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Distributed Estimation of Gauss—Markov Random
Fields With One-Bit Quantized Data

Jun Fang and Hongbin Li, Senior Member, IEEE

Abstract—We consider the problem of distributed estimation of
a Gauss-Markov random field using a wireless sensor network
(WSN), where due to the stringent power and communication con-
straints, each sensor has to quantize its data before transmission. In
this case, the convergence of conventional iterative matrix-splitting
algorithms is hindered by the quantization errors. To address this
issue, we propose a one-bit adaptive quantization approach which
leads to decaying quantization errors. Numerical results show that
even with one bit quantization, the proposed approach achieves a
superior mean square deviation performance (with respect to the
global linear minimum mean-square error estimate) within a mod-
erate number of iterations.

Index Terms—Adaptive quantization (AQ), distributed estima-
tion, Gauss—Markov random fields (GMRFs).

1. INTRODUCTION

ISTRIBUTED estimation is a fundamental problem

arising from a wide range of sensor network applications,
such as environment monitoring and battlefield surveillance.
So far a lot of existing works [1]-[5] studied the distributed
estimation problem by modeling the phenomena of interest
as a common scalar parameter. In this paper, we consider
another type of problems that model the underlying phenomena
as a random field. A random field is a generalization of a
single random variable, where the underlying parameter is no
longer a common scalar, but instead a stochastic process on a
multidimensional vector space or a manifold. Specifically, we
focus on an important class of random fields: Gauss—Markov
random fields (GMRFs), which have been widely used to
model spatially distributed phenomena such as temperature,
wind speed, and concentration of some chemical material in
many large-scale estimation problems. Distributed estimation
of GMRFs has been investigated in [6]-[11]. Most schemes
[8]-[11] are parallel, iterative and involve communication only
among neighboring sensors. In [8], [9], the authors studied how
to accelerate the convergence rate of the matrix-splitting itera-
tive algorithms by exploiting embedded trees [8] or embedded
graphs [9]. Robust design against temporary communication

Manuscript received December 30, 2009; revised February 07, 2010. First
published February 17, 2010; current version published March 26, 2010. This
work was supported in part by the National Science Foundation under Grants
CCF-0514938 and ECCS-0901066. The associate editor coordinating the re-
view of this manuscript and approving it for publication was Dr. Aleksandar
Dogandzic.

The authors are with the Department of Electrical and Computer Engi-
neering, Stevens Institute of Technology, Hoboken, NJ 07030 USA (e-mail:
Jun.Fang @stevens.edu; Hongbin.Li@stevens.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LSP.2010.2043157

failures such as failing links and sleeping nodes was examined
in [9], [10]. Fixing convergence in cases where the spectral
radius condition is not met was studied in [11]. Nevertheless,
all of them assume that data are exchanged among neighboring
sensors without distortion, which may not be practical due
to stringent power and bandwidth constraints. It is therefore
meaningful to examine how the quantization errors affect those
iterative algorithms and to design a robust scheme for dis-
tributed random field estimation in the presence of quantization
errors.

II. PROBLEM FORMULATION

Suppose that we have IV spatially distributed sensors. Each
sensor makes a noisy scalar measurement of a GMRF:
dp=0,+w, n=1,....,N D
where 6,, is the true value of the random field at sensor n
and is assumed constant over time, d,, and w,, denote the
sensor measurement and noise, respectively. We assume that
the random vector § = [61 02 Ox]* has zero mean
with covariance matrix Ry, and the measurement noise
w2 [wy we wy]7T is independent of # with zero mean
and diagonal covariance matrix R,,. The global linear min-
imum mean-square error (LMMSE) estimate of the random
field is given by [9]

6=R'R;'d )

where d £ [dy do
R=R,'+R;L

The GMREFs are usually parameterized by the covariance ma-
trix Rg. An alternate natural parameterization for GMRFs is the
so-called precision matrix Q, which is defined as the inverse
of the covariance matrix Ry, i.e., Q £ Re_l. It is shown in
[8] that Q is a sparse matrix with its entries ¢; ; = 0 if the
variables §; and §;, conditioned on all other hidden variables
{#n}nevi,j»> are independent, where V'\i, j denotes the set of
nodes obtained by excluding nodes 7 and j. This property en-
ables the GMRFs to be conveniently represented by an undi-
rected and locally connected graph G = (V, E), where the ver-
tices V. = {1,2,..., N} correspond to the random variables
{6, }, and the edge structure E = {(i,7)|i,j € V'} specifies the
conditional independence properties among the variables {6,, }.
We assume that each sensor, say sensor 7, can obtain the knowl-
edge of {¢; ;},Vj from a pre-specified model of the precision
matrix Q [8], [9].
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III. MATRIX-SPLITTING ALGORITHMS

