
3822 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 7, JULY 2009

Power Constrained Distributed Estimation with
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Abstract—We consider the problem of distributed estimation
in a power constrained collaborative wireless sensor network
(WSN), where the network is divided into a set of sensor clusters,
with collaboration allowed among sensors within the same cluster
but not across clusters. Specifically, each cluster forms one or
multiple local messages via sensor collaboration (in particular,
linear operation is considered) and transmits the messages over
noisy channels to a fusion center (FC). The final estimate is
constructed at the FC based on the noisy data received from
all clusters. In this collaborative setup, we study the following
fundamental problems. Given a total transmit power constraint,
shall we transmit the raw data or some low-dimensional local
messages for each cluster? What is the optimal collaboration
scheme for each cluster? How to optimally allocate the power
among different clusters? These questions are addressed in this
paper. We will show that the optimum collaboration strategy is
to compress the data into one local message which, depending on
the channel characteristics, is transmitted using one or multiple
available channels to the FC. The optimal power allocation
among the clusters is also investigated, which yields a water-
filling type of scheme.

Index Terms—Distributed estimation, sensor collaboration,
power allocation, wireless sensor networks (WSNs).

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have been of sig-
nificant interest over the past few years due to their

potential applications in environment monitoring, battlefield
surveillance, target localization and tracking, and many more
[1], [2]. The sensors constructing the network are often
powered by small batteries that are often irreplaceable. Hence
limited energy resource is a key challenge one has to over-
come before such applications become practical. In a sensor
network, communication consumes a significant portion of the
total energy as compared with the sensing and computation
related energy cost. It is therefore important to develop trans-
mission energy-efficient strategies for various sensor network
processing tasks such as estimation, detection and tracking.
Specifically, in this paper, we consider distributed parameter
estimation, which is a fundamental problem in sensor network
research.

Distributed estimation has attracted much attention recently.
One of the network architectures for distributed estimation in-
volves a set of spatially distributed sensors linked with a fusion
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center (FC). Each sensor makes a noisy observation of the
phenomena of interest and transmits its processed information
to the FC, where a final estimate is formed. Many works (e.g.
[3]–[10]) were carried out in this setup. Among them, some
[3]–[6] addressed the power constraint issue by resorting to
aggressive quantization schemes which quantize the original
observations into one or a few bits of information. In this case,
quantization becomes an integral part of the estimation process
and is critical to the estimation performance. Other works [7]–
[10] studied the problem of optimal power allocation among
sensors given a total transmit power constraint, aiming at
minimizing the estimation distortion at the FC. For all of
these works except [6], the inter-sensor communication is not
considered. Inter-sensor collaboration can instead be exploited
to enhance the transmission energy efficiency and improve the
system performance. For example, [11] introduced a passive
sensor cooperation scheme (sequential transmission) which
achieves an estimation accuracy comparable to those schemes
without sensor cooperation at a reduced energy cost. Also,
in [12]–[16], a class of fully distributed schemes (no FC is
required) were proposed, where sensors , through local data
exchange (i.e., collaboration) and computation, can eventually
reach a consensus estimate. Since the algorithms [12]–[16]
involve communication only among neighboring sensors, the
energy consumption can be considerably reduced. A problem
associated with these schemes lies in that they are sensitive to
communication errors. It was shown [17] that in the presence
of link noise, the estimate diverges and has an asymptotic
unbounded mean-square error.

In this paper, we consider distributed estimation in a hi-
erarchical network architecture with localized collaboration.
Specifically, we assume that the network is divided into a
number of sensor clusters linked with a FC. The sensors
within the same cluster have the communication resources
to locally collaborate, whereas no collaboration is allowed
across clusters. This might be the case for scenarios where
multiple sets of sensors are spatially distributed, with each set
of sensors within a small neighborhood. In other situations,
a sensor node may consist of a sensor-array with multiple
modalities (acoustic, seismic, infrared, etc.) [18]. This scenario
can also be captured by the above model with the individual
components of the sensor-array corresponding to the collab-
orating sensors in a cluster. Each cluster then transmits one
or multiple one-dimensional messages, which could be the
raw data or obtained via sensor collaboration, over noisy
channels to the FC, where a final estimate is formed based
on the data received from all clusters. In this context, the
following natural questions arise: given a fixed amount of
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total transmit power, how should each cluster process their
local measurements such that a minimum estimation distortion
can be achieved at the FC? how should we allocate the
power among different clusters in an optimal power-distortion
fashion? These questions will be addressed in this paper and
we will develop a fundamental understanding of the above
important hierarchical collaborative strategy for distributed es-
timation. We notice that this hierarchical collaborative strategy
was also studied in [18], where the authors examined the
encoding of the local measurements under a communication
rate constraint. A similar hierarchical collaborative strategy
was recently proposed in [19] (referred to as branch and tree
network topologies), where the information of the sensors is
processed/forwarded to the FC by multiple relay nodes. Nev-
ertheless, the authors focused on the power allocation problem
with some pre-determined collaboration schemes (i.e., they are
not part of the optimization problem) at the relay nodes. Our
work is also closely related to the distributed compression-
estimation approaches [20]–[25] whose objective is to reduce
the transmission requirement via dimensionality reduction.
While most of these works assume ideal communication links
(between sensors and the FC) and no transmit power constraint
is imposed, our work takes into account the transmit power
constraint and the link noise (between clusters and the FC) in
formulating our problem.

