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We propose a graph-based method for distributed event-region detection in a wireless sensor network (WSN). The proposed
method is developed by exploiting the fact that the true events at geographically neighboring sensors have a statistical dependency
in an event-region detection scenario. This spatial dependence amongst the sensors is modeled using graphical models (GMs) and
serves as a regularization term to enhance the detection accuracy. The method involves solving a linear system of equations, which
can be readily implemented in a distributed fashion. Numerical results are presented to illustrate the performance of our proposed
approach.
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1. INTRODUCTION

With the emergence of low-cost and low-power sensors capa-
ble of limited computation and communication, the poten-
tial applications of WSNs for physical environment monitor-
ing have become well appreciated and received much atten-
tion over the past few years [1–5]. In this paper, we focus on
one particular class of environment surveillance problems:
determining the event regions in an environment from the
sensors’ noisy observations. Such a problem arises in many
scenarios. For example, as part of a building safety system, a
WSN may be used to monitor hot spots and smoke. Also, us-
ing a WSN to sense the concentration of some chemical, we
need to identify which regions have a chemical concentration
greater than some threshold.

Consider a WSN composed of N geographically dis-
tributed sensor nodes, each sensor makes K noisy observa-
tions of its local signal values:

xn(k) = μn
(
βn
)

+wn(k), k = 1, . . . ,K , (1)

where xn denotes the nth sensor’s measurements, wn denotes
the zero mean independent and identically distributed (i.i.d.)
Gaussian noise, βn has a binary value with βn = 1 indicating

event (signal) presence, and βn = 0 indicating event (signal)
absence at sensor n, and we have

μn(0) = 0, signal absence,

μn(1) = θn, θn is the unknown nonzero signal.
(2)

The above model allows for space-varying signal values, that
is, θn can be dissimilar at different sensors. This corresponds
to practical scenarios where the signal levels, such as the
chemical concentration, vary across the event-region. The
above formulation of event-region detection differs from the
traditional distributed detection problem [3, 4] in two as-
pects. Firstly, the probability distributions of the sensor ob-
servations are usually assumed known a priori in [3, 4],
while this is not the case for the event-region detection prob-
lem because the signal {θn} is generally unknown. Secondly,
the objective of event-region detection is to identify the lo-
cations where event occurs in a sensor network environ-
ment. This is different from previous detection techniques
[3, 4] that are developed for hypothesis testing of global
phenomena.

A simple approach for event-region detection is to let the
sensors make their decisions based only on their own mea-
surements. This can be solved by the generalized likelihood
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ratio test (GLRT). The local one-sided (suppose θn > 0)
GLRT at each sensor is given as [6, 7]

β̂n = 1 if
σ2

0,n

σ2
1,n
I[0,∞)(xn) ≥ τGLRT,

β̂n = 0 otherwise,

(3)

where xn � (1/K)
∑ K

k=1xn(k), IA(xn) is the indicator function
whose value is equal to 1 if xn ∈ A and 0 otherwise, and we
have

σ2
0,n � 1

K

K∑

k=1

x2
n(k),

σ2
1,n � σ2

0,n − x2
n.

(4)

The threshold τGLRT can be determined based on a specified
probability of false alarm PFA, and such a choice of τGLRT is
independent of {θn} [6, 7]. This approach, albeit simple, ig-
nores the dependence among neighboring sensors. In prac-
tice, for a densely distributed sensor network environment,
an event-region usually spans across an area which includes
a certain number of sensors, and so does a nonevent region.
Hence the true event indicator values, {βn}, of neighboring
sensors are statistically dependent. By utilizing this spatial
dependence, it is expected that we can remove most of the
sporadic decision errors (false alarms and misses) caused by
the noise and faulty measurements of unreliable sensors.

Previous works on distributed event-region detection in-
clude [6, 8]. The work [6] models the distributed observa-
tions as a random field with a Markovian dependence struc-
ture and proposed an iterative method. Another work [8] in-
troduced a Bayesian decision algorithm based on local deci-
sions from neighboring sensors to identify the faulty mea-
surements. It requires a precise knowledge of the sensor fault
probability, which may not be available in practice.

