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Distributed Consensus With Quantized Data via
Sequence Averaging

Jun Fang and Hongbin Li

Abstract—The problem of distributed average consensus with quantized
data is considered in this correspondence. Conventional consensus algo-
rithms suffer from divergence when quantization errors are present. To
address this issue, we introduce a modified quantization-based consensus
protocol and exploit the temporal information collected from the iterative
process, based on which we develop an efficient consensus algorithm. The
proposed consensus algorithm is proved to converge to the true mean, i.e.,
the average of the initial state, in a mean square sense. It also presents an
advantage of speeding up the convergence over the algorithm [P. Frasca, R.
Carli, F. Fagnani, and S. Zampieri, “Average Consensus on Networks With
Quantized Communication,” Int. J. Robust Non-Linear Control, 2008, to be
published] without exploitation of temporal information. Numerical results
are presented to illustrate the effectiveness of the proposed algorithm.

Index Terms—Distributed average consensus, quantization, wireless
sensor network (WSN).

[. INTRODUCTION

Distributed average consensus has attracted much attention over the
past few years. It is a fundamental problem arising from various wire-
less sensor network (WSN) processing tasks, such as distributed pa-
rameter estimation and distributed function computation. A multitude
of studies on distributed average consensus have appeared recently.
Among them, a major research direction focuses on accelerating the
convergence rate of the distributed consensus algorithms by selecting
the optimal weights [2], [3] or resorting to other more sophisticated
algorithms [4]—[7]. In these works, they usually assume that the data
are exchanged among neighboring sensors without distortion. This as-
sumption, however, may not be true in practice due to the link noise
and data quantization, in which case it has been shown [8] that the
conventional consensus algorithms [2]-[7] diverge and may have an
unbounded asymptotic mean square error. To address this issue, many
schemes [9]-[14] have been proposed. Specifically, when only quanti-
zation is considered, [11] introduced a quantized consensus algorithm
by imposing an integer constraint on the value of each node and pre-
serving the network average at each iteration. However, the quantized
consensus [11] is a relaxed consensus and the nodes do not have the
same value. Strict consensus can be achieved by other algorithms by
using predictive coding [12], employing a sequence of link weights
satisfying a persistence condition [13], or resorting to dithered quanti-
zation [14]. These algorithms [12]-[14] converge to a random variable
that usually deviates from the average of the initial state. Neverthe-
less, this random variable reveals some information of the initial state.
For example, in [14], the consensus is achieved on one of the quanti-
zation levels and the deviation from the average of the initial state is
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bounded by a quantity dependent on the quantization resolution and
graph topology. Meanwhile, in [13], the mean square deviation be-
tween the random variable and the average of the initial state can be
made arbitrarily small by rescaling its link weight sequence at a cost of
slowing down the convergence rate.

In this correspondence, we study the problem of distributed average
consensus with quantized data by exploiting the temporal information
collected during the iterative process. Temporal information has been
successfully utilized in [5]-[7] to accelerate the convergence rate. Nev-
ertheless, its application to distributed average consensus with quan-
tized data has received less attention. In this work, we firstly intro-
duce a modified quantization-based consensus protocol. The quantized
data are obtained by employing a bounded probabilistic quantization
scheme [13], [14]. By exploiting the temporal independence property
of the quantization errors, we develop a new consensus scheme which
utilizes the temporal information collected from the iterative process.
The consensus algorithm, unlike prior works [12], [14] which converge
to a random variable, achieves the desired consensus at the average of
the initial state. Theoretical analyses are conducted to prove the con-
vergence and provide an upper bound for the mean square deviation.