The rest of the paper is organized as follows. In Section II,
we introduce the sensor network collaboration model, some
basic assumptions, and our objective in the collaborative set-
ting. Next, in Section III, we investigate the optimal collabora-
tion for one sensor cluster case. A simple performance analysis
and some numerical results are also included. The optimal
collaboration and power allocation problem for multiple sensor
clusters is studied in Section IV, followed by concluding
remarks in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a WSN consisting of N spatially distributed
sensors, with each sensor making a noisy observation of an
unknown random parameter θ: xn = hnθ + wn, where hn

denotes the observation gain and wn denotes the additive
observation noise. The sensors in the network are divided into
M sensor clusters (see Fig. 1). Each cluster, say cluster m,
consists of Nm geographically closely located sensors. The
sensors in each cluster are able to collaborate to form local
messages which are sent to the FC, whereas no communication
is allowed across different clusters. The objective is to obtain
an estimate of the unknown parameter at the FC based on the
information received from the clusters. In practice, the sensor
collaboration can be easily implemented. For each cluster, we
choose one sensor to be the cluster head whose task is to
collect the data from other sensors within the same cluster
and carry out the collaborative processing. The resultant local
messages are then transmitted by the cluster head to the FC.
We adopt the following assumptions for this collaborative
setting:

A1 The links between sensors and the cluster head within
each cluster are ideal. Sensor collaboration is confined
to be linear operations.

Fig. 1. Collaborative setting: the network is divided into a number of sensor
clusters. Sensors within each cluster can collaborate to convert their noisy
observations {xm} into some local estimates {zm}.

A2 An uncoded analog amplify-and-forward scheme is em-
ployed to transmit the local messages from the cluster
heads to the FC over noisy wireless channels.

Remarks: Assumption (A1) can be justified in the sense
that sensors within a same cluster are closely located and
their communication links can be made reliable with neg-
ligible communication errors at an affordable energy cost.
This assumption was also adopted in [18]. In contrast, in
many practical scenarios, a centralized FC can be located
far away from the deployed sensor field. Hence assuming
an ideal wireless link between the sensor node and the FC
may not be practical (note that received power of a radio
signal decays exponentially with the distance). We confine our
study on linear collaborative processing due to its simplicity
in implementation and development. The uncoded analog
transmission scheme has been widely adopted in WSNs, e.g.
[8], [19], [24]. Its optimality and advantage over the separate
source-channel coding have been proved in a point-to-point
transmission case [26] and in scenarios where sensors adopt
a synchronized (non-orthogonal) interference multiple access
channel to the FC [27]. The analog transmission scheme
is, however, found inferior to the optimal separate source-
channel coding strategy for orthogonal/independent multiple
access channels (from sensors to the FC) [28]. Nevertheless,
an optimal, practical separate source-channel coding strategy
is usually difficult to obtain. Therefore the analog transmission
scheme is still a reasonable choice in designing wireless sensor
network for various applications.

For notational convenience, we use xm,n to denote the
sensor measurement of sensor n in cluster m, where n ∈
{1, . . . , Nm}, m ∈ {1, . . . , M} and

xm,n = hm,nθ + wm,n (1)

in which hm,n and wm,n denote the corresponding obser-
vation gain and additive observation noise, respectively. To
capture the cluster-based collaborative scenario, we write the
measurements within a cluster in a vector form: xm �
[xm,1 xm,2 . . . xm,Nm ]T , which is given by

xm = hmθ + wm (2)

with hm � [hm,1 hm,2 . . . hm,Nm ]T and wm �
[wm,1 wm,2 . . . wm,Nm ]T . The local messages via sensor
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collaboration within each cluster can therefore be expressed
as

zm = Cmxm (3)

where Cm ∈ R
pm×Nm denotes the collaboration matrix for

cluster m, pm ≤ Nm is the dimensionality of the message
vector zm whose choice will become evident later. The signal
at the FC received from the mth cluster is given by

ym = GmAmCmxm + vm (4)

where Gm ∈ R
pm×pm denotes a fading multiplicative channel

matrix, which can be diagonal or non-diagonal, depending on
the transmission scheme (e.g., orthogonal vs. non-orthogonal
channel access); Am � diag{a1, . . . , apm} is an amplification
matrix with ai denoting the amplification factor used in
transmitting the ith message of zm; vm ∈ R

pm denotes
the additive channel noise vector. Without loss of generality,
we assume Gm = I and Am = I, where I denotes the
identity matrix, as the multiplicative effect of the channel
matrix can be removed by carrying out a matrix inverse using
an estimate of the channel matrix Gm at the receiver [21],
and the amplification matrix Am can be absorbed into Cm.
We have the following assumption regarding the observation
noise {wm} and the channel noise {vm}.
A3 The noise {wm} and {vm} are zero mean with pos-

itive definite auto-covariance {Rw,m} and {Rv,m},
respectively, which are available at the FC. The noise
across different clusters are mutually uncorrelated, i.e.
E[wiwT

j ] = 0 ∀i �= j and E[vivT
j ] = 0 ∀i �= j.

Remarks: It is reasonable to assume independence across
different clusters since these clusters are usually geographi-
cally sufficiently apart. On the other hand, within a cluster,
the noise, wm and vm, are allowed to have arbitrary spatial
correlation. This assumption is not trivial as the observation
noise wm could be correlated when sensors are densely
deployed, due to the fact that the phenomena to be measured
is subject to similar disturbance with a high probability.
Also, correlation is introduced to the additive channel noise
vm when the inverse of a non-diagonal channel matrix Gm

is carried out to compensate the channel effect [21]. The
priori knowledge of the auto-correlation matrices, {Rw,m}
and {Rv,m}, may come either from specific data models or
from sample estimation after a training phase [8], [19], [24].

