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Hyperplane-Based Vector Quantization for
Distributed Estimation in Wireless Sensor Networks
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Abstract—This paper considers distributed estimation of a
vector parameter in the presence of zero-mean additive mul-
tivariate Gaussian noise in wireless sensor networks. Due to
stringent power and bandwidth constraints, vector quantization
is performed at each sensor to convert its local noisy vector ob-
servation into one bit of information, which is then forwarded to
a fusion center where a final estimate of the vector parameter is
obtained. Within such a context, this paper focuses on a class of
hyperplane-based vector quantizers which linearly convert the
observation vector into a scalar by using a compression vector and
then carry out a scalar quantization. It is shown that the key of the
vector quantization design is to find a compression vector for each
sensor. Under the framework of the Cramér–Rao bound (CRB)
analysis, the compression vector design problem is formulated
as an optimization problem that minimizes the trace of the CRB
matrix. Such an optimization problem is extensively studied. In
particular, an efficient iterative algorithm is developed for the
general case, along with optimal and near-optimal solutions for
some specific but important noise scenarios. Performance analysis
and simulation results are carried out to illustrate the effectiveness
of the proposed scheme.

Index Terms—Cramér–Rao bound, distributed estimation, hy-
perplane-based vector quantization, optimization, wireless sensor
networks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have been of signif-
icant interest over the past few years due to their poten-

tial applications in environment monitoring, battlefield surveil-
lance, target localization and tracking [1], [2]. Power efficiency
is a primary issue in sensor networks as the sensors constructing
the network are powered by small batteries that are often irre-
placeable. Also, in a sensor network, communication, relative
to sensing and computation, consumes a significant portion of
the total energy. It is therefore important to develop bandwidth-
and energy-efficient strategies for various sensor network pro-
cessing tasks.

Distributed parameter estimation is a fundamental problem
arising from sensor network applications. One of the most com-
monly used network settings for distributed estimation involves
a set of spatially distributed sensors linked with a fusion center
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(FC). Each sensor makes a noisy observation of the phenom-
enon of interest and transmits its processed information to the
FC, where a final estimate is formed. To address the stringent
power and bandwidth constraints inherent in WSNs, the noisy
observation at each sensor has to be quantized into one or a few
bits of information. In this setup, quantization becomes an inte-
gral part of the estimation process and is critical to the estima-
tion performance. The quantization design in such a distributed
estimation context has been extensively studied in many works,
e.g., [3]–[12]. Specifically, by modeling the unknown parameter
as a random parameter, Bayesian techniques were proposed in,
e.g., [3]–[5]. These methods require knowledge of the joint dis-
tribution of the unknown parameter and the observed signals
for quantizer design. Another category of methods [6], [7], [11]
treated the unknown parameter as a deterministic unknown pa-
rameter and carried out a Cramér-Rao bound (CRB) analysis in
examining the impact of the choice of the quantization threshold
on the estimation performance. It was found [6], [7] that when a
common quantization threshold is applied at all sensors, the esti-
mation performance degrades exponentially as the quantization
threshold deviates from the unknown parameter. To overcome
this difficulty, a multi-thresholding approach [6], [7] employing
a set of non-identical thresholds and an adaptive quantization
approach [11] adaptively adjusting the thresholds from sensor
to sensor were proposed.

So far most of previous studies focused on the scalar param-
eter case. For the general vector parameter scenario, the problem
becomes much more complicated because, unlike the scalar case
which is concerned about only the choice of the quantization
threshold, vector quantization involves partitioning of a high di-
mensional space. Although important, such a problem has not
received adequate attention as its scalar counterpart. In [12],
the vector quantization problem was briefly discussed. The au-
thors proposed a hyperplane-based approach, where each sensor
employs ( denotes the dimension of the vector observation)
hyperplanes perpendicular to the eigenvectors of the noise co-
variance matrix to quantize the vector observation into bits
of information, i.e., one bit per sensor per dimension. Although
effective, its choice of the hyperplanes is heuristic and the pur-
pose is to generate independent binary data for each sensor,
in which case the vector quantization problem can be treated
as scalar quantization problems. Another work [13] studied
the vector quantization design in the context of best linear unbi-
ased estimation fusion, where the unknown parameter is treated
random and the joint distribution of the parameter and the ob-
served signals is required for partition design.

In this paper, we consider the problem of distributed quantiza-
tion and estimation of a deterministic vector parameter, where
the noisy vector observation of each sensor is quantized into
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only one bit of information. We study how to design the vector
quantizer for each sensor, aimed at achieving the best estima-
tion performance at the FC. Specifically, as in [12], we consider
hyperplane-based vector quantization which utilizes a compres-
sion vector to convert the high-dimensional observation vector
into a one-dimensional scalar, and then compares the resultant
scalar with a quantization threshold to generate one bit quan-
tized data. Our CRB analysis shows that the estimation perfor-
mance is dependent on the quantization thresholds as well as
the compression vectors. The optimal choice of the quantization
thresholds, as in the scalar case, is dependent on the unknown
parameter. In contrast, the design of the compression vectors is
independent of the unknown parameter and hence is the focus
of this paper. We develop an efficient iterative algorithm for
the compression vector design for a general case and propose
optimal/near-optimal solutions for some specific but important
noise scenarios. Specifically, for a homogeneous environment
where all sensors have identical noise covariance matrix, our re-
sults reveal that the compression vectors should be chosen from
the eigenvectors of the noise covariance matrix, and the number
of sensors selecting the same eigenvector as their compression
vectors should be matched to their corresponding eigenvalue.
Our performance analysis shows that our proposed one bit quan-
tization scheme generally outperforms [12] in a rate distortion
sense. In particular, when the eigenvalues of the noise covari-
ance matrix are sharply diverse, it is even possible to achieve
almost the same estimation performance as that of [12], while
transmitting only times the total number bits required by
[12]. Simulation results are presented to corroborate our theo-
retical results and to illustrate the performance of our proposed
scheme.

The following notations are adopted throughout this paper,
where stands for transpose, denotes the trace of ,
and means that the matrix is positive semidefinite. We
let denote the th entry of and denote
the set of matrices and the set of -dimensional column
vectors with real entries, respectively.

The rest of the paper is organized as follows. In Section II, we
introduce the data model, basic assumptions, and the distributed
estimation problem. The ML estimator is developed and the cor-
responding CRB is analyzed in Section III. Based on the CRB
analysis, we investigate the vector quantization problem for dis-
tributed estimation. Section IV studies the optimum choice of
the quantization threshold, and the design of the compression
vectors is examined in Section V. Some discussions are pro-
vided in VI. Performance analysis and simulation results are
provided in Section VII, followed by concluding remarks in
Section VIII.

