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Distributed Adaptive Quantization for Wireless
Sensor Networks: From Delta Modulation to
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Abstract—We consider distributed parameter estimation using
quantized observations in wireless sensor networks (WSNs)
where, due to bandwidth constraint, each sensor quantizes its
local observation into one bit of information. A conventional fixed
quantization (FQ) approach, which employs a fixed threshold
for all sensors, incurs an estimation error growing exponentially
with the difference between the threshold and the unknown
parameter to be estimated. To address this difficulty, we propose
a distributed adaptive quantization (AQ) approach, which, with
sensors sequentially broadcasting their quantized data, allows
each sensor to adaptively adjust its quantization threshold. Three
AQ schemes are presented: 1) AQ-FS that involves distributed
delta modulation (DM) with a fixed stepsize, 2) AQ-VS that em-
ploys DM with a variable stepsize, and 3) AQ-ML that adjusts
the threshold through a maximum likelihood (ML) estimation
process. The ML estimators associated with the three AQ schemes
are developed and their corresponding Cramér–Rao bounds
(CRBs) are analyzed. We show that our 1-bit AQ approach is
asymptotically optimum, yielding an asymptotic CRB that is only

2 times that of the clairvoyant sample-mean estimator using
unquantized observations.

Index Terms—Adaptive quantization (AQ), distributed estima-
tion, wireless sensor networks (WSNs).

I. INTRODUCTION

W lockIRELESS sensor networks (WSNs) have attracted
much attention over the past few years. Consisting of a

large number of small, low-cost sensors with integrated sensing,
processing, and communication abilities, WSNs can accomplish
a variety of tasks including environment monitoring, battlefield
surveillance, target localization and tracking, and many more
[1], [2]. Bandwidth and power constraints are two primary is-
sues that need to be addressed in WSNs, as limited communica-
tion bandwidth is shared across the entire network and, mean-
while, the sensors are often powered by irreplaceable batteries.
As such, a major challenge of the WSN research is to design
bandwidth- and power-efficient signal-processing techniques. A
multitude of studies along this line have appeared recently in
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the context of distributed detection (e.g., [3]–[7]), optimal de-
centralized compression-estimation by exploiting spatial corre-
lation (e.g., [8]–[10]), distributed estimation with quantized ob-
servations (e.g., [11]–[21]), and others.

A. The Problem

In this paper, we consider distributed estimation of a deter-
ministic unknown parameter from quantized observations in
a WSN. Suppose we have spatially distributed sensors. Each
sensor makes a noisy observation of an unknown parameter

(1)

where denotes the additive observation noise with zero mean
and variance , and the noise is assumed independent and
identically distributed (i.i.d.) across the sensors. To meet strin-
gent bandwidth/power budgets in WSNs, we consider the case
where each sensor uses a 1-bit quantizer

(2)

and the binary data are sent to a fusion center (FC) to form
an estimate of . The problem of interest is to determine suitable
binary quantizers for each sensor and an estimator
for the FC to form an estimate of the unknown parameter from

.

B. Past Related Works

The above distributed estimation problem has been consid-
ered in a number of studies. Specifically, by modeling as a
random parameter, Bayesian techniques were proposed in, e.g.,
[11]–[13]. Here “Bayesian” reflects the fact that these methods
design their quantizers with the aid of the prior distribution of
explicitly or implicitly. These methods usually require knowl-
edge of the joint distribution of and the observed signals for
quantizer design (an exception is [12], where a training set of
multiple realizations of and sensor observations are used in-
stead). Optimum Bayesian quantizers, though, are difficult to
obtain because they involve multidimensional search to find the
best quantization thresholds; moreover, the optimum Bayesian
estimator takes the form of a conditional mean that is usually
hard to compute.

Another category of methods treat as a deterministic
unknown parameter. A notable example is a fixed quantization
(FQ) approach, where a common threshold is applied at all
sensors [14], [15]. Although FQ admits a simple closed-form
maximum likelihood estimator (MLE), the fundamental
problem of FQ is that the choice of is very sensitive: the

1053-587X/$25.00 © 2008 IEEE



FANG AND LI: DISTRIBUTED AQ FOR WIRELESS SENSOR NETWORKS 5247

optimum threshold is not usable since it is unknown,
and the performance of FQ degrades exponentially as
increases [14], [15] (also see Section II for an overview). A
remedy proposed in [14] is to periodically apply a set of thresh-
olds with equal frequencies (through a periodic control signal
or dithering added before quantization), in the hope that one
of the thresholds is close to the unknown . Multithresholding
was employed in several other studies, including, e.g., [15] and
[18], the latter focusing on nonparametric estimation. Unlike
[14], [15] proposed an unequal-frequency multithresholding
strategy that allows some thresholds (in particular those closer
to ) being used more frequently than the others. This, how-
ever, requires knowledge of the prior distribution of , like the
Bayesian methods. Another recent method addressing quan-
tization with deterministically unknown was introduced in
[20], where the idea is to optimize the worst case performance
(by maximizing the minimum asymptotic efficiency between
two MLEs using quantized and, respectively, unquantized
observations).