Matrix splitting [8], [9] is an iterative approach to solve the
linear system (2). Let y £ R 'd, then we are faced with

6=Ry. 3)

To solve (3), R is splitinto R = J — K. The LMMSE estimate
0 can be found by the following two-step recursion (see [8], [9]
and references therein for more details):

z(t) = y +KO(t —1)
6(t) =J'a(t). )

Note that R is a sparse matrix with nonzero entries only at
(i,7) € FE. Therefore it is possible to seek a pair (J, K) for
which the two-step recursion involves communications only
among neighboring sensors. For example, we can let J equal
to the diagonal of R, which reduces to the well-known Jacobi
algorithm. More sophisticated splitting design which leads to a
faster convergence rate has also been proposed in other works,
e.g., [9]. A necessary and sufficient condition for the above
recursion to converge is p(J 1K) < 1, where p(-) denotes the
spectral radius of a matrix.

IV. CONVERGENCE ANALYSIS

In practice, quantization has to be carried out before trans-
mission. In this case, we modify the recursion (4) as

(1) =y + KQ(@(t - 1)
(1) =371Q(a(1) )

where (Q(x) denotes the quantized vector by carrying out
quantization for each entry of x. From (5), we see that
only the quantized version of the data, ie., Q(f;(t — 1))
and Q(z(t)), are exchanged among neighboring sensors
(y; need not be exchanged among sensors). We write
Qi — 1)) = 6(t — 1) + v(t — 1) and Q(z(t)) =
z(t) + u(t), where v(t) 2 [vi(t) va(t) ... wn(t)]7,
u(t) 2 [ui(t) uz(t) ... un(®)]”, and v, (t) and wu,(t) de-
note the quantization errors of sensor 7 introduced at iteration
t. From (5), the state 6(t) can be expressed in terms of the
initial state #(0) as

6(t) = (I 'K)6(0) + tz_:(JflK)iJfly
+§:(J 'K)"y +Z JT'K)" I (i), (6)
=0

As time evolves, the first term vanishes since p(J 71K) < 1;the
second term approaches the desired LMMSE estimate [8]

t—1
Y ITK)Iy LI -K) Ty =Ry, ()
1=0

However, the last two terms induced by the quantization errors
still remain, which leads to a system divergence. Nevertheless, a
closer examination reveals that, for a specific ¢, the quantization
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error components v(4) and u(?) incurred at iteration ¢ will even-
tually vanish as ¢ — oo. This observation implies that a conver-
gence may be achieved if the quantization errors decay to zero
with time. By modeling the quantization errors as random vari-
ables, we have the following result.

Proposition 1: Suppose that (J, K) satisfies the condition
IT71K]|2 < 1, and the quantization errors {v,,(#)} and {u,,(¢)}
are zero-mean, spatially and temporally uncorrelated random
variables. If the variances of the quantization errors decay over
time, i.e., E[v2(t)] — 0, E[u2(t)] — 0 as t — oo Vn, then the
recursion (5) converges to the LMMSE estimate in a mean-
square sense.

Proof: See Appendix A. |

Remarks: Proposition 1 requires the matrices J and K sat-
isfy [[J7'K]|2 < 1, which is a condition more restrictive than
p(J _IK) < 1. It was shown in [12], [13] that the quantization
errors can be modeled as zero-mean spatially and temporally
uncorrelated random variables under a sufficient condition that
the joint characteristic function of the input messages is ban-
dlimited. Since the input messages are always bounded, the joint
characteristic function of the input messages cannot be exactly
bandlimited in practice and the above assumptions hold valid
only in an approximate sense. On the other hand, introducing
dithering to the system can also lead to independent quantiza-
tion errors, as shown in [5], [13]. Its application to our context
is an interesting problem worthy of future investigation.

The theoretical result of Proposition 1 inspires us to pro-
pose a one-bit adaptive quantization (AQ) scheme which can
potentially achieve decaying quantization errors by exploiting
the temporal correlation among successive states. A similar ap-
proach was developed in [14]. Nevertheless, the approach was
studied within a decentralized framework (with a fusion center)
and the objective is to estimate a common parameter through a
sequential sensor update.

V. PROPOSED APPROACH

The AQ scheme involves an encoding and decoding process.
The received encoded data has to be decoded before it is ap-
plied to the recursive update (5). Hence the quantized data we
discussed in (5) correspond to the data decoded at the receiver,
but not the encoded data at the transmitter.