II. CONSENSUS PROTOCOLS WITH QUANTIZED DATA

We model the WSN as an undirected graph G = (V, E') whose ver-
tices V' = {1,2,..., N} correspond to the sensors and whose edges
E = {(i.j)|i,j € V} represent available communication links among
sensors. An edge between ¢ and j exists if sensor : can communicate
directly with sensor j. We focus our study on the connected graph, i.e.,
there exists a multihop communication path connecting every pair of
vertices. The structure of the graph can be described by an N x N
symmetric affinity matrix A

a; ; = { L
i, j
0,

where a; ; denotes the (7, j)th entry of A.. The Laplacian matrix of the
graph G is defined as

if (i,7) € E
otherwise

(C))

LED-A 2
where D £ diag(A1l) is the degree matrix and 1 denotes a column
vector with all unity elements. LL is a positive semidefinite matrix with
only one null eigenvalue associated with the eigenvector (1/v/N)1
[15]. Assuming ideal links and no quantization, the conventional dis-
tributed average consensus algorithm [2] updates its state as

x(t+1) = (I — aLl)x(t) £ Wx(t) A3)
where x(¢) ES [1(t) a=2(t) ... il)j\'(t)]T, x (t) denotes the values
of sensor n at iteration t. It can be easily verified that for 0 < a <
2/Amax (L), the above system converges to the average of the initial
state, i.e., (l/N)llTx((]), where Amax (L) denotes the largest eigen-
value of L.

Now consider practical scenarios where data are quantized before
transmission. In this case, different variations of the conventional pro-
tocol (3) have been introduced and they differ in how to utilize the re-
ceived quantized data and local unquantized data. Specifically, in [12]
and [13], (3) is decomposed as

x(t+1) = (I - aD)x(t) + «Ax(¢) 4)
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where the first term on the right-hand side requires only local values
and the second term uses data from neighboring sensors. Naturally the
update equation in the presence of quantization becomes

x(t+1) = (I - aD)x(t) + aAQ(x(t)) ®))
where QQ(x) denotes the quantized vector by carrying out quantization
for each entry of x using a certain quantization scheme. Another vari-
ation of (3) uses only quantized data for the update:

x(t+1) = WQ(x(1)). (0)
This consensus protocol (6) was investigated in [14]. It was found that
both (5) and (6) can achieve a consensus in a mean square sense by uti-
lizing predictive coding schemes [12] or by using dithered quantization
schemes [14]. However, these algorithms converge to a random value
which is usually not equal to the average of the initial state. An impor-
tant reason for this deviation is that for both protocols (5) and (6), the
quantization errors incurred at each iteration are preserved throughout
the process [16].

To address this issue, we introduce the following consensus protocol
(a similar protocol appeared in [1], which was brought to our attention
by one reviewer):

x(t+ 1) = x(t) — aLQ(x(t)) = Wx(t) — aLv(t) ™
where v(t) £ Q(x(t)) — x(t) denotes the quantization noise vector.
Due to the fact 17 L = 0, this protocol preserves the network summa-
tion throughout the iterations. Also, it can suppress the noise propaga-
tion to a certain extent. To see this, we expand x(¢) as

t—1
x(t) = W'x(0) —a ) W' 'L i).

1=0

(®)

For a specific #, the noise components v(7) will eventually vanish as
the system evolves over time because we have

1,7 .
—11"Lv(i) =0.

N

/

lim W' Lv(i) = ©)
t—oo

As shown in [1], due to the noise propagation suppression, this protocol
is able to drive the system near the desired consensus value, i.e., the
average of the initial state. Nevertheless, we note that the noise propa-
gation is not completely removed and there is still a nonvanishing noise
term contributed by the recent noise components. The final state x(t),
therefore, diverges (the divergence of the final state from the desired
consensus was thoroughly examined in [1] by a worst case analysis
and by a probabilistic analysis). In the next section, by utilizing the
temporal information collected from the iterative process, we develop
an efficient algorithm that is guaranteed to converge to the average of
the initial state in a mean square sense.

III. PROPOSED CONSENSUS ALGORITHM

A. Main Result

Our algorithm is based on the following result, which constitutes the
main contribution of this work.