C. Contributions of This Paper

The aforementioned quantization schemes can all be con-
sidered within the general class of FQ in the sense that the
thresholds are precomputed, fixed through the quantization
process, and independent of the data . In this paper, we
consider a data-dependent distributed adaptive quantization
(AQ) approach whereby the threshold is dynamically adjusted
from one sensor to another, in a way such that the threshold con-
verges to or near the unknown . We assume each sensor sends
its quantized data sequentially with the help of a scheduling
algorithm, e.g., [22], and while it transmits, the other sensors
can listen to the transmission (due to the broadcasting nature of
the wireless channel) and use the information to adjust its local
quantizer. This is different from earlier distributed estimation
techniques with bandwidth constraint (e.g., [11]–[15]), where
the sensors do not communicate with each other, although we
note that similar sequential transmissions have been adopted in
several other recent works for different applications (e.g., [21]
and [23]). The AQ approach was initially introduced in [24],
where a distributed delta modulation (DM) was used to vary the
threshold from sensor to sensor. In this paper, we make several
significant extensions leading to improved performance and,
in addition, provide analysis offering new insights into the AQ
approach.

Specifically, our new contributions are the following. First,
generalizing the DM-based scheme of [24], referred to as
AQ-FS herein, we introduce two additional AQ schemes,
namely, AQ-VS that employs DM with a variable step size
and AQ-ML that adjusts the threshold through an ML esti-
mation process. At moderately increased complexity, AQ-VS
and AQ-ML converge faster to and provide improved per-
formance. Hence, the three AQ schemes offer the flexibility
to tradeoff between performance and complexity. Secondly,
the MLEs and Cramér–Rao bounds (CRBs) for all three AQ
schemes are developed within a unified framework. Thirdly,
asymptotic analysis is provided leading to new insights un-
known before. In particular, while the CRB for AQ-FS in [24]
involves iterative calculations, we derive here an asymptotic

CRB in a closed form by using a stationary property of Markov
chain. Furthermore, we show that the CRB of AQ-ML asymp-
totically converges to that of the best (although practically
infeasible) 1-bit quantizer (i.e., the one that uses the ideal
threshold ) and is only 2 times that of the clair-
voyant sample-mean estimator using unquantized observations.

The rest of this paper is organized as follows. We first briefly
review some basic results of the FQ approach in Section II. The
proposed AQ schemes are presented in Section III. Next, we de-
velop the corresponding MLEs and CRBs in Sections IV and V,
respectively. Numerical results and comparisons are presented
in Section VI, followed by concluding remarks in Section VII.

II. PRELIMINARIES

To motivate and facilitate presentation of our AQ schemes,
the FQ approach is briefly reviewed here (see [14] and [15] for
details). FQ applies a fixed threshold for all sensors

(3)

where

if
if

The CRB of using to estimate is

CRB (4)

where and denote the probability density function
(pdf) and the complementary cumulative density function (ccdf)
of , respectively. The optimum 1-bit quantizer is obtained
by minimizing (4) with respect to . For Gaussian and several
other noise distributions, including Laplacian and Cauchy, the
optimum threshold is , and the minimum CRB is given
by

CRB CRB (5)

where NQ stands for “no quantization,” CRB de-
notes the CRB of using the unquantized data to estimate

, which is achieved by the clairvoyant sample mean estimator
that computes the sample mean of the unquantized data

(6)

The optimum 1-bit quantizer is not directly feasible since
is unknown. On the other hand, as deviates from , the CRB
for the Gaussian case can be tightly bounded by

CRB (7)

which indicates an exponential increase with .
The exponential degradation of performance is also shown in
Fig. 1, which plots the CRB (4) as a function of the threshold.

Although the performance of FQ is disappointing, its CRB
analysis reveals that to obtain good estimation performance,
should be placed close to . Also, as will be shown theoretically
in Section V, the more sensors use a threshold close to , the
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Fig. 1. CRB of the fixed quantization approach.

better the estimation accuracy will be. This motivates us to con-
sider the AQ approach that adaptively adjusts the quantization
threshold of each sensor such that it converges in some way to
the unknown .

III. PROPOSED AQ APPROACH

We assume that the sensors use the channel by time sharing
and sequentially transmit their quantized data, i.e., one sensor
transmits at a time. This can be achieved by using either a cen-
tralized scheduler (e.g., each sensor polled by the FC) or a dis-
tributed scheduler (e.g., a time-stamp-based scheduling algo-
rithm). We assume that the transmission of each sensor can be
heard by the subsequent sensors, due to the broadcasting nature
of the wireless channel. To focus on the quantization problem,
we assume that the data are received without errors (by using,
e.g., a strong error-correction code). Imperfect communication
due to noisy channels will affect the performance of all dis-
tributed estimation schemes, including ours. Albeit important,
we consider this a separate issue. Like most other techniques
(e.g., [11]–[20]), we do not assume knowledge of the multi-
link channels at any of the transmitting nodes, and, as such,
the quantizers are independent of the channel (noisy or noise-
less). Channel-aware quantization using channel feedback from
receiving to transmitting nodes for distributed detection is dis-
cussed in [25].