Let y � [y1 y2 . . . yM ]T denote a column vector formed
by stacking the data received from all clusters. We have

y =Cx + v
=C(hθ + w) + v (5)

where C � diag{C1, . . . ,CM} is a block diagonal ma-
trix with its mth block-diagonal element equal to Cm,
x � [x1 x2 . . . xM ]T , v � [v1 v2 . . . vM ]T , h �
[h1 h2 . . . hM ]T , and w � [w1 w2 . . . wM ]T . A natural
question arising from the above scenario is to find out an
overall optimal collaboration matrix C, or equivalently, a set
of individual collaboration matrices {Cm}M

m=1, to achieve
a minimum estimation distortion at the FC. Also, since the
amplification factors {Am} are incorporated into the collabo-
ration matrices {Cm}, the overall collaboration matrix C has

to satisfy a total transmit power constraint. Specifically, using
a linear minimum mean-square error (LMMSE) estimator [29],
it can be readily verified that we are faced with the following
optimization problem

min
C

E[(θ − θ̂)2] = σ2
θ − σ4

θh
T CT (CRxCT + Rv)−1Ch

s.t. tr
(
CRxCT

) ≤ P (6)

where σ2
θ denotes the signal variance, Rx � E[xxT ],

tr
(
CRxCT

)
is the average transmit power required to send

the local messages from all clusters to the FC, P is a
pre-specified power budget for transmission. We note that
a similar problem was examined in [24] in the context of
distributed compression-estimation. However, the work, study-
ing the problem in a framework of a canonical correlation
analysis (CCA), has a formulation and an approach different
from ours. Also, instead of using a sum power constraint as
we did here, [24] imposed power constraints on individual
sensors (corresponding to clusters in this paper). This requires
assigning power to the clusters a priori, which can be a tricky
problem for inhomogeneous environments, where clusters
at different locations have dissimilar observation and link
qualities, and an equal power allocation scheme could be far
away from optimum. In contrast, our formulation implicitly
involves automatic power allocation among different clusters.
More importantly, the proposed solution of [24] is iterative
and sub-optimal, while as will be shown later, an optimum
solution can be obtained for our case.

III. OPTIMAL COLLABORATION AND POWER

ALLOCATION: SINGLE CLUSTER CASE

In the section, we will examine the optimization problem (6)
for the case of one cluster, i.e. M = 1. A general scenario with
multiple clusters will be studied later by using the theoretical
results developed for the single cluster case.

A. Proposed Approach

When M = 1, the collaboration matrix C ∈ R
p×N , where

p ≤ N , can be any arbitrary matrix as long as it satisfies the
transmit power constraint. To solve (6), we firstly carry out
the following simplifications. Let Rv = UvDvUT

v denote the

eigenvalue decomposition (EVD) and Ċ � UT
v CR

1
2
x , where

Dv ∈ R
p×p is a positive definite diagonal matrix. We have

hTCT
(
CRxCT + Rv

)−1
Ch

=hTR− 1
2

x ĊT (ĊĊT + Dv)−1ĊR− 1
2

x h
(a)
= tr

(
(ĊĊT + Dv)−1ĊGĊT

)
(b)
= tr

(
(C̃C̃T + Dv)−1C̃DgC̃T

)
=tr
(
D

1
2
g C̃T (C̃C̃T + Dv)−1C̃D

1
2
g

)
(7)

where (a) comes from the trace identity tr(AB) = tr(BA),
in which G � R− 1

2
x hhTR− 1

2
x , and (b) follows by defining

C̃ � ĊUg , in which C̃ ∈ R
p×N , Ug ∈ R

N×N is an
orthonormal matrix and Dg ∈ R

N×N is a positive semi-
definite diagonal matrix obtained by carrying out the EVD of
G, i.e. G = UgDgUT

g . Note that Dg has only one nonzero
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diagonal element because G is rank-one. It is easy to verify
that the relationship between C and C̃ is given by:

C = UvC̃UT
g R− 1

2
x (8)

Consequently the power constraint becomes

tr
(
CRxCT

)
=tr
(
UvC̃UT

g R− 1
2

x RxR
− 1

2
x UgC̃TUT

v

)
=tr
(
UvC̃C̃TUT

v

)
=tr
(
C̃C̃T

)
≤ P (9)

Combining (6)–(9), our problem, therefore, is reformulated as

max
C̃

tr
(
D

1
2
g C̃T (C̃C̃T + Dv)−1C̃D

1
2
g

)
s.t. tr

(
C̃C̃T

)
≤ P (10)

This formulation (10), however, is still hard to deal with due
to the inverse of a variable matrix. To overcome this difficulty,
we define T � C̃T D−1

v C̃ and let T = UDUT denote
the reduced EVD, where U ∈ R

N×p, D ∈ R
p×p. Since

C̃TD−1
v C̃ = UDUT , we have

C̃TD− 1
2

v Q = UD
1
2 ⇒ C̃T = UD

1
2 QTD

1
2
v (11)

where Q ∈ R
p×p can be any orthonormal matrix as we can

write UDUT = UD
1
2 (UD

1
2 )T = C̃TD− 1

2
v QQTD− 1

2
v C̃T =

C̃TD−1
v C̃, and the diagonal elements of D must be non-

negative because C̃T D−1
v C̃ is positive semi-definite. The

motivation to do so is justified by the following relationship
(easily established by utilizing (11))

C̃T (C̃C̃T + Dv)−1C̃ = UD
1
2 (I + D)−1D

1
2 UT (12)

which shows that the non-tractable matrix inverse is reduced
to an inverse of a diagonal matrix (albeit still variable) that
is much easier for analysis and computation. From (11), we
see that C̃ is determined by U, Q and a diagonal matrix
D. Our objective therefore is to find the optimal solutions of
{U,Q,D}. Based on the previous discussions and combining
(10)–(12), we eventually reach the following optimization
problem

max
{U,D,Q}

tr
(
D

1
2
g UD

1
2 (I + D)−1D

1
2 UT D

1
2
g

)
s.t. tr

(
DQTDvQ

) ≤ P

UTU = I
D = diag(d1, . . . , dp) di ≥ 0 ∀i

QQT = I (13)

Although the problem (13) involves searching for multiple
optimization variable matrices, a close examination shows
that it can be decoupled into two sequential sub-problems.
We can, firstly, find an optimal U by fixing the variables
{Q,D} (in fact, as we will show in our proof, the optimal U
is independent of the optimization variables {Q,D}). Then
using the previous results, we search for the optimal matrices
{Q,D}. Both optimization problems can be solved by ex-
ploiting the diagonal structures and related matrix properties.
We summarize our results as follows.

