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Power Constrained Distributed Estimation With
Correlated Sensor Data

Jun Fang and Hongbin Li

Abstract—We consider distributed estimation of a random scalar param-
eter in a power constrained wireless sensor network (WSN), where the mea-
surements are sent from the sensors to the fusion center (FC) over noisy
wireless channels by employing an analog transmission scheme. We study
the power allocation problem with generally correlated sensor observations
that can accommodate nonlinear measurement models and spatially cor-
related observation noise. An effective solution is developed by utilizing a
tractable lower bound of the objective function. The proposed algorithm is
also extended for random field estimation. Simulation results are presented
to illustrate the effectiveness of the proposed algorithm.

Index Terms—Distributed estimation, power allocation, wireless sensor
networks (WSNs).

I. INTRODUCTION

Distributed parameter estimation is one of the fundamental prob-
lems arising from the wide applications of WSNs, in which a random
variable or a random field is observed by multiple sensors whose ob-
servations are processed and transmitted to a fusion center (FC) to
form an estimate of the parameter(s). This problem has attracted much
attention over the past few years. As sensors in a network are pow-
ered by small-size batteries whose energy resource is severely lim-
ited, energy constraint is a primary issue that need to be taken into
account in designing distributed estimation algorithms. A multitude
of studies along this line have appeared recently, e.g., distributed es-
timation by using aggressive quantization strategies [1]–[3] or by em-
ploying a linear compression matrix [4]–[6] to reduce the transmission
requirement. In most of the above studies, ideal wireless channels are
assumed through which the measurements are sent from the sensors
to the FC without distortion. This assumption, however, is undermined
in practice due to the link noise and adverse channel effects such as
fading. Increasing transmission power is one way to counteract channel
impairments and improve the quality of the received signal. However,
as the energy resources provided by the sensor networks are extremely
limited, a power allocation problem naturally arises. The objective of
power allocation is to find an optimum strategy to assign power among
different sensors, aiming at minimizing the estimation error under cer-
tain transmission power constraints or its converse: satisfying a target
distortion performance with a minimum energy consumption. Such a
problem has been extensively investigated in [7]–[11]. In particular,
the power scheduling was studied in [7] and [8] under the frameworks
of an uncoded quadrature amplitude modulated (QAM) transmission
strategy and an analog transmission strategy, respectively. The exten-
sion of [8] to distributed estimation of a random field was considered
in [9]. In [10], the authors examined the power allocation in a multihop
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scenario where the information is forwarded from sensors to an FC via
a routing tree. Recently, the minimal energy distributed estimation was
discussed in [11], where the observation noise variance was assumed
unknown and described by a statistical model. All these works, how-
ever, assume independent observation noise across the sensors. Also,
although distributed estimation of random signals can be dealt with by
[8] and [9], only linear signal-plus-noise models were considered.

In this correspondence, we examine the power allocation with ar-
bitrarily spatially correlated sensor observations. Correlation among
sensor observations could arise as a result of colored observation noise,
which is usually the case when sensors are densely deployed in a finite
area and the phenomena to be measured is subject to similar distur-
bance and correlated ambient noise. Moreover, even with independent
observation noise, sensor observations are correlated when the signal
to be estimated is modeled as a random variable or dependent random
variables. In this case, most existing methods, e.g., [8] and [9], address
only linear signal-plus-noise observation models. This correspondence
considers a more general case with correlated observations resulting
from either linear or nonlinear observation models. A main difficulty
arising from generally correlated sensor observations for optimal power
allocation is that the underlying optimization problem involves a non-
diagonal matrix inverse that is usually hard to deal with. To circum-
vent this difficulty, we utilize the Cauchy–Schwarz inequality to find a
tractable lower bound of the objective function to be maximized. A sub-
optimal solution is sought for by maximizing the derived lower bound.
The new optimization turns out to be a convex quadratic programming
(QP) problem, which can be efficiently solved.