In this paper, we use graphical models (GMs) to model
the spatial dependence amongst the sensors. GM, like
Markov random fields (MRFs), provides a natural frame-
work to represent the statistical dependency amongst a set
of variables by means of a graph [9]. It has been widely em-
ployed in WSN applications, for example, [10–14]. Since the
true event indicators {βn}, as mentioned previously in event-
region detection scenarios, are locally dependent, they can
be modeled by a locally connected GM, in which only spa-
tially neighboring sensors are connected by nonzero weighted
edges. This encoded spatial dependence by GM serves as a
regularization term to smooth the local GLRT decisions such
that the final decisions, to some extent, match the expec-
tation that geographically adjacent sensors generally should
have similar decisions. We formulate the event-region de-
tection as an optimization problem which involves solving a
linear system of equations. Because of the locally connected
structure of the GM, solving the linear equations admits a
simple distributed implementation by using iterative matrix
inverse techniques such as the Richardson iteration. The re-
sulting implementation scheme only requires that each sen-
sor exchanges data within its neighbors and thus is energy
and bandwidth efficient.

2. PROPOSED DISTRIBUTED EVENT-REGION
DETECTION APPROACH

We model the WSN as an undirected graph G = (V ,E)
whose vertices V = {1, 2, . . . ,N} are the sensors and whose
edges E = {ei, j} represent the connections between any two
sensors. Each edge of the graph, joining vertices i and j, is
assigned a weight gi, j = gj,i ≥ 0 to measure the statistical
dependency between these two sensors. To capture the sta-
tistical dependency amongst geographically adjacent sensors,
we only set nonzero weights to the edges connecting neigh-
boring vertices (sensors); otherwise they are set to zero. We
choose gi, j as (see [15] for a detailed discussion on the con-
struction of a weighted graph)

gi, j = e−d
2
i, j /φ if j is among mNN of i or

if i is among mNN of j,

gi, j = 0 otherwise,

(5)

where di, j denotes the Euclidean distance between vertices
(sensors) i and j,mNN represents them nearest neighbors in
terms of Euclidean distance, φ and m are parameters of user
choice that will be discussed later. We collect all the weights,
{gi, j}, and form an N ×N symmetric weight matrix G.

2.1. Graph-based decision-dependent
regularization term

The statistical dependency amongst the neighboring sensors
is measured by the weight matrix. It can serve as a regular-
ization to update the initial estimates. We now discuss the
construction of this regularization term. Consider a scalar

function f � [ f1 f2 · · · fN ]
T

defined on the set of ver-
tices V = {1, 2, . . . ,N}, where fi corresponds to vertex i. A
natural way to measure how much the vector f varies from
our expected dependency amongst the neighboring vertices
(sensors) is by the following quantity:

N∑

i=1

N∑

j=1

gi, j
(
fi − f j

)2 (a)= 2fT(D−G)f

= 2fTLf ,

(6)

where

D � diag

{
∑

j

g1, j , . . . ,
∑

j

gN , j

}

; (7)

(a) follows from the fact that

N∑

i=1

N∑

j=1

gi, j f
2
j = fTDf ,

N∑

i=1

N∑

j=1

gi, j fi f j = fTGf ,

(8)

where L � D − G is the so-called graph Laplacian matrix
[16]. It can be readily observed that L is symmetric posi-
tive semidefinite and it has one null eigenvalue associated
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with the eigenvector 1, where 1 is the column vector with all
unity elements. Clearly, the smaller the value in (6), the bet-
ter the vector f matches the statistical dependency amongst
the neighboring sensors, and vice versa.