Lemma 1: Without loss of generality, we assume that the
diagonal elements of Dg are sorted in a descending order;
whereas the diagonal elements of Dv are in an ascending or-
der. The optimal solution to (13) is then given by U∗ = ΓPT ,
Q∗ = PT , and D∗ = PΛPT , where P ∈ R

p×p can be
any permutation matrix, Γ ∈ R

p×N and Λ ∈ R
p×p are

respectively given by

Γ �
[

1 01×(p−1)

0(N−1)×1 E

]
(14)

Λ � diag

(
P

min(dv)
, 0, . . . , 0

)
(15)

in which E ∈ R
(N−1)×(p−1) can be any matrix satisfying

ETE = I, dv � diag(Dv), and min(dv) = Dv(1, 1) since
the diagonal elements of Dv are in an ascending order, where
Dv(1, 1) denotes the (1, 1)th entry of Dv . The maximum
value of the objective function achieved by the optimal matri-
ces is

f(U∗,D∗,Q∗) =
P

P + min(dv)
hT R−1

x h (16)

where f(·) denotes the objective function of (13).
Proof: See Appendix A.

By utilizing Lemma 1, we can trace back to find out the
optimal collaboration matrix and the associated estimation
mean-square error (MSE). We have the following result.

Theorem 1: Consider the optimal collaboration design
problem formulated in (6) and described in Fig. 1, where
the sensor measurements xm, the local messages zm, and the
received messages at the FC ym are given by (2), (3) and (4),
respectively. When M = 1, the optimal solution to (6) is

C∗ = γ
√

PUv[:, 1]hTR−1
x (17)

where Uv[:, 1] denotes the first column of Uv , and γ �
1√

hT R−1
x h

. The associated estimation MSE, i.e. the value of

the minimum objective function of (6), is given by

E[(θ − θ̂(C∗))2] =σ2
θ − σ4

θ

P

P + min(dv)
hT R−1

x h (18)

Proof: See Appendix B.
The optimal solution (17) has very important implications

which we shall explore in the following. Considering the
scenario of independent or uncorrelated channels, i.e. Rv is
diagonal, we have Uv = I and Uv[:, 1] = e1, where ei

denotes the unit column vector with its ith entry equal to
one, and its other entries equal to zero. Therefore the optimal
collaboration matrix becomes

C∗ =
[

γ
√

PhTR−1
x

0(p−1)×N

]
(19)

which is a matrix with its first row equal to γ
√

PhTR−1
x

and all other rows equal to zero. The solution suggests that
we should compress the measurements into only one local
message and transmit it via the best-quality channel (note that
the first row corresponds to the first channel which has the
smallest noise variance since the diagonal elements of Rv are
assumed in an ascending order) to the FC. If the channels have
identical qualities, then we can use any of them to send out the
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local message. Also, by rewriting the collaboration weighting
vector γ

√
PhTR−1

x as

γ
√

PhT R−1
x =γ

√
Pσ−2

θ σ2
θh

TR−1
x

=γ
√

Pσ−2
θ RθxR−1

x (20)

where Rθx � E[θxT ], we can immediately see that the local
message is exactly the LMMSE estimate RθxR−1

x x multiplied
by a scalar γ

√
Pσ−2

θ . This means that when channels are
independent, LMMSE estimation followed by an amplification
factor is optimal in a power-distortion sense. Interestingly, as
a counterpart, we noticed that in [30], [31], it is shown that
in a rate-constrained scenario, when there is only one sensor
cluster, minimum mean-square error (MMSE) estimation fol-
lowed by vector-quantization is optimal in a rate distortion
sense.

We now investigate the case where the channels are cor-
related, i.e. Rv is non-diagonal. Each row of the optimal
collaboration matrix can be readily expressed as follows by
combining (17) and (20)

C∗[i, :] = Uv[i, 1]γ
√

Pσ−2
θ RθxR−1

x (21)

where Uv[i, 1] denotes the (i, 1)th entry of Uv . Therefore
the LMMSE estimate is transmitted by multiple channels
with different amplification gains that are proportional to
{Uv[i, 1]}p

i=1. We see that for the correlated case, unlike the
independent case assigning all power on one channel, power
should be distributed to all available channels. This is even
true for strongly correlated channels because the correlation
across channels can be exploited to cancel the channel noise
and hence to enhance the estimation performance.

B. Performance Analysis and Simulation Results

We carry out a simple performance analysis to corroborate
our theoretical results. We compare our optimal collaboration
strategy with the scheme proposed in [8], where there is
no inter-sensor collaboration and each sensor transmits its
observation to the FC with optimally assigned power. For
simplicity, we consider a homogeneous environment with
identical observation and channel qualities, where σ2

w denotes
the observation noise variance and σ2

v represents the channel
noise variance. The observation and channel noise are assumed
to be independent across sensors and links, respectively. All
observation and channel gains are unit throughout all examples
in the paper. Clearly, an equal power allocation is optimum
for [8] and the corresponding estimation MSE can be shown
to be

MSENC =
Pσ2

wσ2
θ + Nσ2

vσ4
θ + Nσ2

vσ2
θσ2

w

PNσ2
θ + Pσ2

w + Nσ2
vσ2

θ + Nσ2
vσ2

w

(22)

where the subscript NC denotes non-collaboration. For our
collaboration strategy, the estimation MSE can be computed
by using (18), which reduces to

MSEOC =
Pσ2

wσ2
θ + Nσ2

vσ4
θ + σ2

vσ2
θσ2

w

PNσ2
θ + Pσ2

w + Nσ2
vσ2

θ + σ2
vσ2

w

(23)

where the subscript OC denotes optimal collaboration. For
notational convenience, let a � Pσ2

wσ2
θ + Nσ2

vσ4
θ and b �

PNσ2
θ + Pσ2

w + Nσ2
vσ2

θ . It can be easily verified that

(a + Nσ2
vσ2

θσ2
w)(b + σ2

vσ2
w) ≥ (a + σ2

vσ2
θσ2

w)(b + Nσ2
vσ2

w)
(24)

where (24) becomes an equality only when N = 1. Hence as
expected, the following relationship MSENC ≥ MSEOC holds,
which means that the optimal collaboration scheme should
always outperform the non-collaboration scheme.