A. AQ-FS

The first AQ scheme, introduced in [24] and referred to here
as AQ-FS, is briefly summarized as follows. The 1-bit quantizer
at sensor 1 uses an arbitrary, say, , to generate

(8)

Then, is sent (broadcast) to the FC and all other sensors. After
receiving , sensor 2 computes , where is

a step-size parameter whose choice is briefly discussed below,
then analyzed in Sections V-B and VI, and generates

(9)

In general, for sensor , it first forms a cumulative sum

(10)

and then uses as a threshold for quantization

(11)

One can immediately recognize that the above process is rem-
iniscent of the delta modulation (DM) but is implemented in
a distributed fashion to solve a problem notably different from
the traditional waveform coding. The dynamic evolution of the
thresholds used by AQ-FS is illustrated in Fig. 2(a), where we
see converges near the unknown as increases.

B. AQ-VS

A closer examination of Fig. 2(a) shows that the evolution of
the threshold has two distinctive phases: a transient phase that
brings near and a convergent phase where oscillates
around . To speed up the convergence, we need a large step
size , whereas to reduce the granular noise after convergence,
we need a small . This shows the insufficiency of using a fixed

and motivates us to consider the following AQ with variable
step-size (VS) scheme.

Let and be generated the same as in AQ-FS. At sensor
, it performs accumulation of the previous bits, weighted

by a VS

(12)

where evolves using the following dynamic model:

(13)

where is a constant. We see that the step size is
adaptively adjusted based on previous two bits. Specifically, we
have

if and have same sign
otherwise (14)

The above adjustment is based on the observation that when suc-
cessive data bits have identical signs, with a high probability the
varying threshold is still in the transient phase and to speed up
the convergence, we should increase the step size. On the other
hand, alternating signs between successive bits indicate that the
thresholds are oscillating around and decreasing the step size
is desirable. The dynamic evolution of AQ-VS is depicted in
Fig. 2(b), where we see that AQ-VS is able to converge faster
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Fig. 2. Dynamic evolution of the quantization threshold versus sensor index. (a) AQ-FS, (b) AQ-VS, and (c) AQ-ML.

and stay closer to than AQ-FS. Finally, we note that it is pos-
sible to extend the above scheme to use more than two previous
bits to provide finer adjustment of the step size.

C. AQ-ML

The above AQ-VS is a linear adjustment scheme where the
step size is linearly scaled and, moreover, the combining logic
XOR that was used to combine and is also a linear
operator. Yet another AQ scheme, referred to as AQ-ML, can
be obtained by using nonlinear ML estimation to adjust the
threshold. Specifically, let be generated as in AQ-FS. Upon
receiving , sensor 2 computes , where is a step
size whose choice is discussed shortly and uses it to generate .
Based on the received , sensor 3 computes as

(15)

where denotes the likelihood function of and
is recognized as the ML estimate of given binary observations

and . The expression of the likelihood function along with
the ML solution for a general case is discussed in Section IV
and hence not repeated here. The step size used by sensor 2
should be large enough such that and have opposite signs.
Otherwise, it can be shown that obtained above is either in-
finity or negative infinity (depending on the signs of and ),
which should be avoided. Although there is always a nonzero
probability for and to have identical signs, the probability
can be made practically small by choosing sufficiently large.
In addition, if, for a chosen , the first two quantized bits are
still of an identical sign, the following sensors can keep using
AQ-FS or AQ-VS until a binary bit of a different sign is gen-
erated, at which point the quantization process is switched to
AQ-ML.

In general, for sensor , it first recovers the previous thresh-
olds from the received quantized data and
then find its own threshold by

(16)

where denotes the likelihood function
of given . The need to recover prior thresholds is be-
cause the likelihood function is conve-
niently expressed as a function of (see Section IV). Al-
though sensor has to perform 3 recursive ML estimations

( and are known), the complexity is moderate for Gaussian
noise (see discussions in Section IV). The dynamic evolu-
tion of AQ-ML is depicted in Fig. 2(c).

A few comments on the three AQ schemes are now in order.
First, all of them are random thresholding schemes since their
thresholds are random variables that converge toward (the
convergence of AQ-ML is exact, as shown in Section V-D).
After convergence, the thresholds stay near , and this, as will
be shown in Section V, is critical for getting good estimation
performance. Secondly, the thresholds used by each scheme
only depend on and can be inferred from the quantized data

. No extra bandwidth is needed to communicate the
thresholds. Thirdly, the three AQ schemes together offer the
flexibility of trading off between estimation accuracy and com-
plexity. AQ-FS and AQ-VS, involving only simple algebraic
calculations, are computationally attractive. At moderately
increased complexity, AQ-ML offers the best performance
among the three and converges to the best 1-bit quantizer,
shown in Section V-D. Lastly, we note that AQ-FS and AQ-VS
require no knowledge of the distribution of the data and can
be considered as nonparametric quantizers. On the other hand,
AQ-ML needs to know the pdf of the sensor observations.