II. PROBLEM FORMULATION

Consider a WSN consisting of spatially distributed sen-
sors. Each sensor makes a noisy observation of the unknown
vector parameter

(1)

where denotes the additive multivariate Gaussian
noise with zero mean and autocovariance matrix , and the

Fig. 1. Two parallel hyperplanes generated by the same compression vector
but different thresholds, from which we can see that the compression vector
determines the orientation of a hyperplane and the threshold controls its altitude.

noise is assumed independent (but not necessarily identically
distributed) across sensors. The observation matrix defining
the input/output relation: is assumed equal to

in the above model because the multiplicative effect of the
observation matrix can be removed by carrying out a matrix in-
verse as long as is full column rank, which is usually met in
practice. To meet stringent bandwidth/power budgets in WSNs,
we consider the case where each sensor quantizes its vector ob-
servation into one bit binary data which is sent to the FC to
form an estimate of . The problem of interest is to determine
the vector quantizers for each sensor, and to develop a maximum
likelihood (ML) estimator to estimate given for the
FC.

Basically, vector quantization can be viewed as a space parti-
tioning problem. For each sensor, the binary data is given by

(2)

where takes the value 1 when belongs to the region
, and 0 otherwise. In this paper, to simplify the problem, the

region is confined to be a half-space whose border is a hy-
perplane defined by a compression vector and a quantization
threshold , i.e., (see Fig. 1)

(3)

The vector quantization problem therefore reduces to finding
a set of compression vectors and thresholds . An-
other important reason for us to consider half-space regions, as
we will discuss later, is that the likelihood function of given

is concave when a hyperplane-based quantizer (3) is
adopted. Thus the ML estimation of is a well-behaved numer-
ical problem: any gradient-based search starting from a random
initial estimate is guaranteed to converge to the global max-
imum, and many efficient routines exist for this type of work
(e.g., [14]).

In the following, we will firstly develop the ML estimator and
carry out a corresponding CRB analysis. The vector quantiza-
tion design is then studied based on the CRB matrix of the un-
known vector parameter .
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III. MLE AND CRB ANALYSIS

A. MLE

By combining (2) and (3), we have

(4)

where

if
otherwise.

It can be readily shown that the probability mass function (PMF)
of is given by

(5)

where denotes the complementary cumulative density
function (CCDF) of , and is a Gaussian random
variable with zero mean and variance . Since

are independent, the log-PMF or log-likelihood function
is

(6)

The ML estimate of , therefore, is given as

(7)

Although the ML estimation often suffers from drawbacks of
high computational complexity and local maxima, this is not
true for our case. In fact, it can be proved that the log-likelihood
function is a concave function. Hence computationally ef-
ficient search algorithms can be used to find the global max-
imum. The proof of the concavity is given in Appendix A. One
can also refer to [12] for the concavity proof in a more general
context.

B. CRB

We carry out a CRB analysis of our proposed scheme.
Through the CRB analysis, we can gain insight into the vector
quantizer design and examine the impact of the choice of
and on the estimation performance.

Let us define a new variable and define

(8)

The first and second-order derivative of are given by

(9)

and

(10)

where has been derived in many studies on distributed
quantization of a scalar parameter, e.g., [11], and is given by

(11)

in which denotes the probability density function (PDF)
of , and . The Fisher information matrix
(FIM) of the estimation problem, therefore, is given as [15]

(12)

where denotes the expectation with respect to the dis-
tribution of follows from the fact that is a binary
random variable with and

.
By defining

(13)

the FIM (12) can be re-expressed as

(14)

and consequently the CRB matrix is

(15)

The CRB places a lower bound on the estimation error of any
unbiased estimator and is asymptotically attained by the ML es-
timator [15]. Specifically, the covariance matrix of any unbiased
estimate satisfies: . Also, the variance
of each component is bounded by the corresponding diagonal
element of , i.e., . It is observed
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from (15) that the CRB matrix of depends on the compression
vectors and the quantization thresholds . Naturally,
we may wish to optimize and by minimizing the trace
of the CRB matrix, i.e., the overall estimation error asymptot-
ically achieved by the ML estimator. The optimization there-
fore is formulated as follows (note that minimizing the overall
estimation error is a natural objective which has been widely
adopted in distributed vector parameter estimation, e.g., [13],
[16]–[19]. A generalization of this optimization by placing dif-
ferent weights on parameter components will be discussed in
Section VI-B)

(16)

Such an optimization is examined in the following section,
where it is shown that the optimization of the compression vec-
tors can be decoupled from the choice of the thresholds

and is the key to the vector quantization design.

IV. VECTOR QUANTIZATION DESIGN: THRESHOLD

DETERMINATION

Note that for the Gaussian random variable
defined in (13) is a unimodal, positive and symmetric function
attaining its maximum when . Hence, given a fixed set
of compression vectors , the optimal quantization thresh-
olds conditional on can be readily solved from (16) and
are given by

(17)

The result (17) comes directly by noting that

(18)

and resorting to the convexity of over the set of positive
definite matrix, i.e., for any , and ,
the following inequality holds (see [20]).

We see that, as in the scalar parameter case, the optimal choice
of the quantization threshold is dependent on the parameter

. If is perfectly known, then the optimization (16) simply
reduces to finding a set of compression vectors , with

, i.e.

s.t. (19)

By noting that

(20)

(16) (or (19)) becomes an optimization independent of

(21)

The problem lies in that the vector parameter , to be esti-
mated, is unknown and unusable in practice. Hence the choice of
the thresholds is tricky. There are two strategies to address
this difficulty, which are described in the following subsections.
We also derive the corresponding optimization formulation of
the compression vector design under these two strategies.

A. FC Feedback-Based Iterative Algorithm

One strategy is to use a FC feedback-based iterative algo-
rithm [7], [11], [21] in which the thresholds are iteratively re-
fined by the FC based on the previous estimate. Specifically, at
iteration , the FC assigns the quantization thresholds
to the sensors. With this assigned quantization threshold, each
sensor generates its quantized data and reports back to the
FC. Upon receiving the quantized data , the FC can

compute an estimate from the ML estimator (7). This ML
estimate is then plugged in (17) to obtain updated quantization

thresholds, i.e., , which are assigned to the sen-
sors for subsequent iteration. Note that when computing an ML

estimate , not only the quantized data from the current but
also from all previous iterations can be used (the ML estimator
(7) can be easily adapted to accommodate these quantized data
since the data are independent across different iterations). Due
to the consistency of the ML estimator for large data records,
this iterative process will asymptotically lead to conditional op-
timal quantization thresholds, i.e., . A rigorous
proof of this asymptotic optimality was provided in [11], where
a similar feedback-based iterative algorithm was proposed to
adjust the quantization thresholds. Given this asymptotic opti-
mality, the problem of interest, therefore, is to determine the set
of compression vectors by assuming the quantization threshold
attaining their conditional optimal values . Hence we are
faced with the optimization (21).