Fig. 2 depicts the estimation MSEs of the two schemes as
a function of N under a total transmit power constraint, with
σ2

w = 0.2 and σ2
w = 1, respectively. From Fig. 2, we see that

both schemes benefit from an increasing number of sensors;
as N increases, the estimation MSEs will asymptotically
approach certain values that, however, are nonzero. Also, it
can be seen that the non-collaborative scheme is sensitive to
the value of σ2

w; as the observation quality deteriorates, its
performance degrades considerably. In contrast, the collab-
orative strategy demonstrates a certain degree of robustness
against the observation quality deterioration. In Fig. 3, we
plot the estimation MSE vs. the total transmit power. We see
that the performance gap between the two strategies shrinks
as the transmit power increases. In fact, from (22)–(23) we
can observe that as the transmit power goes to infinity, these
two strategies approach identical performance. This suggests
that the collaborative strategy should be preferred especially
when the sensor observation qualities are bad and the transmit
power is severely constrained.

We provide a numerical example for an inhomogeneous en-
vironment with varying observation and link qualities, where
σ2

w,i ∼ Unif(0, 1) for each sensor and σ2
v,i ∼ Unif(0, 1)

for each link. The observation/channel noise are independent
across sensors/links. To assure fairness, for both collaborative
and non-collaborative schemes, we assume they have identical
auto-covariance matrices Rw and Rv for each Monte Carlo
run (note that since channels are independent, only the best-
quality channel is used for the collaborative strategy). For
the non-collaborative strategy, we consider an optimal power
allocation (OPA) scheme (i.e., [8]) and an equal power al-
location (EPA) scheme. Fig. 4 shows the estimation MSEs
of three schemes as a function of the total transmit power.
We see that in the inhomogeneous setting, the collaborative
strategy presents a superior performance advantage over the
non-collaborative schemes. To meet a same distortion target,
the collaborative scheme needs much less power than the non-
collaborative schemes and hence considerable power savings
can be achieved.

IV. OPTIMAL COLLABORATION AND POWER

ALLOCATION: MULTIPLE CLUSTER CASE

A. Proposed Approach

We now examine a general scenario where the network
consists of multiple sensor clusters. In this case, the collabo-
ration matrix C has a block diagonal structure since the inter-
cluster collaboration is not allowed. The approach described in
previous subsection, therefore, cannot be directly applied here.
To solve (6), we hope to decouple the optimization problem
into a set of tractable subtasks. To this goal, we rewrite the
estimation MSE as follows
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E[(θ − θ̂)2] =σ2
θ − σ4

θh
T CT (CRxC

T + Rv)−1Ch

(a)
=
(
σ−2

θ + hT CT (CRwCT + Rv)−1Ch
)−1

(b)
=

(
σ−2

θ +
M∑

i=1

hT
i CT

i (CiRw,iC
T
i + Rv,i)

−1Cihi

)−1

(25)

where (a) is obtained by using the Woodbury identity, along
with the fact that Rx = σ2

θhhT + Rw, and (b) comes by
exploiting the block diagonal structures of C, Rw, and Rv.
Therefore the optimization problem (6) becomes

max
{Ci}

M∑
i=1

hT
i CT

i (CiRw,iCT
i + Rv,i)−1Cihi

s.t.
M∑
i=1

tr
(
CiRx,iCT

i

) ≤ P (26)
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Fig. 4. MSEs of collaborative and non-collaborative schemes vs. total
transmit power in inhomogeneous environments. σ2

θ = 1, N = 50.

in which the power constraint follows from the following
identity

tr
(
CRxCT

)
=

M∑
i=1

tr
(
CiRx,iCT

i

)
In order to utilize the theoretical results obtained for M = 1,
we express the component hT

i CT
i (CiRw,iCT

i +Rv,i)−1Cihi

in (26) as a function of hT
i CT

i (CiRx,iCT
i + Rv,i)−1Cihi.

Again, this can be done by resorting to the Woodbury identity.
We have

σ2
θ − σ4

θh
T
i CT

i (CiRx,iCT
i + Rv,i)−1Cihi

=
(
σ−2

θ + hT
i CT

i (CiRw,iCT
i + Rv,i)−1Cihi

)−1
(27)

For notational convenience, let

μi(Ci) �hT
i CT

i (CiRw,iCT
i + Rv,i)−1Cihi

ηi(Ci) �hT
i CT

i (CiRx,iCT
i + Rv,i)−1Cihi

Therefore (27) can be rewritten as

μi(Ci) =
1
σ2

θ

(
1

1 − σ2
θηi(Ci)

− 1
)

(28)

Substituting (28) into (26), we arrive at the following opti-
mization

max
{Ci}

M∑
i=1

1
σ2

θ

(
1

1 − σ2
θηi(Ci)

− 1
)

s.t.
M∑
i=1

tr
(
CiRx,iCT

i

) ≤ P (29)

Clearly, (29) can be decoupled into two sequential subtasks,
i.e. a power allocation (among clusters) problem and a set of
collaboration matrix design problems that can be solved using
the previous results. To see this, suppose {P ∗