IV. MAXIMUM LIKELIHOOD ESTIMATION

We now develop the ML estimators at the FC to find the final
estimate of given the binary data generated by
the three AQ schemes. ML estimation is also employed at all but
the first two sensors to determine the quantization threshold in
AQ-ML, and the implementation is the same. To determine the
likelihood function, we note that the binary data
generated by all three AQ schemes are correlated. This is in
contrast to i.i.d. binary data generated by FQ [see (3)]. Using
conditional probabilities, we can write the joint probability mass
function (pmf) of as

(17)
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where the conditional probability of given the threshold
used by sensor is

(18)

In the second equality of (17), the condition of the conditional
probability is changed since only depends on , which is a
function of generated by the first sensors. It
follows from (17) and (18) that the log-likelihood function (the
dependence on is suppressed for notational simplicity)

(19)

While the likelihood functions corresponding to the three
AQ schemes can all be expressed as in (19), it is important to
note that the likelihood functions are different (and so are the
MLEs) since the thresholds used by them are different.
Specifically, AQ-FS computes from the quantized data
via (10), AQ-VS uses(12) and (13), and AQ-ML employs
recursive ML estimation as discussed in Section III-C to find
its thresholds. We also note that the intermediate likelihood
function in (16) can be obtained from
the general form (19) by including only the first terms of
the sum.

The MLEs corresponding to the three AQ schemes are given
by

(20)

In general, (20) admits no closed-form solution, and a searching
algorithm has to be utilized. For Gaussian distributed noise

, it is easy to show that the likelihood function is concave
(e.g., [15]). Therefore, any one-dimensional gradient-based
search starting from a random initial estimate is guaranteed to
converge to the global maximum, and many efficient routines
exist for this type of work (e.g., [26]).

V. ANALYSIS

We evaluate the performance of the proposed AQ schemes
through analysis of the corresponding CRB , a lower bound on
the mean-squared error (MSE) that is asymptotically achieved
by the MLE [27]. We first provide a general expression for the
Fisher information that holds for all three AQ schemes, and then
consider the CRB for each case. Asymptotic analysis of the CRB
is emphasized that leads to insights to the behavior of the AQ
approach.

A. Fisher Information

Noting that , we can
quickly verify that the second-order derivative of is

(21)

where . The Fisher information for the
estimation problem is given by (e.g., [27])

(22)

where denotes the expectation with respect to the joint
distribution of and . Since

(23)

we can write

(24)

where denotes the expectation with respect to the distribu-
tion , denotes the expectation with respect to the
conditional distribution , follows from the fact
that is a binary random variable with

and , and we
define

in .
Note that for the Gaussian noise (and several other distribu-

tions, e.g., Cauchy, Laplacian, etc.), is a unimodal,
positive, and symmetric function achieving its maximum at

. Hence the Fisher information (24) is maximized when
, where is the Dirac delta function.
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This has the following two implications. First, the best achiev-
able performance of the AQ schemes will not exceed that of the
FQ approach with optimum threshold, i.e., . Secondly,
more thresholds set close to lead to a better performance.

To compute the exact Fisher information (24), we need to de-
termine the distributions of , i.e., . Clearly, these
three AQ schemes result in different distributions of . In
the following, we analyze the CRBs of these three AQ schemes,
with focus on AQ-FS and AQ-ML.

B. CRB of AQ-FS

For the AQ-FS, the threshold is a discrete random walk
process with increment of and . For example, ,

, , ,
and so forth. In general, we have

(25)

The pmf of can be recursively computed as follows. For no-
tational convenience, let

. It is clear that for . Considering , we have

(26)

and

(27)

where denotes the transition proba-
bility from state to and is given by

if ,
if ,
if .

(28)

As a generalization, the pmf of is given by

(29)

Although the above recursive computation provides the exact
solution, which can be used to determine the exact CRB for
AQ-FS [24], it is not convenient to use. To gain additional in-
sights, we examine the asymptotic distribution of as in-
creases.

Notice that form a Markov chain (see Fig. 3) with the
transition probabilities given in (28). The convergence in distri-

Fig. 3. Markov chain with state variables formed by the possible thresholds
used by AQ-FS.

butions of and follows from a stationarity the-
orem (see [28, Lemma] for a detailed proof)

(30)

It is necessary to distinguish the distributions of
and because only contains odd states

2 1 and only contains even states
0 2 2 . In other words, we have

and for any integer . Also, although the
number of states grows linearly with , they are composed
of atypical states whose steady-state probability diminishes
(as increases) with increasing and typical states whose
steady-state probability remains significant with increasing .
Typical steady states are thresholds that are relatively close to
(see Fig. 2(a)). For asymptotic analysis, we only need consider
the typical states and the atypical states can be ignored. In view
of this, we form the following vector:

(31)

where is chosen large enough to include all typical states
of the Markov chain. For Gaussian sensor noise, a choice of

that meets the condition 2 5 , where de-
notes the standard deviation of the sensor noise, would be more
than enough. The steady-state probability vector can be effi-
ciently solved by using the transition equivalence principle and
the unit probability constraints, whose details are addressed in
Appendix A.

We plot under different values of in Fig. 4, with
for the Gaussian noise and . We see that for different
values of , the asymptotic distributions of preserve the
same unimodal structure and achieve the maximum at . This
justifies the effectiveness of our proposed AQ-FS scheme since
it guarantees that with a sufficiently large number of sensors, the
thresholds are around the unknown with a high proba-
bility.