Let us consider encoding first. For each sensor, say sensor
n, it, firstly, uses two globally specified parameters: an initial
threshold 7, and an initial quantization step-size A, to generate
its one-bit encoded data of the first two iterations:

bn(0) =sgn(z,(0) — 7)
bn(1) =sgn(wn (1) — (1)) ®)

where sgn{z} = —1if 2 < 0, otherwise sgn{z} = 1, 7,,(1) =
7+ bn(0)A, z,,(t) denotes the raw data (can be 6., () or z, ()
in (5)), b, (t) denotes the encoded data of sensor n at iteration
t, and 7,(t) is the corresponding threshold used for quantiza-
tion. At iteration ¢t > 1, sensor n computes its threshold by per-
forming accumulation of the previous bits, weighted by a vari-
able step-size A, (¢):

Ta(t + 1) = 7 (t) + bn(t) An(t) 9)
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where A, (t) evolves using the following dynamic model

An(t) = {An(t — KOO0 A (1) < A

10
A, otherwise (10)

where K > 1is aconstant, A,,(0) = A, and A is a parameter of
user choice in order to prevent a too large step-size. Then sensor
n uses 7, (t + 1) as a threshold to generate its encoded data at
iteration ¢ 4 1:
bn(t 4+ 1) =sgu(xy(t + 1) — 7, (t 4+ 1)). (11)
The decoding of the AQ scheme is simple and described as
follows. Suppose sensor m is one of the neighboring sensors of
sensor n. After receiving the encoded data b,, (¢) from sensor 7,
sensor m recovers the quantization threshold 7,, (¢ 4 1) and uses
it as the decoded output data for the recursion, i.e., Q(z,(t)) =
Tn(t + 1). The reconstruction of 7,,(¢ + 1) can be easily in-
ferred from the received encoded data {b,, () }_, in a recursive
manner by using (9)-(10).

A. Discussions

We can recognize that the above process is reminiscent of
the Delta modulation with variable step-size, but implemented
in a distributed fashion. The key idea of AQ is to adjust the
step-size based on two successive encoded bits. When succes-
sive encoded bits have identical signs, with a high probability
it is still in the catch-up phase and the step-size is increased to
speed up the process [c.f (10)]. On the other hand, alternating
signs between successive bits indicate that the quantized data
are oscillating around the waveform, in which case the step-size
is decreased [c.f (10)] to provide a finer quantization.

We provide a heuristic discussion (not a rigorous proof) to
show how the AQ approach induces decaying quantization er-
rors in our distributed context. Note that the recursive estimate
0(t) of (6), on its steady state, is the desired fix-point solution 8
plus two noise items. Therefore, for each sensor, we can write
0, (t) = 0, + en(t), where e, (t) denotes the additive noise in-
troduced by the quantization errors. To simplify our analysis,
we idealize the recursive process into a two-phase recursion.
In the first phase, we suppose that the dynamic range of the
noise e, (¢) is constant and examine the evolution of the quan-
tization step-size. Assume that the noise e,,(t), Vn is bounded
by [— B, B] over a short duration. It can be shown that the adap-
tive quantization adjustment will lead to a quantization step-size
A, (t) smaller than the dynamic range 2B, otherwise it will
generate successive alternating signs to reduce the quantiza-
tion step-size. In the second phase, suppose now the quantiza-
tion step-size is fixed and see how it affects the additive noise
en(t), Vn. It can be verified from (6) that when p(J~'K) is
smaller than a certain value, a fixed quantization step-size A
will result in noise e, (t), ¥n whose practical dynamic range is
smaller than A (it is, however, difficult to check whether or not
the bounded spectral radius condition is satisfied in distributed
setting). In this case, the two phases form a negative feedback
leading to attenuating quantization errors.

The AQ scheme can be easily implemented since it only in-
volves very simple algebraic recursive calculations. Also, for
each sensor, no knowledge of the global topology is required.

Each sensor only needs the following globally pre-specified pa-
rameters: an initial threshold 7, an initial quantization step-size
A, and parameters K, A used for quantization step-size update
(10). The AQ approach is not quite sensitive to the initial choice
of 7 and A because these two parameters are adaptively adjusted
during the iterative process. On the other hand, the parameters
A and K are kept constant throughout the iterations and hence
are more critical. Our experiments suggest that in order to pre-
vent a too large step-size, a small K € (1,2] and A € (0,2]
are preferable in most cases. From (9)—(11), we see that for
both encoding and decoding, only current data and information
from past two states are required. Hence only a small amount of
memory resource is required to store this information. Note that
each sensor only needs to encode its own data and, at the same
time, to decode the data received from its neighboring sensors.