II. PROBLEM FORMULATION

A. Random Scalar Parameter Estimation

Consider a WSN consisting of� spatially distributed sensors linked
with a FC. Each sensor, say sensor �, makes an observation, ��, that
is correlated with the random signal of interest �. The measurement
model used to describe the underlying physical observation mecha-
nism can take any form and is not confined to a standard linear signal-
plus-noise model �� � ��� � �� (here, �� is a scaling factor).
The measurement model, for example, can be characterized by �� �
����� � �� � � �� �� � � � � � , where ������� are general nonlinear
functions representing the relationship between the signal and the mea-
surements, ���� is the observation noise that could be independent or
spatially correlated. We assume that the signal � and the data ���� have
zero mean with autocorrelation and cross-correlation 	�� ,���, and��

available at the FC, where we define���

�
� 
���� 	, ��

�
� 
���� 	,

in which �
�
� ��� �� � � � �� 	� . Note that the zero-mean assump-

tion, which is made for simplicity for exposition, does not sacrifice the
generality. A priori knowledge of the auto- and cross-correlation can
come either from specific data models or from sample estimation after
a training phase [6].

We adopt a simple uncoded analog amplify-and-forward scheme
[8] to transmit the observations ���� to a FC. The observations
are transmitted to the FC via independent additive white Gaussian
noise (AWGN) channels that can be realized by a multiaccess tech-
nique such as TDMA or FDMA. The received signal from the ���

channel (or sensor �), therefore, is given by

�� � ����� � �� � � �� �� � � � � � (1)

where � is the amplification factor employed at sensor �, �� and ��
denote the channel gain and the additive channel noise associated with
sensor �, respectively. The channel noise ���� is assumed statistically
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independent of the sensor observations ����, with zero mean and co-
variance matrix ��

�
� ����� � � ����������� �

�
���� 	 	 	 � �

�
���
, where

�
�
� ��� �� 	 	 	 �� �� , and ����� denotes the variance of the channel

noise ��.
Let �

�
� ��� �� 	 	 	 �� �� , we rewrite (1) in a vector form:

� � ��� � � (2)

where ��
�
� ���������� ����� 	 	 	 � ���� 
. Using the received data

� at the FC, the linear minimum mean-square error (LMMSE) estimate
of 	 is known as [12]

�	 � ����
��
� � � ��	�

�
� ���	�

�
� ���

��

� (3)

and the estimation mean-square error (MSE) is given by

� �	 � �	
� ���� �����
��
� �

�
��

���� ���	�
�
� ���	�

�
� ���

��

���
�
�	

���� ���	�
�

 �
�	�

�

 � ��

��

�
�
�
�	 (4)

where ���
�
� ��	�� �, ��

�
� ����� �, �


�
� �������� ���

	 	 	 � �� 
, and ��
�
� �����������
�

�
�
� ��

�
���
�

�
�
� 	 	 	 � ��

�
���
�

�
�



with its diagonal entries the inverse of the channel signal-to-noise
ratios (SNRs).

We see that the LMMSE estimator involves determining a set of am-
plification factors ���� that are used to adjust the average transmis-
sion power of the sensors. Specifically, the average power of sensor �
is given by

�� � ����
�
	��� � � �� �� 	 	 	 �  (5)

where ��	�� denotes the variance of the sensor observation ��. Due to
the severely limited energy resources, these factors cannot be chosen ar-
bitrarily large. Naturally, with the total transmission power constrained,
we may wish to find an optimal set ���� to minimize the estimation
MSE. By noting that

�

���

�� � �� �
�	�
�

 (6)

this power allocation problem is formulated as

���
�

�� ��	�
�

 �
�	�

�

 � ��

��

�
�
�
�	

���� �� �
�	�
�

 � ������ (7)

where the power constraint is represented as an equality instead of an
inequality because it can be easily verified that the objective function is
a monotonically increasing function of ������. We assume the FC has
the knowledge of the channel state information, ����, and the channel
noise variances. In practice, these information can be estimated from
the training data from the sensors (e.g., [8]).