With the above-derived asymptotic distribution of , we
are able to compute the asymptotic CRB of the AQ-FS scheme.
We have the following results.

Proposition 1: The asymptotic CRB of the AQ-FS scheme is
given by

CRB (32)
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Fig. 4. Asymptotic distribution of � under different values of �.

where is defined as

Proof: See Appendix B.
To better evaluate the performance of the proposed AQ ap-

proach, we borrow from [14] the concept of information loss,
which is defined as the ratio (in decibels) of the CRB for the
AQ scheme to the CRB for the clairvoyant estimator using un-
quantized data [see (6)]

CRB
CRB

(33)

The asymptotic information loss of the AQ-FS scheme, which is
defined as the information loss asymptotically incurred by using
AQ-FS for quantization, can be obtained by replacing the nu-
merator in (33) with the asymptotic CRB of (32). Fig. 5 depicts
the asymptotic information loss as a function of the step size ,
where we set for the Gaussian noise. As we can see,
a smaller helps reduce the information loss. Also, additional
performance degradation incurred by increasing is mild: even
with , the loss is within 5 dB.

The above results suggest us to choose a small step size as
long as the thresholds can reach the convergence. How-
ever, in scenarios with a limited number of sensors, if is
chosen too small, the thresholds are kept in the catching-up
phase and never attain the settling phase (see Section III-B).
This, as will be shown in Section VI, results in a sharp perfor-
mance degradation. Since a larger incurs a mild information
loss, it is safer to use a larger than a smaller when no in-
formation of is available.

C. CRB of AQ-VS

As observed from (24), we expect a better performance when
more thresholds are set close to the unknown parameter . The
AQ-VS scheme adjusts the step size adaptively according to pre-
vious two quantized data, which is able to have the thresholds

come more quickly around and keep a lower granular

Fig. 5. AQ-FS: asymptotic information loss versus �.

noise level [see Fig. 2(b)]. Hence it generally provides a per-
formance improvement relative to the AQ-FS scheme. How-
ever, a further analysis on the AQ-VS scheme is impeded by
finding the exact distributions of , i.e., . This is
because the thresholds , adjusted by a variable step size,
take on much more possible values than those in the AQ-FS
scheme. Experimental results show that the number of possible
values for increases exponentially with . The exact compu-
tation of is, therefore, cumbersome, especially when
the number of sensors is large. Nevertheless, (24) can still be
evaluated numerically by Monte Carlo integration.

D. CRB of AQ-ML

The AQ-ML scheme computes the ML estimate of as the
threshold. Since the ML estimator is a nonlinear function, as the
AQ-VS scheme, the threshold is a discrete random variable
with the number of possible values for increases exponen-
tially with . Specifically, sensor has 2 possible threshold
values, with each value chosen with a certain probability. Hence,
we encounter the same problem as that in AQ-VS, and numer-
ical integration can be employed to evaluate (24).

To circumvent the difficulty in computing the exact ,
we examine the asymptotic performance, which offers addi-
tional insight into the AQ-ML scheme. We have the following
results.

Proposition 2: For Gaussian sensor noise with zero-mean
and variance , the CRB of the AQ-ML scheme converges to

times that of the clairvoyant estimator (6) as increases,
i.e.,

CRB (34)

Proof: See Appendix C.
From Proposition 2, we see that the information loss of the

AQ-ML scheme asymptotically achieves 10 ( 2), which
is also attained by the best 1-bit quantizer, i.e., the FQ approach
with an optimum (although practically infeasible) choice of
threshold (see Section II). This indicates that our AQ
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Fig. 6. Information loss of the three AQ schemes and the FQ approach with the
optimum threshold � = �.

scheme adaptively finds the best threshold by learning from
prior transmissions.

VI. SIMULATION RESULTS

In this section, we illustrate the performance of our proposed
three AQ schemes. The noise are i.i.d. Gaussian random
variables with zero mean and variance throughout the
following examples.

A. Information Loss Relative to the Clairvoyant Estimator

We first examine the information loss [defined in (33)] of the
three AQ schemes relative to the clairvoyant estimator using
unquantized data. We set , for the AQ-FS and

for the AQ-VS. Fig. 6 shows the information loss of
the three AQ schemes as a function of the number of sensors

. It can be seen that for all three AQ schemes, the information
loss decreases with an increasing . This is because the AQ
schemes benefit from the previous transmissions by adaptively
choosing a proper quantization threshold. Also, we observe that
the information loss of the AQ-ML scheme approaches that of
FQ with the optimum threshold, i.e., , which corroborates
our previous claim in Proposition 2.

The effect of the choice of the step size for the AQ-FS
scheme is next investigated. Fig. 7 shows the information loss
of the AQ-FS scheme under different choices of . It is seen that
the optimal choice of is related to the unknown parameter
and the number of sensors . This can be intuitively justified
because a larger (for a fixed ) requires a larger step size
to move up quickly close to the unknown parameter; likewise, a
smaller (for a fixed ) requires a larger to achieve the same
effect. Another observation made on the figure is that, around
the optimal value of , the performance degrades significantly
for smaller , while it remains fairly flat for larger . This
suggests that it is safer to use a larger than a smaller when
no information of is available.