Theorem 1: Considering the consensus protocol (7), suppose that
the noise sequence {v(¢)} is independent with zero mean and finite
auto-covariance matrix E[v(t)v(t)T] = C,.;. Then a temporal av-
erage of the sequence {x(t)} converges to the initial state’s average

945

value in the mean square sense as the sample size M (for averaging)
tends to infinity, i.e.,

to+M—1 1
Z x(t) — VllTx(O) as M — oo
4

t=tg

1
— 10
M (10)
where #, is the starting point for sequence averaging and can be any
positive integer. Specifically, when the sample size M is large, the
mean square deviation is approximately upper bounded by

o’ ]\,’}\“A?nax (L)

El||%ave (M) — Ro||2
[lIxave (M) — Zo|2] < M= p)?

(1)

where

to+M—1

Y x()

t=tg

1
M

Xave (AI) é

a1l v
_Nll x(0),

Xo
p denotes the spectral radius of (W — (1/N)117), Apnax (L) denotes
the largest eigenvalue of L, and A, 2 ax; Amax(Cyy) for i €
{to,....t0 + M — 1}.
Proof: See Appendix A. ]
The intuition behind this theorem is to recognize that the temporal
average of the sequence, despite the fact that the successive states of
the sequence are correlated, can be reformulated as an average of a set
of independent random vectors with expected value (1/N)11%x(0)
and finite covariance matrices. We emphasize that the sequence aver-
aging algorithm is only applicable to the consensus protocol (7) and its
application to other consensus protocols (5) and (6) does not lead to a
convergence to the average of the initial state.

B. Discussions

Some remarks regarding Theorem 1 are as follows.

Remark 1: Note that convergence in the standard literature is mea-
sured by the mean square deviation between the final state of the se-
quence and the average of the initial state, i.e., E[||x(#) — %o||3]. It has
been shown by our analysis that such a convergence cannot be achieved
by the consensus protocol (7). Here we construct a new estimate and
define the convergence as the mean square deviation between the new
estimate and the average of the initial state. This is meaningful in dis-
tributed estimation scenarios where we do not have to choose the final
state of the sequence as the estimate of the unknown parameter. Any
estimator that can yield a more accurate estimate is certainly desirable.

Remark 2: The upper bound of the mean square deviation given in
(11) is a function of the parameters aAmax (L), p, and A,, in which
aAmax (L) is within the region (0,2) to assure the system convergence
(see the discussion after (3)), p is a parameter dependent on the graph
topology and controlling the convergence rate in conventional con-
sensus algorithms (the smaller the value, the faster the convergence
rate), and A, is a parameter closely related to the quantization resolu-
tion. We also see that the mean square deviation is inversely propor-
tional to the sample size M. To obtain a more accurate estimate, we
need to increase the sample size M, and consequently, the number of
iterations. This, to some extent, resembles the consensus algorithm [13]
which provides a trade-off between convergence rate and mean square
deviation. From (11), we also notice that for a large M, the starting
point to for sequence averaging makes little difference to the mean
square deviation. This is because the term dependent on ¢, is of order
O(1/M?) (see (16)). Therefore, when M is sufficiently large, this term
can be neglected as compared with the term of order O(1/M).
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Remark 3: The condition imposed on the noise sequence {v(¢)} in
Theorem 1 is not restrictive and can be satisfied by adopting a prob-
abilistic quantization scheme [13], [14]. The quantization scheme is
summarized as follows. We uniformly divide the sensor’s dynamic
range [—7, 7] into intervals of length A = 25/(2* — 1) and round the
message x to the neighboring endpoints of these intervals in a proba-
bilistic manner, where b denotes the number of bits for quantization.
Suppose = +iA < x < —n+(i+1)A, then 2 is quantized to Q(x)
according to