1 , P ∗
2 , . . . , P ∗

M}
is an optimum power assignment with

tr
(
CiRx,iCT

i

) ≤ P ∗
i ∀i ∈ {1, . . . , M}

M∑
i=1

P ∗
i ≤ P
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then (29) is simplified into a set of identical problems as

max
Ci

μi(Ci) =
1
σ2

θ

(
1

1 − σ2
θηi(Ci)

− 1
)

s.t. tr
(
CiRx,iCT

i

) ≤ P ∗
i (30)

Note that σ2
θηi(Ci) must lie within the interval (0, 1) because

we have ηi(Ci) > 0 and μi(Ci) > 0 from their definitions.
Hence (30) is equivalent to

max
Ci

ηi(Ci)

s.t. tr
(
CiRx,iCT

i

) ≤ P ∗
i (31)

which is exactly the optimization problem discussed in the
previous section. The optimal solution to (31) is given in
Theorem 1. The key problem, therefore, is to determine the
optimum power assignment {P ∗

1 , P ∗
2 , . . . , P ∗

M}. To this goal,
we need to find out the relationship between the maximum
objective function value ηi(C∗

i ) and P ∗
i . Recalling Theorem

1, more precisely, (18), we have

ηi(C∗
i ) =

P ∗
i

P ∗
i + min(dv,i)

hT
i R−1

x,ihi

� αiP
∗
i

βi + P ∗
i

(32)

where we define αi � hT
i R−1

x,ihi, βi � min(dv,i), and dv,i

is a column vector consisting of the eigenvalues of Rv,i (note
that Rv,i can be non-diagonal). Substituting (32) into the
objective function of (29), we get

M∑
i=1

1
σ2

θ

(
1

1 − σ2
θηi(C∗

i )
− 1
)

=
M∑
i=1

αiP
∗
i

(1 − σ2
θαi)P ∗

i + βi
(33)

Clearly, the optimal power allocation {P ∗
1 , P ∗

2 , . . . , P ∗
M} must

be the one, among all feasible power assignments, which
maximizes (33). Therefore, it can be found out by

min
{P1,...,PM}

−
M∑
i=1

αiPi

(1 − σ2
θαi)Pi + βi

s.t.
M∑
i=1

Pi ≤ P

Pi ≥ 0 ∀i ∈ {1, . . . , M} (34)

It is easy to verify that the optimization problem (34) is convex
because its Hessian matrix, which is a diagonal matrix in
this case, is positive semidefinite on the convex set defined
by the linear constraints. Although (34) is efficiently solvable
by numerical methods, it can also be solved analytically by
resorting to the Lagrangian function and Karush-Kuhn-Tucker
(KKT) conditions, which leads to a water-filling type power
allocation scheme. The details are elaborated in Appendix C.
Briefly speaking, for a threshold λ that is uniquely determined
by a procedure described in Appendix C, we have

Pi =

⎧⎨
⎩

1
ϕi

(√
φi

λ − 1
)

φi ≥ λ

0 otherwise
(35)

where φi � αi/βi and ϕi � (1 − σ2
θαi)/βi. It is easy to

see that each cluster can decide whether to transmit or keep
silent by the criterion φi ≥ λ. Note that φi is the ratio of
hT

i R−1
x,ihi to min(dv,i), with the former a measure of the

cluster’s estimation quality (a larger value indicates a better
estimation accuracy) and the latter a measure of the cluster’s
channel quality (a smaller value indicates a better channel
quality).

So far we have developed an analytical approach which
leads to an optimal solution to (6). For clarity, we now
summarize the steps of our proposed method.

1) Given the prior knowledge of the auto-correlation ma-
trices {Rv,i}M

i=1, {Rw,i}M
i=1 and the observation gain

vectors {hi}M
i=1, compute {αi}M

i=1 and {βi}M
i=1, where

αi = hT
i R−1

x,ihi and βi = min(dv,i).
2) Given the total power constraint P , find the optimal

power allocation among clusters via (34). The solution
of (34) is elaborated in Appendix C.

3) With the optimal power assignment {P ∗
1 , P ∗

2 , . . . , P ∗
M}

derived in the previous step, determine the optimal
collaboration matrices {Ci}M

i=1 via (31), whose solution
is detailed in Theorem 1.

Briefly speaking, our collaborative scheme involves power
allocation (among clusters) and collaboration matrix design.
Both steps admit simple distributed implementations. For the
power allocation step, note that the power assigned to each
cluster, Pi, is computed by (35), where αi and βi can be
calculated using each cluster’s local information, and λ is
common to all clusters, thus can be computed at the FC and
then broadcasted to all clusters. Based on the computed power
Pi, each cluster can determine the corresponding collaboration
matrix locally without requiring information from other clus-
ters (c.f. (17)). In particular, since the optimal collaboration
is equivalent to constructing a local LMMSE estimate, the
sensor collaboration can be implemented in a fully distributed
manner without the aid of a cluster head. The distributed
implementation of a LMMSE estimator has been studied in
many works, e.g. [14] and the references therein.

B. Simulation Results

We now provide some numerical examples to illustrate
our proposed method. We firstly investigate the relationship
between the estimation accuracy and the number of clusters,
given a fixed amount of total transmit power. Consider a
homogeneous environment with identical observation quali-
ties across all sensors and identical link qualities across all
channels from the cluster heads to the FC. Each cluster has
Ni = 10 sensors for i ∈ {1, . . . , M}. Fig. 5 shows the
estimation MSE of our collaborative scheme as a function
of the number of clusters, M , with the total transmit P = 1,
P = 5, and P = 10, respectively. We see that with an increas-
ing number of clusters, the estimation MSE is monotonically
decreasing and approaches to a nonzero limit. This observation
can be readily verified by our theoretical results because
an equal power allocation is optimum for a homogeneous
environment. By using (25) and (33), the estimation MSE of
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the collaborative scheme is given by

MSEOC =
[

1
σ2

θ

+
αPM

(1 − σ2
θα)P + βM

]−1

(36)

with α = hT
i R−1

x,ihi ∀i, and β = σ2
v . In this setting, we also

compare our collaborative scheme with the non-collaborative
scheme in Fig. 6. As expected, the collaborative scheme
surpasses the non-collaborative scheme in accuracy/power
efficiency.