2.2. Hard decision regularization

We can use the regularization term defined in (6) to smooth

the local GLRT decisions. Let β̂ � [β̂1, . . . , β̂N ]
T

denote the

local GLRT decisions via (3), β̂r � [β̂r,1, . . . , β̂r,N ]
T

denote
the regularized decisions, then we can formulate the estima-

tion of β̂r as the following constrained optimization prob-
lem:

min
β̂r

λβ̂r

T
Lβ̂r +

(
β̂r − β̂

)T(
β̂r − β̂

)

s.t. β̂r,n ∈ {0, 1}, ∀n ∈ {1, . . . ,N},
(9)

where, as indicated before, the first term serves as the regular-
ization term to account for the spatial dependence; λ is a pos-
itive coefficient controlling the participation degree whose
choice will be discussed later; the second term represents the
distance between the two vectors β̂ and β̂r, which should be
minimized along with the regularization term. Clearly, this
optimization is essentially a tradeoff between smoothing the
decisions (to match our defined statistical dependency) and
fitting the data. Note that the spatial smoothing effect can
be easily observed from the fact that the regularization term
has a minimal value, that is, zero, when the decisions at all
sensors are identical, whatever they are ones or zeros. The
optimization, therefore, penalizes isolated decisions that are
different from their neighbors. Since decision errors (false
alarms and misses) caused by noise and unreliable sensors
usually occur in an independent and sporadic way, the op-
timization helps suppress false alarms and enhance event-
region detection.

Note that the above constrained optimization problem is
NP-hard. To make it tractable, we relax β̂r to take on real val-

ues. The real-valued solution β̂r can be obtained by solving
the following equation:

(λL + I)β̂r = β̂, (10)

where I denotes the identity matrix and

β̂r = (λL + I)−1β̂. (11)

This real-valued solution, obviously, will not satisfy the con-

straint β̂r,n ∈ {0, 1}. Nevertheless, a splitting point (also
called threshold), τR, can be employed to transform this real-
valued solution into a discrete form, that is,

β̂r,n =
⎧
⎨

⎩
1 if β̂r,n ≥ τR,

0 otherwise.
(12)

We will discuss the determination of τR in the later part of
this paper.

2.3. Soft decision regularization

For the case where the noise is i.i.d. across all the network
and the signal values inside the event-regions are constant,
that is, θn = θ,∀{n | βn = 1}, the sample mean value,

xn � (1/K)
∑ K

k=1xn(k), can be regarded as local soft decision
at sensor n since a larger value of xn indicates a higher pos-
sibility of event presence. Hence we can further extend our

approach by replacing β̂ in (9) with the sample mean vector

x � [x1 x2 · · · xN ]
T

. To simplify the exposition, here we

allow an abuse of notation β̂r to denote the regularized soft
decision vector which allows for real values. It can be solved
as

min
β̂r

λβ̂r

T
Lβ̂r +

(
β̂r − x

)T(
β̂r − x

)
, (13)

and consequently,

(λL + I)β̂r = x. (14)

The soft decision vector can also be transformed into hard
decisions by using a threshold. As compared with the
hard decision-based regularization, the soft decision-based
method is able to provide a better performance since, for
the hard decision case, some information about the observed
data is lost after the 1-bit quantization, that is, computing the
local GLRT decisions.

2.4. Choice of parameters

In this section, we discuss the choice of the parameters re-
lated to our proposed method. The parameters m and φ
are used to quantify the statistical dependency among geo-
graphically adjacent sensors, in which m defines the degree
to which the statistical dependency extends, and φ controls
the values of the weights. Generally speaking, we can choose
m from 1 to 4 according to the network topology. If the sen-
sors are densely deployed in a 2D plane, a larger value such as
m = 3 or m = 4 may capture the local statistical dependency
better; if the sensors are placed along a line, then a smaller
value such as m = 1 or m = 2 could be more appropriate.
Such a choice of m indicates that one sensor is statistically
correlated with its closest sensors, which is generally true for
most event-region detection scenarios where the sensors are
densely distributed. As for φ, it can be chosen to guarantee
a < gi, j ≤ 1 for any nonzero gi, j , where a can be set 0.5
or 1/e. Simulation results show that our proposed method
is not sensitive to m and φ as long as they are set in the above
ranges.