P(Qx)= —n+iA)=1—r
PQ(z)=—n+({@+1)A)=r (12)
where r = (z+n —iA)/A. It can be easily verified that the quantized
message ()(x) is an unbiased estimator of  with variance E[(Q(x) —
x)?] € A?/4. Hence, the quantization error induced in this way is a
random variable with zero mean and a finite variance. Also, the quan-
tization errors from different iterations are independent. We would like
to emphasize that the strong correlation between successive states does
not affect the independence between v(#) and v(¢ + 1). Considering
the extreme case where x(¢) = x(¢ + 1), by adopting the probabilistic
quantization scheme, both v; (¢) and v; (¢ + 1) (v;(¢) denotes the quan-
tization error of sensor ¢ at iteration ¢) are random variables following
the same Binomial distribution with two possible outcomes, and v; (¢)
and v;(¢t + 1) are independent because the probabilistic quantization
processes are independent. This is analogous to flipping a coin twice
independently, the outcomes of these two flips are independent.

C. Summary of Algorithm

We now enumerate the steps for our proposed consensus algorithm.

1) Input: n, b, to and M.

2) Generate the sequence {x(¢)} using the consensus protocol (7),
ie,x(t+1) = x(t) — aLQ(x(t)), where Q(x(t)) are the quan-
tized data by using the probabilistic quantization scheme.

3) Let the final estimate be the temporal average of the sequence
{x(t)}. i (1/M) SI0F =" x(8).

In this algorithm, only the second step requires data exchange among
neighboring sensors. The third step involves a simple averaging com-
putation that can be easily implemented. There is no buffer needed to
store the previous states. With a specified tg and M, each sensor only
needs to carry out the accumulation throughout the iterative process and
then normalize by M, where the starting point ¢y can be any positive
integer of user choice and the sample size M can be determined from
(11) given a specified mean square deviation convergence performance.

The choice of 1 and b should take into account the convergence rate,
energy/bandwidth budgets, and signal saturation. Due to the random
nature of the quantization, saturation may occur during the iterative
process. In this case, data are rounded to the end points. This trunca-
tion may have an unpredictable effect on our algorithm. Nevertheless,
in [17] (a longer version of [13]), a sample path analysis was carried
out and it is shown that the state sequence generated by the quantized
consensus protocol is uniformly bounded with high probability, which
means that we can choose proper parameters 7 and b to minimize the
chance of data saturation/truncation. Also, our simulation results show
that our proposed algorithm is robust to moderate saturation when 7
and b are set in reasonable ranges.

IV. SIMULATION RESULTS

We present simulation results to illustrate the performance of our
proposed algorithm. The sensor network is constructed using a random
geographic graph model [18], in which N = 25 sensors are placed
uniformly at random on a two-dimensional unit area and communicate
with their neighbors within a radius . The transmission radius r is set
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Fig. 1. MSEs versus the number of iterations.
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Fig. 2. MSEs versus the number of quantization bits, b. The number of itera-
tions is 200.

to be y/(log N)/N to ensure that the graph is connected with a high
probability [18]. The weights assigned to the edges connecting two
neighboring sensors are equal to one (see (1)). The initial values of the
sensors, {2;(0)}, are generated according to a Gaussian distribution
with zero mean and unit variance. The performance is measured by
an empirical mean square error ||Xave (M) — Xol|3 (or [|x(t) — o3
for other schemes). Results are averaged over 1000 Monte Carlo runs,
with the graph and the initial state independently generated for each
run (only connected graphs are counted in). To show the effectiveness
of our algorithm, we compare our method with two schemes [1] and
[14] which use the final states of the sequences {x(¢)} generated by
protocols (7) and (6) as their estimates, and are denoted by FS-based
scheme I and FS-based scheme II, respectively.

Fig. 1 shows the mean square errors (MSEs) of our proposed algo-
rithm and the FS-based scheme I as a function of the number of itera-
tions Nit., where we set n = 2, to = 50 and M = Nj, — o for our
proposed algorithm, and the number of quantization bits, b, varies from
2to 6. From Fig. 1, we see that our proposed algorithm presents a clear
performance advantage over the FS-based scheme 1. Also, our method
achieves consistent performance improvement with an increasing Niy,,
i.e., the sample size M. More specifically, the MSE of our algorithm
demonstrates a behavior that is roughly inversely proportional to the
sample size . This observation corroborates our theoretical analysis
that defines the relationship between the MSE and the sample size M
(see (11)). In contrast, the FS-based scheme I yield little performance
gain as the iteration evolves. In Fig. 2, we plot the MSEs of our algo-
rithm and the FS-based scheme II versus the number of quantization
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bits, where we set 7 = 2, to = 50, Nij;x = 200 and M = N — to.
Again, we see that, even with a moderate number of iterations, a con-
siderable performance improvement is achieved by our algorithm.