Note that the proposed feedback-based iterative algorithm is
based on the assumption that the parameter to be estimated is
constant over time. In practice, the observed parameter, for ex-
ample, the intensity of a physical phenomenon like tempera-
ture or humidity, can be time-varying. For time-varying envi-
ronments, the algorithm still works if the parameter undergoes
a negligible variation throughout the iterative process. This is
the case when the variation of the environments is slow relative
to the iterative process. In view of this, we can use some means
such as the multiple access technique to accelerate the iterative
process. Another solution to cope with this issue is to collect and
store a set of independent observation samples over a short dura-
tion (the parameter is considered static over this period) at each
sensor. The iterative algorithm can work offline by using these
stored data without collecting the current observation samples.
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B. Heuristic Approach for Threshold Determination

Another strategy, without resorting to the iterative algorithm,
determines the thresholds based on some prior knowledge of

, e.g., [6], [7]. Suppose that the unknown vector parameter is
bounded between (note that we do not assume
the prior distribution of since we treat as a deterministic
vector parameter). It can be readily verified that

(22)

where is the vector-1 norm, denotes the max-
imum element of the absolute value of the vector . As in
[6], the threshold can be chosen within the range defined in
(22) according to a certain heuristic rule. For example, can
be a value selected uniformly at random from the range, in the
hope that some thresholds are close to its optimal value .
Obviously the thresholds determined based on the bound of
are not optimal, and the function does not lead to a
simple analytical form since generally . In this case,
optimizing the compression vectors is a tricky problem
due to the irreducible form of the function . Nev-
ertheless, we can simplify the problem by considering mini-
mizing an upper bound of the objective function of (16). It can
be shown that the function is lower bounded by (see
Appendix B for a detailed derivation)

(23)

where

(24)

is a coefficient independent of the vector parameter and the op-
timization variables and , in which denotes the
smallest eigenvalue of , and . Since

is convex over the set of positive definite matrix and

(25)

the objective function of (16) is upper bounded by

(26)

Finding the compression vectors by minimizing the upper
bound (26), therefore, leads to the following optimization

(27)

Clearly (27) has a same formulation as (21) as the coefficient
can be absorbed into the covariance matrix .

Through the above analysis, we see that for both strategies
where the thresholds are chosen by using an iterative algorithm

or by a heuristic approach based on a prior knowledge of the un-
known vector parameter, (16) is reduced to a same optimization
problem (21), where the design of the compression vectors is in-
dependent of the unknown vector parameter. We will study the
compression vector optimization problem (21) in the following
section.

V. VECTOR QUANTIZATION DESIGN: COMPRESSION VECTOR

DESIGN

In this section, we first develop an efficient iterative algo-
rithm for compression vector design under a general case where
the observation noise is independent but not necessarily iden-
tically distributed across sensors. We then examine some spe-
cific but important homogeneous and inhomogeneous scenarios
where sensors have identical noise covariance matrices or the
noise covariance matrices have the same correlation structure
with different scaling factors. For these scenarios, analytical op-
timal/near-optimal solutions can be found and these solutions
provide an insight into the compression vector design problem.

A. An Iterative Algorithm

The optimization (21) involves determining compression
vectors. Clearly, joint searching over the compression vec-
tors is practically infeasible since it has a complexity that grows
exponential with . To simplify the problem, we employ a
Gauss-Seidel iterative technique [22] to reduce the number of
optimization variables. Specifically, we study how to determine
the th compression vector when the remaining
compression vectors are fixed, through which we can develop
an efficient iterative algorithm to search for an effective, albeit
suboptimal, solution. Let

(28)

The optimization of given fixed is formulated as

(29)

Recalling the Woodbury identity, the objective function of (29)
can be rewritten as

(30)

where comes from the trace identity .
Since is fixed, (29) becomes

(31)
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The above optimization is a generalized Rayleigh quotient
problem and has a closed form solution which can be obtained
as the eigenvector of associated with the largest eigenvalue,
where

(32)

By using the above results, we can establish an iterative al-
gorithm to solve (21) by successively optimizing and replacing
each compression vector . The algorithm is summarized as
follows.

1) Randomly generate a set of compression vectors as
an initialization.

2) At iteration : determine
given: ; determine given:

for .

3) Go to Step 2 if , where
denotes the objective function defined in (21), is

a prescribed tolerance value; otherwise stop.
Clearly, in this algorithm, every iteration results in a non-in-

creasing objective function value. In this manner, the iterative
algorithm converges to a stationary point and finds an effective
set of compression vectors. Nevertheless, this algorithm is not
guaranteed to converge to the global minimum, and it is unclear
how close the achieved stationary point is to the global min-
imum. In the following subsections, we will show that near-op-
timal or even optimal solutions can be obtained for some specific
but important noise models that characterize most practical sce-
narios. These optimal/near-optimal solutions render an insight
into the compression vector design and the theoretical analysis
provides a fundamental understanding of the performance of our
proposed one-bit quantization scheme.

Below are some other comments on the proposed iterative
algorithm.

Remarks: Due to the nonlinearity of the objective function, a
theoretical analysis of the convergence rate of the proposed iter-
ative algorithm is difficult. Nevertheless, our numerical results
reported are very encouraging: even with hundreds of sensors,
the proposed iterative algorithm can usually achieve an accept-
able performance within only a few iterations. A lower bound
on the minimum achievable value of (21) for the general case
can be derived as follows

(33)

where comes by noting that

(34)

follows from Theorem 2 presented in Section V-C, in which

(35)

Although generally non-achievable, this lower bound may still
serve as a benchmark to evaluate the performance of the pro-
posed iterative algorithm.

Since the proposed iterative algorithm successively optimizes
the compression vector associated with each sensor, it is well
suited for implementation in a distributed sequential process,
in which sensors sequentially update their compression vec-
tors and forward information to their next sensors. Specifically,
during this process, each sensor, say sensor , forwards a global
information matrix to its next sensor, say
sensor . Based on this received global information matrix
and its local information, the sensor computes a new com-
pression vector by solving (31), updates the global information
matrix with this new compression vector, and forwards this up-
dated global information matrix to its next sensor, and so on and
so forth.

B. Optimal/Near-Optimal Solution:

We firstly consider the identical noise covariance matrix case
with . In this case, it can be readily shown that (21)
is equivalent to

s.t. (36)

where all compression vectors are confined to unit norm vectors.
Although the optimization (36) is generally nonconvex, a near-
optimal solution or even an optimal solution can still be found.
The results are summarized as follows.

Theorem 1: Suppose . Let denote the ob-
jective function (36). Then for any feasible solution of (36), we
have

(37)

which places a lower bound on the minimum achievable value
of (36). This lower bound can be approached or even reached by
the compression vector design strategy proposed below, which
attains an objective function value that is within a factor of
the lower bound , where

(38)

in which stands for the floor operator rounding to the
nearest integer toward the negative infinity.

Proof: See Appendix C.

Proposed Strategy: We firstly randomly choose sensors
from these sensors, where is a multiple
of . The selected sensors are then equally divided into
groups, with the sensors in the th group using the th column
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of an orthonormal matrix , i.e., , as their com-
pression vectors, where can be any orthonormal matrix. The
compression vectors of the remaining sensors can be
chosen to be any columns of the orthonormal matrix
(note that ).