B. Random Field Estimation

The above formulation can be easily extended to the case where the
random signal of interest, instead of a common scalar parameter, is
a set of dependent, spatially distributed random variables, i.e., 			

�
�

�	� 	� 	 	 	 	� �� , where 	� is an unknown parameter associated with
sensor �. Again, the mapping between the observation �� and the un-
known 	� is not restricted to a linear signal-plus-noise model: �� �
��	����. It can be easily verified that the LMMSE estimator and the

corresponding estimation covariance matrix have the same expressions
of (3) and (4), with ��� replaced by��

�
� ��						� � and��	

�
� ��			�� �.

The formulation of the power allocation problem, therefore, remains
the same as (7).

III. PROPOSED APPROACH

Power allocation problem was also studied in [8], [9]. However, they
only addressed linear signal-plus-noise measurement models with in-
dependent observation noise. Specifically, the formulation of the esti-
mation MSE or the estimation covariance matrix, based on which the
methods [8], [9] are developed, are specific for linear models; also, only
under the assumption of independent observation noise across the sen-
sors, the estimation MSE can be simplified as an analytical form [8]
or cast into a convex function [8], [9] (see Section IV for a detailed
discussion). In contrast to [8] and [9], we study a general power allo-
cation problem (7) that accommodates nonlinear measurement models
and spatially correlated observation noise.

A main difficulty associated with (7) is that the underlying optimiza-
tion problem involves a nondiagonal matrix inverse that is usually hard
to deal with. To circumvent this difficulty, we, instead, propose to max-
imize a lower bound of the objective function in (7). We introduce the
following lemma that provides a natural framework allowing us to find
a lower bound of the above objective function.

Lemma 1: For any � � ��� and positive-definite matrix � �
���, the following inequality holds:

�����
�
��
�
 �

������

�

�������

� (8)

Proof: Let � � ����	��
 and 	 � �����, Lemma 1
follows from the Cauchy–Schwarz inequality:

������ 
���		� 
 � ����	� 

�

�

By utilizing Lemma 1, a lower bound of the cost function in (7) is
provided below.

Proposition 1: For any arbitrary correlation matrix�	, we have

�� ��	�
�

 �
�	�

�

 � ��

��

�
�
�
�	

�
�� ��	�

�

�
�

�
�	

�

�� ��	��

 �
�	��


 � �� �
�
�
�	

� (9)

Proof: The result comes directly from Lemma 1 by letting � �
�
�

�
�	 and� � �
�	�

�

 � �� .

In the following, for simplicity, we first present our solution for the
scalar parameter case and then extend it to a set of dependent random
variables.

A. Scalar Parameter

The cross-correlation��	 is a row vector when the signal of interest,
	, is a scalar random parameter. In this case, we can rewrite the lower
bound and the power constraint into more tractable forms by exploiting
the diagonal structure of �
. Define



�
� ��� ��� 	 	 	 ���

�
(10)

it is easy to verify that

��	�
�

�
�

�
�	 ������	
 (11)

��	�
�

 �
�	�

�

 � �� �
�

�
�	 � 
��
 � ����� 
 (12)

�� �
�	�
�

 �����	 
 (13)
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where �����
�
� ���� � ����

� , �
�
� ��������������������,

����
�
� �

�
�� � �	
�� ���� � �

�
��, and ����

�
� �	
�����, in which �

denotes the Hadamard product, also known as the entrywise product,
������� is a diagonal matrix with its diagonal entries given by �,
�	
���� is a column vector with its entries formed by the diagonals
of �.

Using (9) and (11)–(13), we now turn to the following problem:


�
�

�������
������

���� � ����� �

���� ����� � � ������

� � � (14)

where the inequality, � � �, comes from the fact that every entry of
the vector � is greater than or equal to zero [see (10)].