V. CONCLUSION

The problem of distributed average consensus with quantized data
was studied. A new algorithm was developed by employing a proba-
bilistic quantization scheme and exploiting the temporal information
collected from the iterative process. Theoretical analysis proved that
the proposed algorithm converges to the average of the initial state in a
mean square sense. Simulate results were presented to corroborate our
theoretical results.

APPENDIX A
PROOF OF THEOREM 1

Our objective is to show that

El(Xave (M) = %0)" (Xave(M) —%0)] = 0 as M — co.  (13)
By using the expansion expression of x(t) (see (8)), we can express
Xave (for simplicity, we drop the explicit dependence on M) as the
summation of following two terms:

to+M—1 to+M—1¢—1
— t—1—
Kave = 1\[ Z AI Z ZW Lv( )
t=tq t=tg =0
21 — 1. (14)

Since f; is deterministic and f5 is a matrix-weighted combination of the
zero-mean random vectors { v(¢) }, we can decompose the mean-square
error as

O)T(Xa‘vc - 20)]

= (fi - >_<0) (i —%0)+ F [fz fz] =€ +e. (15

El(xave — X

Considering €;, we have
1 to+M—1 1 r
T
= 0) — wi- —11
@ =x( )<M f; N )
t=tg

1 to+M—1 1
= wi- —11”
<M N )X(O)

t=tg
W) 2t 2
@ PO 5
M?2(1—p)?

1>

(16)

where p denotes the spectral radius of (W — (1/N)117), () comes
by noting that

to+M—1

1 1 to+M—1 t
P&~ Wi 11 W——ll
(3 X W)= e (we )
—=to 0

a7

and the largest eigenvalue of P is upper bounded by p' /(M(1 — p))
(the derivation is straightforward and thus omitted here). We see that
this term vanishes as to or M increases.

Now turning to ez, we firstly express f; as

to+M—1¢—1

B=ar . D W)

t=tg 1=0

947
a o—1 M—1
S (o
o to+M—2 / M—2—ittg »
+ 7 > < > W’)Lv(i)
i=tg =0
L a tog—1 totM—2
=37 > GiLv > HLv(i). (18)
=0 i=tg
By using (18), we have
T T
er = E[fF 5] = trace (E[f2f2 ])
@ o [ &=
S Ztrace G,LC,,L"G]
e (3 e )
to+M—2
+ Y trace (H,-LCMLTHiT)>
i=tg
5 to—1 to+M—2
— i (Sreaei Y macii)
i=tg
(b)a N tg—1 1/2 to+M—2 1/2
S (Z IGLC. I3+ > |HLC, ||z>
i=tg
(©) 0" NAoAfiax (L) “il prlo—2-2 LM
M2 — (1—p)? (1=p)?

where (a) follows from the fact that the sequence {v(¢)} is inde-
pendent with finite auto-covariance matrix E[v(t)v(t)T] = C,.;
(b) follows by recalling the matrix norm property [19, p. 56]:
X[y < VN[ X]||2 for X € RY*Y where || - || and || - ||2 denote
the Frobenius norm and matrix 2-norm respectively; (¢) is obtained
by using the results (23)—(24) derived in Appendix B, and defining
Ay 2 max; Amax(Cy,i) fori € {to,...,to + M — 1}.

By combining (16) and (19), and noting that x; and k2 are of order
O(1/M?) while k3 is of order O(1/M), when M is sufficiently large,
the mean-square deviation therefore is approximately upper-bounded
by k3, i.e.,

@ *\Y/\ /\uld‘((L)

E[|%ave — M(1=p)?