Remarks: When the number of sensors is a multiple of the
vector parameter dimension, i.e., is an integer, then .
Clearly, in this case, the proposed strategy is an optimal solution
to (36) since it achieves the lower bound. If is not a multiple
of approaches to one as . In this case, the proposed
strategy provides near-optimal performance. Note that the con-
dition is mild and can usually be met in practical appli-
cations.

To gain an insight into the proposed strategy, we choose the
orthonormal matrix to be an identity matrix . In this case,
the proposed strategy becomes an intuitive solution where the
vector parameter estimation is decoupled into scalar estima-
tion tasks, with each task accomplished by each group of sensors
independently. Our theorem shows that such an intuitive solu-
tion achieves near-optimal or even optimal performance.

C. Optimal/Near-Optimal Solution:

When the noise covariance matrices are nonidentical with
, (21) becomes

s.t. (39)

The optimization (39) can be analyzed by following a similar
procedure as that of (36). We have the following results re-
garding (39).

Theorem 2: Suppose that . Let denote the
objective function (39). Then for any feasible solution of (39),
we have

(40)

where

(41)

(40) provides a lower bound on the minimum achievable value
of (39). This lower bound can be approached or even reached by
the compression vector design strategy described below, which
attains an objective function value within a factor of the lower
bound , where

(42)

where denotes the minimum value of the set ,
and is defined in (43).

Proof: See Appendix D.

Proposed Strategy: We divide the sensors into groups (not
necessarily equally divided), with

(43)

where are the indices of the sensors in group
denotes the number of sensors of group . The sensors

in group choose the th column of an orthonormal matrix
to be their compression vectors, where can be

any orthonormal matrix.

Remarks: Theorem 2 implies that a near-optimal solution
can be obtained by properly partitioning the sensors such that

is close to the value . In particular, when
, the proposed solution is optimum because

in this case. When and
, finding an equally or quasi-equally weighted parti-

tion is not difficult (here the term “quasi-equally weighted parti-
tion” means that the sensors are divided into groups such that
the weights associated with these groups are approx-
imately equal, i.e., ). There, of course,
may be cases where an equally or quasi-equally weighted par-
tition is not possible. In this case, Theorem 2 suggests to find
a partition to maximize the minimum over the set in
order to minimize .

Similarly as in last subsection, when , sensors are
divided into groups and each group undertakes the task of
estimating a scalar parameter. Nevertheless, sensors are no
longer equally partitioned, instead, each sensor is weighted
with a factor and the partition of the sensors should
ensure that all groups have an identical or roughly identical
weighted summation. If we consider the factor as a
quantity to measure the sensor observation quality (the larger
the value, the better the observation quality), this equally
weighted summation partition is to seek groups with identical
observation qualities.

D. Optimal/Near-Optimal Solution:

We now consider the scenario where sensors have identical
but arbitrary noise covariance matrices. This scenario repre-
sents a general homogeneous environment allowing correlation
among the noise multivariate components. The optimization
(21) can be rewritten as

s.t. (44)

Clearly, (44) is more complicated than (36) and (39) since the
denominator of the fraction in (44), i.e., , is no longer a
constant independent of the choice of . Nevertheless, a near-
optimal or even an optimal solution can still be obtained. In the
following, to facilitate our presentation, we will first introduce
our proposed compression vector design strategy.

Proposed Strategy: Let denote the eigen-
value decomposition (EVD) of , where

, and denotes the th diagonal element of . Let

(45)

We divide the sensors into groups, with each group consisting
of sensors and each sensor in group using the th column
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of , i.e., , as its compression vector, where is ob-
tained by rounding to its nearest integers (towards the posi-
tive or negative infinity) while preserving the summation of the
set , i.e., .

Clearly, the objective function value (44) achieved by the
above proposed strategy is

(46)

Some important results regarding the near-optimality of the pro-
posed strategy are provided in the following theorem.

Theorem 3: Suppose . Let denote the objec-
tive function of (44). Then for any feasible solution of (44), we
have

(47)

which places a lower bound on the minimum achievable func-
tion value of (44). This lower bound can be achieved by the
above proposed strategy when , i.e., when de-
fined in (45) are exactly integers. If are not integers, then
the strategy attains an objective function value within a factor

of the lower bound, where

(48)

in which denotes the minimum value among the set
.
Proof: See Appendix E.

Remarks: We can see that when defined in (45) are
exactly integers, then , and the proposed strategy is
optimum. If are not integers, the proposed strategy attains
an objective function value within the factor of the lower
bound, where the factor approaches to one when the number
of sensors, , is sufficiently large. In this case, near-optimal
performance can be achieved.

Unlike the previously proposed strategies that allow the com-
pression vectors to be chosen from any arbitrary orthonormal
matrix, the proposed strategy to (44) selects compression vec-
tors from the eigenvectors of the noise covariance matrix ,
i.e., the hyperplanes are perpendicular to the eigenvectors of
the noise covariance matrix. Note that although the same prin-
ciple was adopted in [12] in choosing the hyperplanes, the ratio-
nales are different: our theoretical analysis reveals that selecting
such perpendicular hyperplanes leads to optimal or near-op-
timal performance for our one-bit quantization scheme; whereas
the proposed approach [12] employs perpendicular hyperplanes
in order to obtain independent binary data generated by each
sensor and its optimality for the approach [12] may not hold.
Also, for our strategy, the number of sensors selecting a certain
eigenvector of is proportional to the square root of the cor-
responding eigenvalue. Considering a diagonal where the
eigenvalues are equivalent to the noise variances, our strategy
suggests that more sensors should be used to estimate the scalar
parameters with bad observation qualities.

E. Optimal/Near-Optimal Solution:

The scenario considered herein represents an inhomogeneous
environment where the noise covariance matrices across the
sensors have the same correlation structure but with different
scaling factors. This modeling is a generalization of the pre-
vious case and can be used to characterize a broader range of
practical applications. The optimization (21) is formulated as
follows:

s.t. (49)

which is a generalized problem of (44). By utilizing the results
of Theorem 3, we can reach a similar strategy for the compres-
sion vector design.

Proposed Strategy: We divide sensors into groups and let
the sensors of group select to be their compression
vectors.

Let

(50)

where are the indices of the sensors of group
, and denotes the number of sensors in group . It can be

easily verified that the objective function value achieved by our
proposed strategy is

(51)

which is a function of . As we will show in the following
theorem, this proposed strategy is able to achieve near-optimal
even optimal performance by properly partitioning the sensors.

Theorem 4: Suppose . Let denote the objec-
tive function (49). For any feasible solution of (49), we have

(52)

which provides a lower bound on the minimum achievable func-
tion value of (49). This lower bound can be attained by the above
proposed strategy when the following equality holds:

(53)

where

(54)

Proof: See Appendix F.

Remarks: We see that if sensors can be partitioned such that
each group satisfies the equality (53), then the proposed strategy
is an optimum solution of (49). Of course, finding a partition to
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exactly satisfy (53) may not be possible in practice. Neverthe-
less, finding a set roughly equal to their optimal values is
not difficult when , in which case the proposed strategy
achieves near-optimal performance.