We first consider a special case where ���� � ������, in which � is a
constant. This particular case arises from a linear model �� � � � ��
when the observation noise variances across the sensors are identical.
In this case, the power constraint is equivalent to imposing a constant
constraint:������� � �������� on the numerator of the objective function
in (14). Hence, to maximize the objective function, we only need to
minimize its denominator. Therefore, we reach the following quadratic
programming (QP) problem:

	�
�

�
�
�� � ����� �

���� ����� � � ������

� � �� (15)

As � is positive definite, the QP problem (15) is convex and admits
an unique global solution. Although the solution can hardly be found
analytically, it can be efficiently solved by numerical methods such as
the interior point method.

For the general case where ���� �� ������, to solve (14), we, firstly,
consider the optimization of � by fixing the numerator of the objective
function. Let 	

�
� ������� . Clearly, for any specified 	 � �	���
 	��	�,

where �	���
 	��	� is a feasible region of 	, the optimum � is given
by the following QP problem:

	�
�

�
�
�� � ����� �

���� ����� � � ������

������� � 	

� � �� (16)

The optimization (16), as (15), is convex and can be efficiently solved
by numerical methods. Let ��
��	� denote the optimum solution of �
associated with each 	. By substituting it into (17), we obtain the fol-
lowing one-dimensional search of 	:


�
�

	�

���
��	����
��	� � ����� ��
��	�

���� 	��	 � 	 � 	���� (17)

To find an optimum 	, we choose a set of candidates �	��
�

��
from

�	���
 	��	�. The best 	 in the set �	��
�

��
is determined as the one

that maximizes the cost function of (17). Therefore, the solution to (14)
is finally given by �	�
 ��
��	���, where 	� denotes the best 	 chosen
from the candidate set.

We note that a sum power constraint imposes a constraint on power
consumption at the network level and therefore, has a direct impact
on the network lifespan. Meanwhile, in some application scenarios, a
per-node based power constraint may also be desirable in order to pre-
vent excessive battery drainage for individual sensors. Our proposed

method can be readily extended to incorporate individual power con-
straints for all sensors. Recalling (5), the individual power constraints
can be expressed by the inequality:��� � � , where���

�
� �� �� � � � �	 �

� ,
�


�
� ���	�
�

�
��
, and ���	�
 denotes the maximum power con-

sumption for sensor �. By incorporating this constraint, the optimiza-
tion (14) becomes


�
�

�������
������

���� � ����� �

���� ����� � � ������

��� � � � � (18)

which can be solved by following the same approach used to solve (14).

B. Random Field

Consider the random signal of interest is a set of dependent, spatially
distributed random variables: ���

�
� �� �� � � � �	 �

� . In this case, the
cross-correlation ��� is an � � � matrix instead of a row vector.
Nevertheless, by utilizing

�� �����
�
�� �

	


�

�����
 ��������
 ��
� (19)

and following the derivation of (11) and (12) for each component
�����
 ��������
 ��

� , the lower bound given in (9) can be turned
into a same form as the objective function given in (14), where
�����
 �� denotes the �th row of ���. Therefore, we encounter the
same problem as (14) which can be solved by following the same way
as described in previous subsection.

IV. DISCUSSIONS

To better understand the difference between our work and [8] and [9],
we explain why the methods [8], [9] are only for linear measurement
models. Specifically, we focus our discussion on [8] since the extension
of our discussion to [9] is straightforward. We note that the method
[8], when � is modeled as a random parameter, relies on the following
reformulation of the estimation MSE (4) which is based on the linear
relationship � � 	� � 
:

� �� � ����

��� �����
�
� �����

�
�� ���

�

���
�
��

����
�
�	

�
�
�
� 	 �� ��		

��� �
�
� � ���

�

��	

� ��� �	���
� ����

�
�� ���

�

��	

�

� (20)

If the observation noise is independent, i.e.,� is diagonal, the above
reformulation circumvents a direct nondiagonal matrix inversion and
yields an analytical solution. However, for generally nonlinear mea-
surement models, the above reformulation does not lead to a simplifi-
cation because the matrices �� and ��� usually do not satisfy a rela-
tionship that holds valid for linear models with independent observa-
tion noise, i.e.,�� � ���

���������, where � is a positive constant and
��� is a diagonal matrix with nonnegative diagonal elements. Hence, the
proposed method [8] is not applicable to generally nonlinear models.

