, we write

(26)

where in . From
(26), we observe that and are
linear combinations of the rows of the matrices and , re-
spectively. The proof is completed here.
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