As in our previous case, the proposed strategy selects the
compression vector from the eigenvectors of the noise covari-
ance matrix. Selection from any other orthonormal matrix does
not lead to optimal or near-optimal performance. The difference
between the current strategy and the previous one is that the cur-
rent strategy requires a careful sensor partition (into groups)
to ensure that the value associated with each group is equal
to or close to its optimal value defined in (53), whereas the pre-
vious strategy can easily determine the sensor partition based
on (45).

VI. DISCUSSIONS

A. Insight Into Hyperplane Design

We have examined the near-optimum design of the com-
pression vectors under different noise cases. In fact,
it can be easily seen that the three scenarios discussed
in Sections V-B–V-D are special cases of the scenario in
Section V-E. Our theoretical results suggest that for those
scenarios, the sensors should be properly partitioned into
groups, with the sensors in each group sharing a common
compression vector which is selected from the eigenvectors of
the noise covariance matrix. Note that for the case

obtained from the EVD of can be any orthonormal
matrix. Hence their compression vectors can be chosen from
any orthonormal matrix.

We now consider the correspondingly constructed hyper-
planes. Recalling that the optimum choice of the threshold
is given by (17), the hyperplane associated with each group
therefore is

(55)

To gain better insight into (55), let us consider a three-dimen-
sional case where and . Fig. 2 depicts
the three hyperplanes corresponding to three different groups of
sensors. We see that the hyperplanes are mutually perpendic-
ular and these hyperplanes intersect at exactly the point .
It can be readily verified that for any other ( has to be
an orthonormal matrix), the perpendicular property and the in-
tersection point remain unaltered. For our one-bit quantization
scheme, the above defined hyperplanes (55) for vector quanti-
zation achieves near-optimal or even optimal estimation perfor-
mance, given that the sensors are properly partitioned and asso-
ciated with the corresponding hyperplanes as described in our
proposed strategies. This is an important result of this paper. As
we mentioned earlier, although [12] adopts the same principle in
choosing the hyperplanes, its purpose is to obtain independent
binary data for each sensor and the near-optimality or optimality
of the hyperplane selection rule was not provided and may not
hold for the -bit quantization scheme [12].

Fig. 2. An example of optimal/near-optimal design of the hyperplanes for our
proposed one-bit quantization scheme. Each sensor, according certain strategy,
selects one of these hyperplanes to quantize its local vector data. The hyper-
planes are mutually perpendicular and these hyperplanes intersect at exactly the
point � � ���.

B. Generalization of the Optimization Criterion (16)

Note that in certain practical applications, we may wish to
place more emphasis on some components of . With this in
mind, we can generalize the optimization criterion (16) to the
following:

(56)

where is a diagonal matrix and
is a positive weighting factor of user choice. The optimization
(56) can be rewritten as

(57)

By following the same derivation, it can be easily verified that
the optimal quantization thresholds conditional on are still
given by (17). Substituting (17) into (57), the design of the com-
pression vectors therefore reduces to the following optimiza-
tion:

(58)

Let . We can reformulate (58) as

(59)

which has a same formulation as (21) and hence can be solved
by our proposed iterative algorithm and optimal/near-optimal
strategies.
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VII. PERFORMANCE ANALYSIS AND SIMULATION RESULTS

A. Performance Analysis

In this section, we evaluate the performance of our proposed
hyperplane-based vector quantization scheme. We compare our
scheme with the ML estimator using unquantized vector obser-
vations (also referred to as the clairvoyant estimator) and
the approach [12] where each sensor employs hyperplanes to
quantize the vector observation into bits (instead of one bit
in our scheme) of information, i.e., one bit per sensor per dimen-
sion. In [12], the hyperplanes are chosen to be perpendicular
to the eigenvectors of the noise covariance matrix in order to en-
sure that the resultant binary data are independent. It is shown
that such a choice of the hyperplanes is effective and given that
the knowledge of is available in selecting the thresholds,1 the
approach [12] suffers from a mild performance loss relative to
the clairvoyant estimator using unquantized data, with the CRB
increasing by only a factor of , i.e.

(60)

where we use the subscripts Q-p and CE to stand for the ap-
proach [12] and the clairvoyant estimator, respectively. Also, it
can be readily verified that the CRB of the clairvoyant estimator
using unquantized vector observations is given by

(61)

Suppose that the noise covariance matrices across sensors are
identical, i.e., . Then the overall estimation er-
rors asymptotically achieved by the clairvoyant estimator and
the approach [12] are given as follows, respectively

(62)

(63)

We now consider the estimation performance of our proposed
scheme. When the thresholds are optimum, we have the fol-
lowing by combining (16) and (20)

1Note that both [12] and our scheme involve determining the thresholds
whose optimal values are dependent on the unknown parameter. To focus
our study on the evaluation of the compression vector design, we assume the
knowledge of the parameter is available in choosing the optimal thresholds for
both schemes.

(64)

where for clarity, we use the subscript to represent our
proposed scheme, and comes by noting that the trace term
on the right hand side of (64) is lower bounded by (47) (see The-
orem 3). Also, this lower bound can be attained or approached
with a negligible gap by the proposed compression vector de-
sign strategy, as we analyzed in Section V-D and will show later
in our simulation results. Therefore the ratio of the overall esti-
mation error of our scheme to that of [12] approaches to

(65)

By using the Cauchy–Schwarz inequality, it can be easily veri-
fied that for any set with , we have

, where reaches its upper bound when all the eigenvalues
of are identical, i.e., . If the eigenvalues

have diverse values, then the ratio tends towards its
lower bound one.

We see that as compared with [12], our proposed scheme re-
sults in an overall estimation error increase by a factor of ,
where . Nevertheless, we note that the approach
[12] requires each sensor to transmit bits of information to
the FC, whereas only one bit per sensor is sent to the FC for
our scheme. Therefore, to meet a same overall estimation dis-
tortion target, the total number of bits required by our scheme
is times the total number of bits needed by the approach
[12]. Hence our scheme is generally more efficient than [12] in
a rate distortion sense, especially when the eigenvalues of the
noise covariance matrix vary in a sharp manner. For example,
if there is a single dominant eigenvalue, then approaches to
one.

We now compare our scheme with the clairvoyant estimator.
The ratio of the overall estimation error of our scheme to that of
the clairvoyant estimator using raw data is given by

(66)

Note that the clairvoyant estimator requires sending
real-valued messages while our scheme needs to transmit only

total bits of information. Suppose each real-valued message
can be represented by -bit binary data. To meet a same dis-
tortion target, the total number of bits sent by our scheme is

times that needed by the clairvoyant estimator. In par-
ticular, when is close to one, our analysis shows that sending
one bit per sensor results in an overall estimation error increase
by only a factor of about .

In our above analysis, we considered the case of identical
noise covariance matrices. It can be easily verified that for the
inhomogeneous environments where , we have

(67)
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Fig. 3. Homogeneous environments: Rate-distortion performance of respective schemes. (a) Case of identical eigenvalues and (b) case of nonidentical eigenvalues.