We now consider an inhomogeneous environment with
varying observation and channel qualities across clusters. For
each cluster, say cluster i, we have Rw,i = σ2

w,iI, where
σ2

w,i ∼ Unif(0, 1), and there is one channel from the cluster
head to the FC with σ2

v,i ∼ Unif(0, 1). To illustrate the
effectiveness of the optimal power allocation among clusters,
we compare our optimal solution with an collaborative scheme
with an equal power allocation among the cluster. Note that
for the latter strategy, the collaboration matrices can be de-
termined from (31) with P ∗

i replaced by the equally assigned
power. Fig. 7 depicts the estimation MSE of the two schemes
as a function of the total transmit power. The performance
gain is due to the fact that the optimal scheme is able to make
more efficient use of the total transmit power by taking into
account cluster disparity.

It is also interesting to consider the following question that
would give us an useful hint for the network design: is it
better to place all sensors into one cluster or to divide them
into a few clusters? Our theoretical results for one cluster
case implicitly provide an answer to this question: the best
choice is to form one huge cluster. This is because Theorem
1 points out that when sensors have the communication
resources to collaborate, the optimal collaboration scheme
is to pool all data from all sensors to construct a LMMSE
estimate, instead of partitioning those sensors into a few
clusters. Nevertheless, when sensors are geographically far
apart, it may be impractical to form and maintain one huge
cluster because the energy consumed by sensor collaboration
increases exponentially with the inter-sensor distance and will
be no longer negligible. Anyway, our results suggest that, with
an acceptable collaboration cost, collaboration across sensors
should be encouraged as much as possible.

V. CONCLUSIONS AND OUTLOOKS

We studied an optimal collaboration and power allocation
problem for distributed estimation in a power-constrained
collaborative sensor network, where the network consists of
a number of sensor clusters, and collaboration is allowed
within the same cluster but not across clusters. Our theoretical
results showed that, given a specified total transmit power, the
power should be assigned among the clusters in a water-filling
manner, with each cluster deciding whether to transmit or keep
silent by comparing with a threshold, namely, the ratio of a
measure of the cluster’s estimation quality to a measure of the
cluster’s channel quality. Also, for each cluster, if the channels
from this cluster to the FC are uncorrelated, then an optimal
collaboration yields only one local message which is sent
from the best channel within the cluster to the FC; otherwise
the local message has to be sent across all channels within
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the cluster at different power levels matched to their channel
quality. Specifically, in either case, the compressed local
message is exactly the local LMMSE estimate multiplied by
an amplification factor. Simulation results have been presented
to corroborate our theoretical analysis.

Our future investigation will relax the ideal collaboration
assumption and take into account the noise arising from
communication within each cluster (between sensors and the
cluster head) and the energy consumption caused by sensor
collaboration. It would be interesting to examine the optimal
power allocation between collaboration and message transmis-
sion (from cluster heads to the FC). Another interesting direc-
tion is the extension of our proposed collaboration scheme to
the vector parameter case, i.e. the parameter to be estimated
is a vector instead of a scalar, and the elements of the vector
parameter could be mutually independent or correlated. In this
case, we can treat the scalar parameters individually and place
individual power constraint on each scalar parameter. Hence
the problem becomes the same as that in this paper except
that the observation model may no longer be a linear signal-
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plus-noise model due to the correlation among different scalar
parameters. Nevertheless, the optimal collaboration matrix and
the optimal power allocation among the clusters can still be
determined by following the same derivation as we did in this
paper. Another formulation, instead of treating the parameters
individually, is to consider minimizing the overall estimation
distortion under a total power constraint. This formulation has
the disadvantage that the estimation distortion target can only
be set for overall parameters, but not for individual parameters.
Also, an optimal solution, in this case, may not be found and
hence an effective sub-optimal solution is desirable.

APPENDIX A
PROOF OF LEMMA 1

We firstly fix the optimization variables {D,Q} and search
for an optimal U. The optimization (13) is reduced to

max
U

tr
(
D

1
2
g UD

1
2 (I + D)−1D

1
2 UTD

1
2
g

)
s.t. UTU = I (37)

Note that for any matrix U satisfying the orthogonality
constraint: UTU = I, the objective function in (37) is upper-
bounded by

tr
(
D

1
2
g UD

1
2 (I + D)−1D

1
2 UT D

1
2
g

)
=tr
(
D

1
2 (I + D)−1D

1
2 UT DgU

)
≤ dmax

1 + dmax
tr
(
UT DgU

)
(a)

≤ dmax

1 + dmax
tr (Dg)

(b)
=

dmax

1 + dmax
Dg(1, 1) (38)

where dmax denotes the largest diagonal element of D, (a)
follows from an inequality [32, Corollary 4.3.18] which is
a generalized result of the Rayleigh-Ritz theorem (note that
U is not an orthonormal matrix, but only a portion of it),
and (b) follows by recognizing that Dg(1, 1) is the only one

nonzero diagonal element of Dg (note that Dg has only one
nonzero diagonal element since G is rank-one). Without loss
of generality, we assume that the diagonal elements of D are
sorted in a descending order, i.e. d1 ≥ d2 ≥ . . . ≥ dp. We can
easily verify that this upper bound is achieved only when U =
Γ, where Γ is defined in (14). Consequently we conclude that
U = Γ is an optimal solution to (37), which is independent
of the optimization variables {D,Q}.