The parameter λ controls the participation degree of the
spatial smoothing term in the optimization. Clearly, a too
small λ may not provide a sufficient involvement to suppress
the false alarms. On the other hand, since 1 is the eigenvec-
tor of L associated with the smallest (zero) eigenvalue, a too
large λ admits an excessive spatial smoothing effect that has
the tendency to make the decisions homogeneous. Therefore,
an appropriate λ is desirable to our method. Generally speak-
ing, the choice of λ is dependent on the signal values, and the
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noise variance, and so forth. In practice, we may obtain some
coarse information about the signal, noise, and the event-
region from a small subset of sensor observations, which can
help us to determine an appropriate λ by a calibration pro-
cedure. The calibration procedure is also used in [6] for pa-
rameter choices. Generally speaking, a set of “training data”
are randomly generated by simulating noisy realizations of a
“calibration field.” Note that the calibration field is not the
true field to be detected but a field constructed from the
coarse information about the signal, noise, and the event-
region obtained from a small subset of sensor observations
of the true field (see [6, Section VI.D] for details). Using the
training data generated on the calibration field, we can deter-
mine an appropriate λ by minimizing the detection errors.

We discuss the determination of the threshold τR used
to discretize the real-valued vector β̂r. Unlike the GLRT ap-

proach, since the real-valued vector β̂r is obtained from β̂r =
(λL + I)−1β̂ or β̂r = (λL + I)−1x, the resulting entries {β̂r,n}
are correlated and the joint distribution of {β̂r,n} is depen-
dent on the events. In this case, even if we have knowledge
of the event-region and its related signal values, deriving an
analytical expression for τ to satisfy a specified false alarm
probability PFA is difficult. In practice, training data can be
used to help determine τR. Assume we have training data

{β̂i,βi}
Ntr

i=1, where β̂i denotes the local GLRT decision and βi
corresponds to the true event indicator value of sensor i. We
compute the corresponding regularized decision vector β̂r.
With the knowledge of the true event indicator values, we can
easily find the threshold τR to satisfy a specified false alarm
probability on the training data. The above discussion ap-
plies to soft decision case by simply replacing the local GLRT

decisions {β̂i} with the sample mean {xi}. We note that us-
ing training data has its disadvantages, for example, the accu-
racy of τR is affected by the capability of the training data in
capturing the true field. In practice, the training data should
have a good representation of the true field, for example, the
number of event-regions and their corresponding sizes.

3. DISTRIBUTED IMPLEMENTATION

We now discuss the distributed implementation of our pro-
posed method. Considering WSNs with a fusion center (FC),
we assume that the FC has knowledge of all sensors geo-
graphical locations by GPS or some other localization tech-
niques. Therefore, it can compute the weight matrix G and
consequently, the matrix (λL + I)−1 in advance and store the
computation results. We can have each sensor report its local

GLRT decision {β̂n}, along with its sensor index n, directly to

the FC. The FC then computes β̂r = (λL+I)−1β̂, which can be
turned into hard decisions by using the estimated threshold
τ. However, this implementation scheme may be impracti-
cal for the soft decision-based approach (13) since it requires
each sensor to send its real-valued data to the FC, which can
be quite bandwidth- and power-consuming. Another feasi-
ble implementation, like [6, 8], is to let the sensors in the
environment organize themselves and make decisions. This
scheme is described as follows.

Note that both (10) and (14) involve the inverse of the
sparse, positive definite matrix A � (λL + I). Hence itera-
tive matrix techniques that are readily implemented in a dis-
tributed fashion can be used to compute the exact closed-
form solution. Here we employ the modified Richardson
iteration [18, 19] to solve the linear equations (10) and
(14). The Richardson iteration for (10) and (14) is given
by

β̂r

(k+1) = β̂r

(k)
+ ω

(
β̂ − Aβ̂r

(k))
,

β̂r

(k+1) = β̂r

(k)
+ ω

(
x − Aβ̂r

(k))
,

(15)

respectively, where ω > 0 is a parameter that has to be
chosen such that ω < 2/ρ(A), and ρ(A) denotes the spec-

tral radius of A. This iteration results in a sequence {β̂r

(k)}
that finally converges to the correct solution. The proof of
the convergence of the Richardson iteration can be found
in [18, 19] or on the website.1 Note that for each row of
A, its nonzero entries only occur for those j ∈ Ni, where
Ni � { j | j is among mNN of i or i is among mNN of j} de-
notes the neighborhood of sensor i. Thus the update equa-
tions at each sensor can be written as