(68)

with , and

(69)

where comes from the result (52) derived in Theorem 4, and
recognizing that this lower bound can be attained or approached
with a negligible gap by the proposed compression vector design
strategy. Based on (67)–(69), we see that our results (65)–(66)
remain the same. For a more general case where cannot be
expressed as , a theoretical analysis is difficult to carry
out because we do not have an analytical near-optimal solution.
Nevertheless, numerical experiments can be conducted to com-
pare the rate-distortion performance of our proposed iterative
algorithm and the other two schemes.

B. Simulation Results

We now carry out experiments to corroborate our previous
analysis and to illustrate the performance of our one-bit quanti-
zation scheme. We compare our scheme with the approach [12]
and the clairvoyant estimator using unquantized data.

We firstly examine the rate-distortion performance of the
three schemes in a homogeneous environment, i.e., identical
noise covariance matrices across sensors. To investigate the
rate-distortion performance of the clairvoyant estimator, we
assume that each real-valued message can be represented by

bits binary data. Hence the clairvoyant estimator needs
to send a total number of bits of information to the FC. To
focus our study on the evaluation of the compression vector de-
sign, we assume the thresholds for our scheme and the approach

[12] are optimally selected. For our scheme, the compression
vectors can be determined by the iterative algorithm proposed
in Section V-A or by the optimal/near-optimal strategy pro-
posed in Section V-D. We include the performance of both
compression vector design strategies in our results. The theo-
retical lower bound for our scheme, which is given in (64), is
also included for comparison. In our simulations, two different
cases are considered: the former one corresponds to a case of
equivalent eigenvalues and the latter one corre-
sponds to a case of diverse eigenvalues with the eigenvalues
randomly generated according to
(the results are averaged over 500 Monte Carlo runs), where
we set and is a central chi-square
distributed random variable with one degree-of-freedom. Note
that the chi-square distribution has been used to model the
sensor noise variance, e.g., [23]. Since the noise variances are
closely related to the eigenvalues of the noise covariance matrix
(in particular, the noise variances are exactly the eigenvalues
when the noise covariance matrix is diagonal), we adopt the
same statistical model to characterize the distribution of the
eigenvalues. Fig. 3 shows the rate-distortion performance of
the three schemes, where the x-coordinate represents the total
number of bits used by each scheme, y-coordinate represents
the asymptotically achieved overall estimation error, i.e., the
trace of the CRB matrix. From Fig. 3, we see that our proposed
optimal/near-optimal strategy, as analyzed, approaches the
theoretical lower bound with a negligible gap, which corrob-
orates our near-optimality of the proposed strategy. Also, it
is interesting to observe that the proposed iterative algorithm
achieves almost the same performance as that of the proposed
optimal/near-optimal strategy. This implies that the iterative
algorithm oftentimes converges to a stationary point that is
close to the global minimum, although theoretically this con-
vergence is not guaranteed. We also see that, when ,
our scheme has a same rate-distortion performance as that of
[12]. The reason is that the ratio is equal to one in the
case of identical eigenvalues, as we discussed in the previous
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Fig. 4. Nonhomogeneous environments: Rate-distortion performance of respective schemes. (a) Case of identical eigenvalues and (b) case of nonidentical eigen-
values.

subsection. Nevertheless, when the eigenvalues becomes di-
verse, the ratio is strictly less than one and our scheme
presents a performance advantage over [12]. To meet the same
distortion target, say, , the rate required by our scheme is
about of that required by [12]. It can also be observed that
our scheme presents a superior performance advantage over
the clairvoyant estimator: our scheme needs transmitting much
fewer bits of information than the clairvoyant estimator to attain
a same distortion target. Hence considerable power/bandwidth
savings can be achieved. The above rate-distortion results have
twofold physical interpretations. On one hand, it tells us how
many bits are needed by each scheme in order to achieve an
estimation distortion target. On the other hand, another inter-
esting perspective to look at these rate-distortion results is that
given a total number of bits we can collect, say bits, how
should we distribute them among sensors? The three schemes
provide three different strategies: our proposed scheme collects
data from sensors with one bit per sensor, the approach
[12] collects data from sensors with bits per sensor, and
the clairvoyant estimator requires the collection from
sensors with bits per sensor, assuming each raw message
is represented by bits. Our theoretical and numerical results
point out the first allocation strategy can provide the best
estimation performance.

To further corroborate our analysis, we conduct experiments
to examine the rate-distortion performance in inhomogeneous
environments with . We assume that the sen-
sors are equally divided into three clusters, with sensors in each
cluster having the same observation quality, i.e.,

, where denotes cluster . The factor for the
three clusters is set to be , , and , respectively. Fig. 4 de-
picts the rate-distortion performance of the three schemes for a
case of equivalent eigenvalues and a case of di-
verse eigenvalues ( is generated in a same way as described
in the previous example). From Fig. 4, we see that, similar to the
homogeneous environments, our scheme has a same rate-distor-
tion performance as that of [12] when the eigenvalues are iden-

tical and strictly outperforms [12] for the case of diverse eigen-
values, which corroborates our theoretical analysis (67)–(69) in
Section VII-A.

We now consider the scenario of generally nonidentical noise
covariance matrices. As we mentioned earlier, we do not have
an analytical optimal/near-optimal solution in this case, instead,
the iterative algorithm proposed in Section V-A can be em-
ployed to find a sub-optimal set of compression vectors. In our
simulations, the noise covariance matrix for each
sensor is diagonal with its diagonal elements ,
where and , and is set to 5. The results are av-
eraged over 500 Monte Carlo runs. Fig. 5 shows the overall esti-
mation distortion (trace of the CRB matrix) of the three schemes
as a function of the number of sensors, . From Fig. 5, we
see that our proposed iterative algorithm is very effective. It
achieves almost the same estimation performance as that of [12],
while transmitting only times the total number of bits re-
quired by [12]. Also, both our proposed scheme and the scheme
[12] incur a mild performance loss compared with the clair-
voyant estimator using raw data (note that as in previous ex-
ample, we assume the thresholds for our scheme and [12] are
optimally chosen).

We are also interested in examining the mean-square error
(MSE) of the ML estimator for our scheme. We consider a ho-
mogeneous scenario where all sensors have identical noise co-
variance matrices which are given by (referred to
as Case I) and (referred to
as Case II), respectively. The thresholds are optimally deter-
mined by assuming the knowledge of the unknown parameter
and the compression vectors are designed by our proposed op-
timal/near-optimal strategy. Fig. 6 depicts the MSEs of the ML
estimator for our scheme. It is observed that the MSEs approach
the corresponding CRBs asymptotically with an increasing
for both cases.

So far we have thoroughly studied the performance of our
proposed scheme by assuming the thresholds are optimally
selected. In this case, the estimation performance only depends
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Fig. 5. Overall estimation error versus the number of sensors for three schemes.