Fig. 7. AQ-FS: Information loss versus �.

Fig. 8. CRBs of the three AQ schemes and FQ approach with different thresh-
olds when � = 20.

B. Comparison to the FQ Approach

Fig. 8 shows the CRBs of the three AQ schemes and the FQ
approach. For the FQ approach, is the optimum choice.
When , the performance of FQ achieves the best
among all one-bit estimators. However, as we also see from the
figure, the FQ approach is very sensitive to the value of ; as the
threshold becomes farther apart from (even not too far apart),
the performance of the FQ degrades significantly. Since to be
estimated is unknown, the choice of is always a tricky issue.
Our proposed AQ schemes do not have the above problem. In
particular, the performance of the AQ-ML scheme approaches
that of the FQ with the optimum threshold without
knowing the true .

C. Comparison to the RG Algorithm [15]

We compare our proposed AQ schemes with the multiple
thresholding algorithm (denoted “RG”) introduced in [15, Sec-
tion IV]. For the RG, the knowledge of the pdf of the unknown

, , also called the weighting function therein, is required
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Fig. 9. CRBs of the three AQ schemes and RG approach with different means
when � = 20.

to determine the frequencies , with which the th sensor’s
threshold is assigned. Here, we assume is Gaussian
(also used in [15]). To examine the impact of the accuracy of
the prior knowledge on the performance of the RG, we consider
two difference cases for , namely, and

, respectively. The first choice represents
an ideal though impractical case since is unknown in general.
The second choice reflects the fact that, in practice, the prior
knowledge (the mean ) might be off from the unknown ,
and we use this choice to determine how sensitive the RG is to
such mismatch. The set of thresholds used in the RG algo-
rithm are distributed with uniform spacing (note
that smaller spacings result in similar performance).

Fig. 9 shows the CRBs of the proposed AQ schemes and
the RG with and , respectively. From the
figure, we see that, for the RG approach, a slight deviation of
the mean from causes a performance degradation, which in-
dicates that the RG approach is a bit sensitive to the knowledge
of the prior pdf of . To obtain a good performance, an accurate
knowledge of its mean is required. We also observe that all three
AQ schemes present performance advantages over the RG when

. In particular, without any prior information of the
unknown parameter, the AQ-ML scheme even achieves a better
performance than RG with when is not too small.

D. MLE

The mean square errors of the maximum likelihood estima-
tors for the three AQ schemes are included and compared with
the corresponding CRB in Fig. 10. It is observed that the MSEs
approach the CRB asymptotically with an increasing .

VII. CONCLUDING REMARKS

An adaptive quantization approach was introduced for dis-
tributed estimation in bandwidth/power constrained WSNs.
Through a sequential transmission strategy, each sensor designs
its quantizer by learning from prior transmissions from other
sensors. Three adaptive AQ schemes were proposed and their
corresponding MLEs developed. Asymptotic CRB analysis

Fig. 10. MSEs of the MLEs for the three AQ schemes when � = 20.

shows that, without any prior knowledge of , the proposed
1-bit AQ schemes are able to achieve a consistent performance
with a mild performance degradation as compared with the
clairvoyant estimator using unquantized observations. In par-
ticular, for the ML-based AQ scheme, the information loss
is as low as 1.96 dB, which is equivalent to that of the best
1-bit quantizer using the theoretically optimum but practically
infeasible threshold. Extensive simulation results have been
presented to illustrate the effectiveness of the AQ schemes and
the advantages over existing techniques.

While we considered only the 1-bit (per sample) quantiza-
tion case, our AQ approach can be extended for multibit quan-
tization. Consider, for example, AQ-FS. Instead of using a 1-bit
quantizer to just take the sign of the difference between the cur-
rent observation and quantization threshold , a multibit
quantizer (either uniform and nonuniform) can be used to quan-
tize and provide finer adjustment of the subsequent
quantization threshold. This multibit AQ-FS effectively uses a
number of step sizes (as opposed to a fixed step size in 1-bit
AQ-FS) determined by the number of bits used for quantization.
Extensions of AQ-VS and AQ-ML are also possible and will be
reported elsewhere.

It should be noted that the effectiveness of our proposed
schemes is based on the fact that the closer the quantization
thresholds come to the unknown parameter to be estimated, the
better performance the estimator achieves. This fact is true for
the additive noise model as considered in this paper with several
noise distributions including Gaussian, Laplacian, Cauchy, etc.
While this model itself covers a range of important applications,
AQ is a rather general approach for solving other distributed
estimation problems. For these problems, the relationship
between the optimal threshold and the unknown parameter
may no longer be identical. In such cases, the principle of AQ
still applies. In particular, we can first consider FQ in which
each sensor employs one or a set of common quantization
thresholds, depending on the problem. We can then find the
relationship between the optimal quantization threshold(s)
and the unknown parameter through the CRB analysis. This
optimum quantizer is again practically infeasible due to its
dependence on the unknown parameter. It can be replaced by
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an adaptive solution that sequentially updates the threshold(s)
such that it approaches the optimum one by adaptive learning.