Nonlinear model occurs in many sensor network applications. For
example, in the target tracking scenario, the observation equations are
nonlinear because there is a natural power law decay of the sensed
information with distance from the target. In addition, the physical
sensing mechanism can be designed to be a nonlinear function to com-
press the signal amplitude in order to capture the characteristic that
small signal amplitudes occur more frequently than large ones. One
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Fig. 1. Example A: MSEs versus total transmit power for a linear model with uncorrelated and correlated observation noise, respectively. (a) � � � and (b)
� � ����.

Fig. 2. Example A: A bar graph depicting the power allocation of the three
schemes.

may argue that the sensor can carry out a local function reverse to re-
move the nonlinearity. However, this imposes a high computational de-
mand to the sensors. Also, this is only feasible when the local nonlinear
mapping from the signal to the observation is unique, i.e., each possible
signal value corresponds to a unique observation value, which may not
be true in practice.

V. SIMULATION RESULTS

We present simulation results to illustrate the estimation perfor-
mance of the proposed algorithm. Two subsections are included, in
which the estimation of a random scalar parameter and a random field
are considered, respectively.

A. Estimation of a Random Parameter

We first examine the following linear signal-plus-noise model: �� �

� � ��, where the observation noise ���� is modeled as an autore-
gressive (AR)(1) model, which is given by

�� � ����� � �� � � �� � � � � � (21)

in which � is the AR coefficient; ���� is a white noise process with
zero mean and variance 	�

� � �
�. We compare our method with the

Fig. 3. Example A: MSEs versus total transmit power for a nonlinear model.

proposed power allocation method [8] which is implemented by ig-
noring the off-diagonal elements of the noise correlation matrix, and
an equal power allocation scheme where all sensors transmit the same
amount of power. In our simulations, we set � � ��, and 	�

� � �. The
channel SNR is given by

�	
���� � �� ��
��

���

	�
���

� � � �� � � � � � (22)

where ���� are i.i.d. normal random variables with zero mean and unit
variance, and we choose	�

��� � �
�� for any�. Fig. 1 shows the estima-
tion MSEs of the three schemes as a function of the total transmit power
�����	, where the AR coefficient � in (21) is set to be 0 and�0.9 respec-
tively, with � � � corresponding to an independent scenario and � �

��
� corresponding to a correlated scenario. The results are averaged
over 500 Monte Carlo runs, with the channel gains ���� randomly gen-
erated for each run. The minimum MSE achieved without imposing any
power constraint, i.e., by assuming ideal wireless links, is also included.
We note that, when � � �, the method [8] is optimal and yields the
best performance among the three schemes. Nevertheless, our proposed
method achieves quasi-optimal performance with only a slight loss as
compared with [8]. When � � ��
�, [8] is no longer optimal. In this
case, our proposed method presents a performance advantage over the
method [8] and the equal power allocation scheme. To meet the same
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Fig. 4. Example B: MSEs versus total transmit power with uncorrelated and correlated observation noise, respectively. (a) � � �; (b) � � ����.

distortion target, say, 0.08, the power required by our proposed method
is about 2/3 of that required by [8] and 1/2 of that required by the equal
power allocation scheme.