Fig. 6. MSEs of the MLE for our scheme under two different cases.

on the choice of the compression vectors . Since to be es-
timated is unknown in practice, it is interesting to examine the
performance of our proposed threshold determination strategy.
We consider the FC feedback-based iterative algorithm intro-
duced in Section IV-A which iteratively adjusts the threshold
based on the ML estimate. In our simulations, we assume a ho-
mogeneous scenario with . The dimension of the
unknown parameter, , is set to and the number of sensors
varies from 100 to 200. The compression vectors are determined
by our optimal/near-optimal strategy proposed in Section V-D
(note that since the design of the compression vectors is inde-
pendent of the unknown parameter, they can be determined in
advance). Fig. 7 shows the estimation MSE of the ML estimator
versus the number of iterations. From Fig. 7, we see that the
FC feedback-based iterative algorithm is very effective and can
achieve an accurate estimate of the unknown parameter within
several iterations.

VIII. CONCLUSION

In this paper, we studied the problem of vector quantization
for distributed estimation in wireless sensor networks, where

Fig. 7. MSE of FC-based feedback iterative algorithm for threshold determi-
nation.

each sensor quantizes its local vector observation into one bit
of information which is sent to the FC to form a final estimate
of the vector parameter. Specifically, we confine our studies
to the hyperplane-based vector quantization whose design in-
volves threshold determination and compression vector design.
Our analysis reveals that the optimal choice of the thresholds,
as in the scalar case, is dependent on the unknown parameter.
In contrast, the compression vector design is independent of
the vector parameter and can be determined prior to each es-
timation task. We developed an efficient iterative algorithm for
the compression vector design for a general case and proposed
optimal/near-optimal strategies for some specific but important
noise scenarios. Our performance analysis shows that our pro-
posed scheme generally outperforms existing schemes in a rate
distortion sense, especially when the eigenvalues of the noise
covariance matrix are sharply diverse. Simulation results were
presented to corroborate our theoretical analysis and to illustrate
the effectiveness of our proposed scheme. These results show
that our proposed scheme is able to achieve almost the same
estimation performance as some existing schemes with consid-
erable rate/bandwidth savings.

APPENDIX A
PROOF OF CONCAVITY OF THE LOG-LIKELIHOOD FUNCTION (6)

It can be easily verified that is log-concave in
since the Hessian matrix of , which is given

by

(70)

is negative semidefinite. Consequently the corresponding cu-
mulative density function (CDF) and complementary CDF
(CCDF), which are integrals of the log-concave function

over convex sets and respec-
tively, are also log-concave, and their logarithms are concave.
Since summation preserves concavity, is a concave func-
tion of .
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APPENDIX B
DERIVATION OF THE LOWER BOUND (23)

We have

(71)

where comes by using the Chernoff bound for the CCDF

(72)

follows from (i): ,
in which denotes the smallest eigenvalue of ,
and (ii):

(73)

in which the inequality comes by noting that is within the
dynamic range of .

APPENDIX C
PROOF OF THEOREM 1

Let

(74)

where . We can re-express (36) as

s.t. (75)

To prove Theorem 1, let us first consider a new optimization
that has the same objective function as (75) while with a relaxed
constraint:

s.t. (76)

Apparently, the feasible region defined by the constraint of (75)
is a subset of that defined by (76). Hence the global minimum of
(76) places a lower bound on the minimum achievable objective
function value of (75). Also, since is convex over the
set of positive definite matrix and is a linear con-
straint, the optimization (76) is convex whose optimum solution
is given as follows.

Lemma 1: Consider the following optimization problem

s.t. (77)

where is positive definite. The optimum solution to
(77) is given by and the minimum objective function
value is .

Proof: See Appendix G.

From Lemma 1, we know that any satisfying
is an optimum solution of (76) and the attained minimum value
is , which is a lower bound on the minimum achievable
objective function value of (75). When , where
is an integer, it can be easily verified that the proposed strategy
attains the lower bound . Therefore the strategy is an op-
timal solution to (75), i.e., (36). On the other hand, if ,
the objective function value achieved by the proposed strategy
is upper bounded as

(78)

where comes from the fact that is convex
over the set of positive definite matrix, follows from

and the compression vector assignment
strategy for these sensors. The ratio of the objective function
value attained by the proposed strategy to the lower bound

, is therefore upper bounded by

(79)

The proof is completed here.

APPENDIX D
PROOF OF THEOREM 2

The proof of Theorem 2 follows a same procedure as that of
Theorem 1. Let

(80)

We can re-express (39) as

s.t. (81)

Similarly as in the proof of Theorem 1, we construct a new op-
timization with a relaxed constraint:

s.t. (82)

It can be readily verified that the feasible region of (81) is
a subset of that of (82). Hence the global minimum of (82)
provides a lower bound on the minimum achievable objective
function value of (81). Recalling Lemma 1, we know that the
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global minimum of (82) is , which is achieved when
.

Now considering the proposed strategy, we have

(83)

Since is convex over the set of positive definite matrix,
the objective function value attained by the proposed strategy is
upper bounded by

(84)

The ratio of the objective function value achieved by the
proposed strategy to the lower bound is therefore upper
bounded by

(85)

The proof is completed here.

APPENDIX E
PROOF OF THEOREM 3

As we mentioned earlier, due to the nonirreducible form of
the denominator, the optimization (44) is more challenging as
compared with (36). In this case, constructing a new optimiza-
tion as we did before does not lead to an insight into solving
the problem. Here we take a different approach. We first find a
transitional lower bound on the objective function (44) for any
specific set of compression vectors by using the following
lemma.

Lemma 2: Suppose that we have two positive definite ma-
trices and , where is a diagonal ma-
trix with its diagonal elements equivalent to those of , i.e.,

, then we have

(86)

Proof: See Appendix H.

We write , where is obtained by car-
rying out the EVD of , i.e., , and

is a normalized column vector
with . Then we have

(87)

where denotes the th diagonal entry of
, and

(88)

Let and

(89)

Note that the corresponding diagonal elements of the two
matrices and are identical, i.e., . Recalling
Lemma 2, the objective function (44) therefore is lower
bounded by

(90)

We note that the above lower bound is a transitional result be-
cause it depends on the vectors which are specific for each
set of compression vectors . We now proceed to find a uni-
versal lower bound which is independent of the choice of the
compression vectors. For notational convenience, let

(91)

Since we have

(92)

it can be easily verified that satisfies the following con-
straint:

(93)

Noting that

(94)

the universal lower bound can therefore be obtained by solving
the following optimization

s.t. (95)

which is equivalent to

s.t. (96)

The above optimization (96) can be solved analytically by re-
sorting to the Lagrangian function and KKT conditions (the de-
velopment is similar as that in Appendix G and thus omitted
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here). Its optimum solution and minimum objective function
value are given as follows, respectively

(97)

(98)

Hence (98) is a lower bound on the minimum achievable objec-
tive function value of (44). Apparently this lower bound can be
achieved by the proposed strategy when . If are
not integers, near-optimal performance can be attained by the
proposed strategy. A rough analysis is provided in the following
to show that the achieved objective function value is within a
small factor of the lower bound. Let denote the
rounded integer. Using Taylor expansion, we can write

(99)

The deviation between the achieved objective function value and
the lower bound is upper bounded by

(100)

where comes from the fact that de-
notes the minimum value among the set . Therefore the
normalized deviation of the proposed solution from the lower
bound is

(101)

which indicates that the objective function value associated with
the proposed strategy is within a factor of the
lower bound.