VI. SIMULATION RESULTS

We consider N = 50 sensors placed uniformly at random on
a 2-D unit area. The observations of the sensors are generated
according to model (1), where {w,} have zero mean and co-
variance matrix R,, = 021, the random variables {f,,} have
conditional correlation coefficients given by

Corr(0;, 0;10v\i,;) = { NGk if(i,j) e B

. (12)
0, otherwise

where (7, j) € E if and only if the Euclidean distance between
nodes 7 and j is smaller than R = /log N/N to ensure that the
graph is connected with a high probability [15]; r; denotes the
degree of node 7, i.e., the number of connections it has to other
nodes. The entries of the precision matrix Q, as shown in [9],
are related to the partial correlation coefficients by

— i,
V.,i45.5
where the diagonal elements of Q is chosen tobe ¢; ; = ; + ¢,
with ¢ = 0.1 to ensure Q is positive definite. The off-diagonal
entries of Q can be computed from (12) and (13). The splitting
matrix J is chosen equal to the diagonal of R.

To illustrate the effectiveness of the AQ approach, we
compare it with a uniform quantization (UQ) scheme. The
performance is measured by a normalized mean-square error
(NMSE) between the recursion state and the desired global
LMMSE estimate (2), i.e., (1/N)E[||6(t) — 8||2]. In addition,
the NMSE between the recursion state and the true random
field, (1/N)E[||0(t) — 8||3], is included. Results are averaged
over 500 Monte Carlo runs, with the graph and the initial state
independently generated for each run. Fig. 1 shows the NMSEs
of the AQ approach and the UQ scheme with ¢ = 1, 5, 9,
respectively, where ¢ denotes the number of bits used for
quantization. The no quantization (NQ) scheme is also included
for comparison, which provides a benchmark on the achievable
performance of all rate-constrained methods. From Fig. 1(a),
we see that due to the non-decaying quantization errors, the UQ
scheme does not converge and the NMSE is kept at a constant
level after a certain point, even for ¢ = 9. In contrast, the AQ
approach demonstrates a consistent performance improvement
and presents a clear advantage over the UQ scheme. From
Fig. 1(b), we see that the AQ approach can offer a level of

COI‘I‘(aL‘?Hﬂav\i,j) = (13)
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Fig. 1. R (a) NMSEs between é(f) and the global estimate (2); (b) NMSEs be-
tween 8(t) and the true random field.

performance even comparable to the algorithm with no quanti-
zation, with considerable bandwidth/power savings.

VII. CONCLUSION

The problem of distributed estimation of GMRFs with quan-
tized data was studied. We show that the convergence can still be
achieved in the presence of quantization errors if they satisfy a
certain decaying condition. An adaptive quantization approach
was proposed. Numerical results are illustrated to show the ef-
fectiveness of the proposed approach.

APPENDIX
PROOF OF PROPOSITION 1

Our objective is to show that

E[0(t) —0)T @) — )] —0 ast— oo

where (1) is defined in (6). Clearly, as ¢ — oo, the first term of
(6) vanishes and the second term approaches to the fixed-point
solution f. Therefore we only need to prove that

El(g1(t) + g2(1)" (g1(1) + 22(1))]
=Elgi(t)"g1(t)] + Elg2(t)Tg2(t)] =0 ast—oo (15)

where g (t) and go(t) denote the third and fourth terms on the
RHS of (6), respectively. Considering g1 (), we have

Elgi(t) g1 (t)] = tr{ E[g1(t)g1 ()]}

(a) =1 . B p
<D a@IT K E ae)
i=0

(14)

where || - ||r denotes Frobenius norm, (a) follows from the fact
that {v(t)} is spatially and temporally uncorrelated, and o2 (t)
denotes the largest diagonal element of the auto-covariance ma-
trix E[v(t)v(t)"]. Since the quantization errors converge to
zero, there exists ¢y such that for any arbitrary small ¢ > 0,
02(t) < e holds for ¢ > t,. Therefore (16) is upper bounded

t—1
D oM@ KR
1=0

to t—1
<D amOITTK) TR +e Y 17K TR an
i=0 i=tg+1
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where the first term vanishes as ¢t — oo since p(J7'K) < 1, the
second term is bounded by

t—1 t—1
_ ina @ _ i
e > NATR) TR <eN D TR
1=to+1 1=to+1
O IBKE
- 77K

where (a) comes from the norm inequality [[Allr < /p||Al2
[16], p is the dimension of the square matrix A; (b) follows
from [|AB|> < ||A[|2||B||2 and the assumption ||J7'K]||» < 1.
We see that as t — oo, and € — 0, both terms on the right-hand
side of (17) will vanish. Similarly, we can get the same result on

g2 (t)
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