We now search for optimal {D,Q} by utilizing the above
results. The optimization is simplified into

max
D,Q

d1

1 + d1
Dg(1, 1)

s.t. tr
(
DQTDvQ

) ≤ P

D = diag(d1, . . . , dp) d1 ≥ d2 ≥ . . . ≥ dp ≥ 0

QQT = I (39)

Note that we replace dmax with d1 because we assume that
the diagonal elements of D are in a descending order. It is
clear to see that (39) is equivalent to maximizing d1, which
is upper bounded by

d1

(a)

≤ P −∑p
i=2 diξi

ξ1

(b)

≤ P

ξ1

(c)

≤ P

min(dv)
(40)

where the inequality (a) comes from the constraint
tr
(
DQTDvQ

) ≤ P and ξi denotes the ith diagonal element
of Ξ � QTDvQ (note that Ξ is not necessarily diagonal); the
inequality (b) comes by recognizing that both {di} and {ξi}
are non-negative (it can be easily proved that ξi > 0 since Dv

has positive diagonal elements); the inequality (c) follows,
again, from ξ1 ≥ min(dv), which is a result readily derived
from the inequality [32, Corollary 4.3.18]. As mentioned
before, we have min(dv) = Dv(1, 1) because Dv is in an
ascending order. Clearly, the upper bound is attainable only
for matrices Q = I and D = Λ, where Λ is defined in
(15). They also satisfy the constraints specified in (39). Hence
Q = I and D = Λ are the optimal solution of (39).

Note that, in the previous derivation, the diagonal elements
of D are assumed in a descending order. This assumption
can be relaxed by setting D∗ = PΛPT for any permutation
matrix P. The optimal solution of U and Q, correspondingly
becomes U∗ = ΓPT , and Q∗ = PT , which can be readily
verified.

Substituting the derived optimal matrices {U∗,D∗,Q∗}
into (13), the objective function is computed as follows

f(U∗,D∗,Q∗) =
P

P + min(dv)
Dg(1, 1)

(a)
=

P

P + min(dv)
hTR−1

x h (41)

where (a) follows directly by noting that Dg(1, 1) is the only

nonzero eigenvalue of G = R− 1
2

x hhTR− 1
2

x .
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APPENDIX B
PROOF OF THEOREM 1

Combining (8) and (11), we can quickly establish the
following relationship

C = UvD
1
2
v QD

1
2 UT UT

g R− 1
2

x (42)

By substituting the derived optimal matrices {U,Q,D} into
(42), and utilizing (D∗)

1
2 = PΛ

1
2 PT and PPT = PT P = I,

the optimal collaboration matrix is therefore given by

C∗ =UvD
1
2
v Λ

1
2 ΓTUT

g R− 1
2

x

(a)
=UvΨUT

g R− 1
2

x

(b)
=
√

PUv[:, 1]eT
1 UT

g R− 1
2

x

(c)
=
√

PUv[:, 1]γhTR− 1
2

x R− 1
2

x

=
√

PUv[:, 1]γhTR−1
x (43)

where in (a), we define Ψ � D
1
2
v Λ

1
2 ΓT , and Ψ can be easily

computed, which is a matrix with its first row equal to
√

PeT
1

and all other elements equal to zero, i.e.

Ψ =
[ √

PeT
1

0(p−1)×N

]
(44)

ei denotes the unit column vector with its ith entry equal
to one, and its other entries equal to zero; (b) follows
directly by noting the sparse structure of Ψ and Uv[:, 1]
denotes the first column of Uv; (c) comes from the fact

that G � R− 1
2

x hhTR− 1
2

x = UgDgUT
g is a rank-one matrix

with only one null eigenvalue associated with the eigenvector

γR− 1
2

x h (note that this eigenvector is exactly the first column
of Ug), where γ � 1√

hT R−1
x h

is the normalization scalar. The

associated estimation mean-square error can be readily derived
by using (16).

APPENDIX C
AN ANALYTICAL SOLUTION TO (34)

For notational convenience, let φi � αi/βi and ϕi � (1 −
σ2

θαi)/βi. The Lagrangian function L associated with (34) is
given by

L(Pi; λ; νi) = −
M∑
i=1

φiPi

ϕiPi + 1
− λ

(
P −

M∑
i=1

Pi

)
−

M∑
i=1

νiPi

(45)

which gives the following KKT conditions [33]:

− φi

(ϕiPi + 1)2
+ λ − νi =0 ∀i

P −
M∑
i=1

Pi =0

νiPi =0 ∀i

νi ≥0 ∀i

Pi ≥0 ∀i

By solving the first equation of the above KKT conditions,
we obtain

Pi =
1
ϕi

[√
φi

λ − νi
− 1

]
∀i (46)

Also, the KKT conditions: νiPi = 0, νi ≥ 0, and Pi ≥ 0 imply
that we have either {νi = 0, Pi > 0} or {νi > 0, Pi = 0}.
Therefore (46) becomes

Pi =
1
ϕi

[√
φi

λ
− 1

]+

∀i (47)

where [x]+ is equal to x if x > 0, otherwise it is zero. The La-
grangian multiplier λ and the number of active clusters (those
are assigned nonzero power) can be uniquely determined from
the power constraint.

Suppose we have K ∈ {1, . . . , M} active clusters, ac-
cording to (47), these K clusters must be {k1, k2, . . . , kK},
where {ki} is a set of indices such that φk1 ≥ φk2 ≥
. . . ≥ φkM . Therefore λ can be solved by substituting
{Pk1 , Pk2 , . . . , PkK} into the second KKT condition, where
Pki is given by

Pki =
1

ϕki

[√
φki

λ
− 1

]
(48)

Now we substitute λ back to (47). We will get a new
solution {P ′

k1
, P ′

k2
, . . . , P ′

kK
, P ′

kK+1
, . . . , P ′

kM
}. If this new

solution is exactly identical to the one we assumed before,
i.e. {Pk1 , Pk2 , . . . , PkK , 0, . . . , 0}. Then it is the true solution
we are looking for; otherwise we have to choose another K
to repeat the above procedure. Also, it has been proved that
such a solution is unique and always exists [7].
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