Rollz] < (20)

Since Ay, and NV are finite, p < 1 and Amax (L) are parameters depen-
dent on the network topology, the mean-square error goes to zero as the
sample size, M, tends to infinity.

APPENDIX B

DERIVATION OF (19)

Since 17 L = 0, the following holds for any integer ¢ > 0:

,
) L. 1)

to—1—ity
1/2 A
> ch/i =

WL = Wt—i,n L=(w- 111”7
J\/ N

Therefore, we have

G.LCY2.

v,1

M—
G.LCY? = Zl (W— 11
T v, T 7\7

j=0

(22)
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Hence, ||GiLCi{,?||§ is bounded by
PLTGTGLCY  x

|G LCY/2|2
pto—l—i 2
1-p

to—1—i\ 2

P

1—=p
where in (@), Amax(L) denotes the largest eigenvalue of L and

Amax(Co,i) denotes the largest eigenvalue of C, ;. By following a
similar derivation, *||2 is bounded by

T 1
max x C,
[lx<llz=1

= max

o ~1/2
y=LC x

GGy < nyn3<
(a)

< A (Co,i) Ak (L) (23)

H,LC!/

S

2
. 1
IELLC I3 < Amax(Co i) Ninax (L) (ﬁ) SN2
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A Hidden Markov Model With Binned Duration Algorithm

Stephen Winters-Hilt and Zuliang Jiang

Abstract—The hidden Markov model with duration (HMMD) is criti-
cally important when the distributions on state intervals deviate signifi-
cantly from the geometric distribution, such as for multimodal distribu-
tions and heavy-tailed distributions. Heavy-tailed distributions, in partic-
ular, are widespread in describing phenomena across the sciences, where
the log-normal, student’s-T, and Pareto distributions are heavy-tailed dis-
tributions that are almost as common as the normal and geometric distri-
butions in descriptions of physical phenomena or man-made phenomena.
The standard hidden Markov model (HMM) constrains state occupancy
durations to be geometrically distributed, while HMMD avoids this limita-
tion, but at significant computational expense. We propose a new algorithm,
hidden Markov model with binned duration, whose result shows no loss of
accuracy compared to the HMMD decoding performance and a computa-
tional expense that only differs from the much simpler and faster HMM
decoding by a constant factor.

Index Terms—Algorithms, artificial intelligence, hidden Markov models,
signal processing.

I. INTRODUCTION

The Viterbi and Baum-Welch algorithms are the underlying com-
munication, error-coding, and structure-identification algorithms used
in cell-phone communications, deep-space satellite communications,
voice recognition, and gene-structure identification [5], [6], with
growing applications in areas such as image processing and channel
current cheminformatics [3]. The hidden Markov model with duration
(HMMD) generalization is important because the standard hidden
Markov model (HMM)-based, Viterbi, and Baum—Welch algorithms,
are critically constrained in their modeling ability to distributions
on state intervals that are geometric. This can lead to a significant
decoding failure in noisy environments when the state-interval dis-
tributions are not geometric (or approximately geometric), as will be
shown in what follows. The starkest contrast occurs for multimodal
distributions and heavy-tailed distributions.

Heavy-tailed distributions are widespread in describing phenomena
across the sciences [7]. The log-normal and Pareto distributions are
heavy-tailed distributions that are almost as common as the normal
and geometric distributions in descriptions of physical phenomena or
man-made phenomena (such as internet packet size). The length
distribution for introns, in particular, has very strong support in
an extended “heavy-tail” region; likewise for the length distribu-
tion on open reading frames (ORFs) in genomic DNA [3]. In fact,
the anomalously long-tailed aspect of the ORF distributions is the
key distinguishing feature of this distribution and has been the key
attribute used by biologists to identify likely protein-coding regions
in genomic DNA since the early days of (manual) gene structure
identification. The length distributions on blockade states in channel
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