APPENDIX F
PROOF OF THEOREM 4

We introduce a sufficiently small value such that for
any is an integer or is sufficiently
large such that it can be rounded to its nearest integer with a
negligible error. We therefore can write

(102)

Since are integers, the term on the right hand side of (102)
can be considered as a particular case of the following form:

(103)

with sensors divided into groups, group consisting of
sensors and sharing the same compression vector, where

. Hence the global minimum of the following
optimization provides a lower bound on the minimum achiev-
able value of the optimization (49)

s.t. (104)

The above optimization (104) is exactly the problem we studied
in Section V-D. From Theorem 3, we know that the minimum
achievable value of (104) is lower bounded by

(105)

where comes from

(106)

Consequently, the minimum achievable value of (49) is lower
bounded by (105). Also, by substituting (53) into (51), we see
that this lower bound can be attained by the proposed strategy.
The proof is completed here.

APPENDIX G
PROOF OF LEMMA 1

Let denote the EVD of , where
and . By replacing with , the

optimization (77) is reduced to determining the diagonal matrix

s.t.

(107)

The Lagrangian function associated with (107) is given by

(108)
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which gives the following KKT conditions [20]:

From the last three equations of the above KKT conditions, we
have . With this result, can be readily solved using
the first two equations as , i.e., the optimal is
given by . Consequently we have and the

minimum objective function value is . The proof is completed
here.

APPENDIX H
PROOF OF LEMMA 2

By carrying out the EVD: , we can write

(109)

Hence we only need to prove

(110)

which is equivalent to establishing the following:

(111)

where and denote the th diagonal elements of and ,
respectively. Without loss of generality, we assume

and .
Since , we have the following two important

properties regarding the diagonal elements of and .
First, we have

(112)

which can be readily verified from . Second, for
any , we have the following inequalities:

(113)

which are generalized results of the Rayleigh–Ritz theorem [24,
Corollary 4.3.18]. We now prove (111) by utilizing the proper-
ties (112)–(113).

From (113), we know that and . Without loss
of generality, we can find a set of indices
such that for , and for

for , and
for ; and so on and so forth. Considering the
first elements, we have

(114)

where comes by noting that the elements and are
in ascending orders, for , and

for ; and follows from the inequality
(113). Now considering the first elements, we have

(115)

where comes by using the previous result (114); comes
by following the same derivation as in (114); and follows
from the inequality (113). By repeating this procedure, we can
eventually prove that such an inequality holds for all elements.
The proof is completed here.

REFERENCES

[1] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed, “Detection, classi-
fication, and tracking of targets,” IEEE Signal Process. Mag., vol. 19,
no. 2, pp. 17–29, Mar. 2002.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A
survey on sensor networks,” IEEE Commun. Mag., pp. 102–114, Aug.
2002.

[3] J. Gubner, “Distributed estimation and quantization,” IEEE Trans. Inf.
Theory, vol. 39, no. 4, pp. 1456–1459, Jul. 1993.

[4] V. Megalooikonomou and Y. Yesha, “Quantizer design for distributed
estimation with communication constraints and unknown observation
statistics,” IEEE Trans. Commun., vol. 48, no. 2, pp. 181–184, Feb.
2000.

[5] W. M. Lam and A. R. Reibman, “Design of quantizers for decentralized
estimation systems,” IEEE Trans. Commun., vol. 41, pp. 1602–1605,
Nov. 1993.

[6] H. Papadopoulos, G. Wornell, and A. Oppenheim, “Sequential signal
encoding from noisy measurements using quantizers with dynamic bias
control,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 978–1002, Mar.
2001.

[7] A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed
estimation for wireless sensor networks—Part I: Gaussian PDF,” IEEE
Trans. Signal Processing, vol. 54, no. 3, pp. 1131–1143, Mar. 2006.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on November 24, 2009 at 10:45 from IEEE Xplore.  Restrictions apply. 



FANG AND LI: HYPERPLANE-BASED VECTOR QUANTIZATION FOR DISTRIBUTED ESTIMATION IN WIRELESS SENSOR NETWORKS 5699

[8] Z. Luo, “Universal decentralized estimation in a bandwidth con-
strained sensor network,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp.
2210–2219, Jun. 2005.

[9] J. Li and G. AlRegib, “Rate-constrained distributed estimation in wire-
less sensor networks,” IEEE Trans. Signal Processing, vol. 55, no. 5,
pp. 1634–1643, May 2007.

[10] P. Venkitasubramaniam, L. Tong, and A. Swami, “Quantization for
maximin ARE in distributed estimation,” IEEE Trans. Signal Pro-
cessing, vol. 55, no. 7, pp. 3596–3605, Jul. 2007.

[11] J. Fang and H. Li, “Distributed adaptive quantization for wireless
sensor networks: From delta modulation to maximum likelihood,”
IEEE Trans. Signal Processing, vol. 56, no. 10, pp. 5246–5257, Oct.
2008.

[12] A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed
estimation for wireless sensor networks—Part II: Unknown probability
density function,” IEEE Trans. Signal Processing, vol. 54, no. 7, pp.
2784–2796, July 2006.

[13] K. Zhang and X. R. Li, “Optimal sensor data quantization for best linear
unbiased estimation fusion,” in Proc. 43rd IEEE Conf. Decision Contr.,
Atlantis, Paradise Island, Bahamas, 2004.

[14] D. A. Pierre, Optimization Theory With Applications. New York:
Wiley, 1969.

[15] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ: Prentice Hall, 1993.

[16] K. Zhang, X. R. Li, P. Zhang, and H. Li, “Optimal linear estimation
fusion—Part VI: Sensor data compression,” in Proc. Int. Conf. Inf. Fu-
sion, Queensland, Australia, 2003.

[17] Y. Zhu, E. Song, J. Zhou, and Z. You, “Optimal dimensionality re-
duction of sensor data in multisensor estimation fusion,” IEEE Trans.
Signal Processing, vol. 53, no. 5, pp. 1631–1639, May 2005.

[18] I. D. Schizas, G. B. Giannakis, and Z.-Q. Luo, “Distributed estimation
using reduced dimensionality sensor observations,” IEEE Trans. Signal
Processing, vol. 8, pp. 4284–4299, Aug. 2007.

[19] J. Fang and H. Li, “Joint dimension assignment and compression for
distributed multisensor estimation,” IEEE Signal Processing Lett., pp.
174–177, Jan. 2008.

[20] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge University Press, 2003.
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