To gain insight into the power allocation in the presence of correla-
tion, we consider the following illustrative example. We still assume
linear model: �� � ����, where we set � � �, and the observation
noise ���� is highly correlated with autocorrelation ��� � � �� and
cross-correlation �� �� � ���� �� �� �. The channel SNRs are speci-
fied as follows: ��	���� � 16 dB for 	 � 1, 5 and ��	���� � 3 dB
for	 � 2, 3, 4. Fig. 2 is a bar graph depicting the power allocation given
by the three schemes. We observe that our scheme assigns all the power
to the sensors with the best-quality channels. This makes sense because,
due to the high spatial correlation, sensors provide redundant informa-
tion, and little data diversity can be exploited. In this case, a meaningful
power allocation strategy is to allocate most power to the sensors with
the best-quality channels. In contrast, by ignoring the spatial correlation
among sensors, a waterfilling scheme [8] assigns power only according
to the channel quality. As a result, some highly correlated sensors with
poor channel quality but still above waterfilling threshold are assigned
a considerable portion of the total power, as shown in Fig. 2. This, as
indicated earlier, is unreasonable since highly correlated data provide
little useful diversity.

We next consider a nonlinear model: �� � 
�
�� � ��, where we
define 
�
�� � 
�
�� � 
�����, 
�
�� � 
�
�� � ��
��, and

�
�� � 
�
�� � ��
���; � is a uniform random variable defined on
the interval 
�� ��; the observation noise ���� is independent with
covariance matrix �� � �����. The wireless channels are generated
according to (22). We compare our method with [8] and the equal power
allocation scheme. The results are plotted in Fig. 3. Note that to apply
[8] to the current scenario, [8] is implemented by ignoring the nonlin-
earity of the sensor observation model and treating it as if it were linear,
i.e., the covariance matrix �� in the objective function is replaced by

�������

�
����� ��� . Fig. 3 shows that, to attain a same estimation

performance, considerable power savings can be achieved by our pro-
posed method as compared to the other two schemes.

B. Estimation of a Random Field

Distributed estimation of a random field with a set of dependent pa-
rameters ����

�

�	�
is studied. We consider a linear signal-plus-noise

model: �� � �����. A distance-dependent function�����	 � � �


is employed to model the correlation among ����, where ���	 denotes

the Euclidean distance between sensors � and �. We simulate a mod-
erately high correlation among the random parameters ����, in which
we choose � � ��� and � � �, and the sensors are placed uniformly
at random on a 3 � 3 area. The qualities of the channels are assumed
unbalanced with ��	���� � 15 dB for 	 � �, ��	���� � 20 dB for
	 � 2, 5 and ��	���� � �20 dB for 	 � 3, 4. For simplicity, the
observation noise ���� is, again, modeled as an AR(1) process (21)
with ��� � ���, � � � and � � ����, respectively. Fig. 4 shows the
distortion performance of the respective schemes, where the distortion
performance is measured by the average MSE, i.e., 
������������������.
The results are averaged over 500 Monte Carlo runs, with the distribu-
tion of the sensors on the specified area independently generated for
each run. The method [9] is optimal when � � �, which corresponds
to a scenario of independent observation noise. In this case, the method
[9] performs the best among the three schemes [see Fig. 4(a)]. Never-
theless, we see that our proposed method performs quite similarly as
the optimal one [9]. Also, as previous example, when the observation
noise becomes correlated, i.e., � � ����, our method surpasses the
other two schemes and a considerable power saving can be achieved.

VI. CONCLUSION

We studied a power allocation problem arising from distributed es-
timation of a random parameter in the presence of noisy links. A sub-
optimal solution was developed by maximizing a lower bound of the
original optimum power allocation criterion. The proposed method can
handle a general scenario where the sensor observations are nonlinear
functions of the parameter of interest and the observation noise is spa-
tially correlated. Numerical results show that our proposed method
provides an efficient power assignment by taking into account sensor
correlation and channel disparity. Considerable power savings can be
achieved at the same distortion level as compared with other existing
strategies.
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