β̂
(k+1)

r,i = β̂
(k)

r,i + ω

(

β̂i −
∑

j∈Ni

ai, j β̂
(k)

r, j

)

,

β̂
(k+1)

r,i = β̂
(k)

r,i + ω

(

xi −
∑

j∈Ni

ai, j β̂
(k)

r, j

)

,

(16)

respectively, where ai, j denotes the (i, j)th element of A.
From (16), we can see that at every iteration, each sensor only
requires the data from its neighborhood for the update.

We summarize the implementation steps of this scheme
as follows.

(1) For each sensor i ∈ V , we randomly generate an initial

estimate β̂
(0)

r,i .
(2) At iteration k + 1 (k = 0, 1, . . . ), each sensor broad-

casts its estimate β̂
(k)

r,i , along with its sensor index i, to
its neighborhood Ni, and in the mean time, it collects
the data from its neighborhood sensors; based on the
received data, each sensor updates its estimate accord-
ing to (16).

(3) Stop if some preset convergence condition is satisfied;
otherwise go to Step 2.

(4) Each sensor makes its decision based on the final esti-
mate β̂r,i and the specified threshold τR.

As we can see, this implementation scheme is paral-
lel, involves communication only among neighboring sen-
sors, and therefore consumes minimal communication en-
ergy. This makes it applicable to WSN applications where
power and communication are of concern. Moreover, the

1 http://en.wikipedia.org/wiki/Modified Richardson iteration.

http://en.wikipedia.org/wiki/Modified$_$Richardson$_$iteration
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Figure 1: Noiseless field for hard decision case.
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Figure 2: Miss probabilities versus K .

convergence rate of the Richardson iteration can be con-
trolled by the parameter ω. Specifically, it is determined
by max i(|1 − ωμi|), where {μi} are eigenvalues of A. We
can maximize the convergence rate by choosing ω ∈
(0, 2/ρ(A)) to minimize max i(|1 − ωμi|). Besides the mod-
ified Richardson technique discussed here, there are some
other iterative algorithms, for example, [12, 13], to solve
the linear equation (14). These algorithms, as the modi-
fied Richardson iteration, admit distributed implementation
and, furthermore, they may provide faster convergence rate
and are more robust to the transmission errors amongst
sensors.
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Figure 3: False alarm probability versus miss probability.
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Figure 4: Noiseless field for soft decision case.

4. NUMERICAL RESULTS

We present simulation results to illustrate the performance
of our proposed algorithm. Similarly as [6], we consider a
WSN consisting of N = 300 sensors randomly distributed
on a 20 m × 20 m grid with 1 m uniform spacing. For each
sensor, it makes K local noisy observations: {xn(k)}Kk=1, the
noise wn is i.i.d. Gaussian distributed with zero mean and
variance σ2

w = 0.5. The following results are obtained by
simulating the distributed implementation scheme discussed
in Section 3, in which we assume ideal data transmission
amongst sensors. Experiments show that convergence can be
achieved within a few tens of iterations. We note that al-
though, in practice, the data transmission amongst sensors
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(a) Averaged observations, {xn}, as functions of the node locations
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(b) Real-valued soft decisions, {β̂r,n}, as functions of the node locations

Figure 5: One realization of the averaged noisy observations, {xn}, and its associated real-valued soft decisions, {β̂r,n}.

suffers from errors because of data quantization and chan-
nel noise, more sophisticated distributed matrix techniques
[12, 13], as mentioned in last section, can be employed to
enhance the robustness to the transmission errors amongst
sensors.