APPENDIX A
THE STEADY STATE PROBABILITY VECTOR

Considering the transitions between and as
, we can easily verify that

where the transition probability is given by (28) and is inde-
pendent of . Since is chosen large enough to include all
typical states, it is reasonable to assume that the probabilities

and are zero for . With the
two-sided bounding, we can rewrite the above equations in ma-
trix form as

(35)

where is the transition matrix given in (36), with
. See (36) at the bottom of the page.

We see that is a sparse matrix and its nonzero entries can
be predetermined for specified values of and . The special
structure of enables us to recursively express the entries of
in terms of its first entry . For example, we have

Using the unit probability constraints

(37)

the vector can be readily solved. In fact, one of the constraints
can help to solve , and it turned out that the other constraint is
satisfied automatically.

APPENDIX B
PROOF OF PROPOSITION 1

We express (24) as the summation of the following two terms:

(38)

where is chosen to ensure the distribution of , for
, reaches its convergence or has a negligible difference

from the steady-state probability vector . We have

(39)

and

(40)

where comes from the fact that is discrete and in-
variant for . Therefore, the CRB is upper and lower
bounded as

CRB (41)

where .
Since , the upper bound and the lower bound both

approach . The proof is completed here.

APPENDIX C
PROOF OF PROPOSITION 2

Note that sensor computes its threshold as

(42)

...
. . .

...
(36)
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It can be easily verified that the log-likelihood function
satisfies the “regularity” conditions

and, hence, for large data records (i.e., is large), the ML
estimate is consistent [27], [29]. Consequently, for any
small and , we can find a sufficiently large such
that

(43)

Considering (24), we express as the summation of
the following two terms:

(44)

where is chosen to satisfy (43). By utilizing the properties of
the function , the first term and the second term of (44)
can be bounded as follows, respectively:

(45)

(46)

On the other hand, we have

(47)

where comes from the Chernoff bound
and follows from the Taylor expansion.

Since , we can further write

(48)

where .

Combining (44)–(48), we therefore have

(49)

where and . The CRB
is, therefore, lower bounded and upper bounded by

CRB

(50)

Considering and is sufficiently large to ensure
and , i.e., , we have

CRB (51)

The proof is completed here.

REFERENCES

[1] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed, “Detection, classi-
fication, and tracking of targets,” IEEE Signal Process. Mag., vol. 19,
pp. 17–29, Mar. 2002.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A
survey on sensor networks,” IEEE Commun. Mag., pp. 102–114, Aug.
2002.

[3] R. R. Tenney and N. R. Sandell, Jr, “Detection with distributed sen-
sors,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-17, pp. 501–510,
Jul. 1981.

[4] C. Rago, P. Willett, and Y. Bar-Shalom, “Censoring sensors: A
low-communication-rate scheme for distributed detection,” IEEE
Trans. Aerosp. Electron. Syst., vol. 32, pp. 554–568, Apr. 1996.

[5] J.-J. Xiao and Z.-Q. Luo, “Universal decentralized detection in a band-
width-constrained sensor network,” IEEE Trans. Signal Process., vol.
53, pp. 2617–2624, Aug. 2005.

[6] R. Viswanathan and P. K. Varshney, “Distributed detection with mul-
tiple sensors—Part I: Fundamentals,” Proc. IEEE, vol. 85, pp. 54–63,
Jan. 1997.

[7] R. S. Blum, S. A. Kassam, and H. V. Poor, “Distributed detection with
multiple sensors: Part II—Advance topics,” Proc. IEEE, vol. 85, pp.
64–79, Jan. 1997.

[8] S. S. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed compres-
sion in a dense microsensor network,” IEEE Signal Process. Mag., vol.
19, no. 2, pp. 51–60, Mar. 2002.

[9] Z.-Q. Luo, G. B. Giannakis, and S. Zhang, “Optimal linear decentral-
ized estimation in a bandwidth constrained sensor network,” in Proc.
2005 IEEE Int. Symp. Inf., Sep. 2005.

[10] Y. Zhu, E. Song, J. Zhou, and Z. You, “Optimal dimensionality re-
duction of sensor data in multisensor estimation fusion,” IEEE Trans.
Signal Process., vol. 53, pp. 1631–1639, May 2005.

[11] J. Gubner, “Distributed estimation and quantization,” IEEE Trans. Inf.
Theory, vol. 39, pp. 1456–1459, Jul. 1993.

[12] V. Megalooikonomou and Y. Yesha, “Quantizer design for distributed
estimation with communication constraints and unknown observation
statistics,” IEEE Trans. Commun., vol. 48, pp. 181–184, Feb. 2000.

[13] W. M. Lam and A. R. Reibman, “Design of quantizers for decentralized
estimation systems,” IEEE Trans. Commun., vol. 41, pp. 1602–1605,
Nov. 1993.

[14] H. Papadopoulos, G. Wornell, and A. Oppenheim, “Sequential signal
encoding from noisy measurements using quantizers with dynamic bias
control,” IEEE Trans. Inf. Theory, vol. 47, pp. 978–1002, Mar. 2001.

[15] A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed
estimation for wireless sensor networks—Part I: Gaussian PDF,” IEEE
Trans. Signal Process., vol. 54, pp. 1131–1143, Mar. 2006.



FANG AND LI: DISTRIBUTED AQ FOR WIRELESS SENSOR NETWORKS 5257

[16] Z. Luo, “Universal decentralized estimation in a bandwidth constrained
sensor network,” IEEE Trans. Inf. Theory, vol. 51, pp. 2210–2219, Jun.
2005.

[17] A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed
estimation for wireless sensor networks—Part II: Unknown probability
density function,” IEEE Trans. Signal Process., vol. 54, pp. 2784–2796,
Jul. 2006.

[18] Z. Luo, “An isotropic universal decentralized estimation scheme for
a bandwidth constrained ad hoc sensor network,” IEEE J. Sel. Areas
Commun., vol. 23, pp. 735–744, Apr. 2005.

[19] Z. Luo and J. Xiao, “Decentralized estimation in an inhomoge-
neous sensing environment,” IEEE Trans. Inf. Theory, vol. 51, pp.
3564–3575, Oct. 2005.

[20] P. Venkitasubramaniam, L. Tong, and A. Swami, “Quantization for
maximin ARE in distributed estimation,” IEEE Trans. Signal Process.,
vol. 55, pp. 3596–3605, Jul. 2007.

[21] Y. Huang and Y. Hua, “Multi-hop progressive decentralized estimation
in wireless sensor networks,” IEEE Signal Process. Lett., vol. 14, pp.
1004–1007, Dec. 2007.

[22] V. Gupta, T. Chung, B. Hassibi, and R. M. Murray, “On a stochastic
sensor selection algorithm with applications in sensor scheduling and
dynamic sensor coverage,” Automatica, vol. 42, no. 2, pp. 251–260,
Feb. 2006.

[23] A. Ribeiro and G. B. Giannakis, “SOI-KF: Distributed Kalman filtering
with low-cost communications using the sign of innovations,” IEEE
Trans. Signal Process., vol. 54, pp. 4782–4795, Dec. 2006.

[24] H. Li and J. Fang, “Distributed adaptive quantization and estimation
for wireless sensor networks,” IEEE Signal Process. Lett., vol. 14, pp.
669–672, Oct. 2007.

[25] B. Chen, L. Tong, and P. K. Varshney, “Channel-aware distributed de-
tection in wireless sensor networks,” IEEE Signal Process. Mag., vol.
23, no. 4, pp. 16–26, Jul. 2006.

[26] D. A. Pierre, Optimization Theory With Applications. New York:
Wiley, 1969.

[27] S. M. Kay, Fundamentals of Statistical Signal Process.: Estimation
Theory. Upper Saddle River, NJ: Prentice-Hall, 1993.

[28] T. L. Fine, “The response of a particular nonlinear system with feed-
back to each of two random processes,” IEEE Trans. Inf. Theory, vol.
IT-14, pp. 255–264, Mar. 1968.

[29] M. J. Crowder, “Maximum likelihood estimation for dependent obser-
vations,” J. Roy. Statist. Soc. B (Methodological), vol. 38, no. 1, pp.
45–53, 1976.

Jun Fang (M’08) received the B.Sc. and M.Sc.
degrees in electrical engineering from Xidian Uni-
versity, Xi’an, China, in 1998 and 2001, respectively,
and the Ph.D. degree in electrical engineering from
National University of Singapore, Singapore, in
2006.

During 2006, he was with the Department of Elec-
trical and Computer Engineering, Duke University,
Durham, NC, as a Postdoctoral Research Associate.
Currently, he is a Postdoctoral Research Associate
with the Department of Electrical and Computer En-

gineering, Stevens Institute of Technology, Hoboken, NJ. His research interests
include statistical signal processing, wireless communications, and distributed
estimation and detection with their applications on wireless sensor networks.

Hongbin Li (M’99) received the B.S. and M.S. de-
grees from the University of Electronic Science and
Technology of China, Chengdu, in 1991 and 1994,
respectively, and the Ph.D. degree from the Univer-
sity of Florida, Gainesville, in 1999, all in electrical
engineering.

From 1996 to 1999, he was a Research Assistant
with the Department of Electrical and Computer En-
gineering, University of Florida. He was a Summer
Visiting Faculty Member with the Air Force Research
Laboratory, Rome, NY, in the summers of 2003 and

2004. Since 1999, he has been with the Department of Electrical and Computer
Engineering, Stevens Institute of Technology, Hoboken, NJ, where he is an As-
sociate Professor. His current research interests include statistical signal pro-
cessing, wireless communications, and radars.

Dr. Li is a member of Tau Beta Pi and Phi Kappa Phi. He received the Harvey
N. Davis Teaching Award in 2003 and the Jess H. Davis Memorial Award for
excellence in research in 2001 from Stevens Institute of Technology and the
Sigma Xi Graduate Research Award from the University of Florida in 1999. He
is a member of the Sensor Array and Multichannel Technical Committee of the
IEEE Signal Processing Society. He is or has been an Editor or Associate Editor
for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE SIGNAL

PROCESSING LETTERS, and IEEE TRANSACTIONS ON SIGNAL PROCESSING. He
was a Guest Editor for the EURASIP Journal on Advances in Signal Processing
Special Issue on Distributed Signal Processing Techniques for Wireless Sensor
Networks.