4.1. Results of hard decision regularization

We consider a field containing two event-regions as shown
in Figure 1. We have μn(1) = 1 for those sensors {n} in the
rectangle event-region, and μn(1) = 0.8 for those sensors {n}
in the circular event-region. In our simulations, the param-
eters φ and m in (5) are set 2 and 4, respectively. The coeffi-
cient λ controlling the spatial smoothing effect is chosen to

be 1, 5, and 10, respectively. The local GLRT decisions {β̂n}
are determined via (3), where the threshold τGLRT is cho-
sen to satisfy that the false alarm probability is 0.05, that is,

PGLRT
FA = 0.05. From β̂ we can compute a regularized decision

vector β̂r. The threshold τR used for binary decisions of β̂r is
chosen such that PR

FA = PGLRT
FA = 0.05, where PR

FA denotes
the false alarm probability of the proposed regularization
method. To overcome the difficulty we mentioned previously
(see Section 2.4) in obtaining τR, we use the knowledge of the
true event indicator {βn} to help determine τR to achieve the
specified PR

FA. Figure 2 shows the miss probabilities as func-
tions of K for the local GLRT approach and for our proposed
method under different choices of λ. The results are averaged
over 500 independent runs. We observe that, as compared
with the local GLRT approach, our proposed method is effec-
tive in reducing the miss probabilities under different choices
of λ, especially when the number of observations K is small.
We also see that an appropriate choice of λ should be related
to the signal-to-noise ratio (SNR), it is favorable to choose
a large λ for a low SNR while a small λ for a high SNR (note
that a largeK has the effect of improving SNR and vice versa).
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Figure 6: False alarm probability versus miss probability.

Let λ = 1 and K = 3, we plot the miss probability
versus the false alarm probability in Figure 3, where each
point on the curves corresponds to a value of (PFA,PM) for
a given threshold. Note that, when plotting the figure, since
our method does not provide an explicit expression in deter-
mining a threshold to obtain a specified PFA, we just choose a
set of thresholds and compute the (PFA,PM) associated with
each threshold. From the figure, we see that our proposed
algorithm presents a clear performance advantage over the
GLRT.
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4.2. Results of soft decision regularization

We now consider the soft decision version of our proposed
algorithm associated with the optimization (13). The field we
test here contains a rectangle event-region with μn(1) = 1;
see Figure 4. We set λ = 5 and K = 5. Figure 5 shows one re-
alization of the averaged noisy observations {xn} and its cor-

responding real-valued soft decisions {β̂rn} as functions of

the sensor locations, where {xn} and {β̂rn} are proportionally
scaled to [0, 1], respectively, and we use the grey levels to lin-
early represent the magnitudes of the scaled values (the larger
the value, the darker the point). It can be clearly seen that the
potential sporadic false alarms have successfully been sup-
pressed, whereas the event-region is intensified. To further
investigate the performance, we plot the miss probability ver-
sus false alarm probability in Figure 6. For our method, as we
did for the hard decision case, we choose a set of thresholds
and compute the (PFA,PM) associated with every threshold.
We see that our method presents a clear performance advan-
tage over the GLRT.

5. CONCLUSION

We have proposed a new method for distributed event-region
detection in WSNs, where the spatial dependence amongst
neighboring sensors is modeled using the GMs and serves
as a regularization. The method admits an energy and band-
width efficient distributed implementation. Numerical simu-
lation results show that our proposed method presents a clear
performance advantage over the local GLRT and is effective
in improving detection accuracy.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under Grant CCF-0514938.

REFERENCES

[1] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed, “Detection,
classification, and tracking of targets,” IEEE Signal Processing
Magazine, vol. 19, no. 2, pp. 17–29, 2002.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“A survey on sensor networks,” IEEE Communications Maga-
zine, vol. 40, no. 8, pp. 102–114, 2002.

[3] R. Viswanathan and P. K. Varshney, “Distributed detection
with multiple sensors—part I: fundamentals,” Proceedings of
the IEEE, vol. 85, no. 1, pp. 54–63, 1997.

[4] R. S. Blum, S. A. Kassam, and H. V. Poor, “Distributed detec-
tion with multiple sensors—part II: advanced topics,” Proceed-
ings of the IEEE, vol. 85, no. 1, pp. 64–79, 1997.

[5] A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained
distributed estimation for wireless sensor networks—part I:
Gaussian case,” IEEE Transactions on Signal Processing, vol. 54,
no. 3, pp. 1131–1143, 2006.
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