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Optimal/Near-Optimal Dimensionality Reduction for
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Inhomogeneous Scenarios
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Abstract—We consider distributed estimation of a deterministic
vector parameter from noisy sensor observations in a wireless
sensor network (WSN). The observation noise is assumed uncor-
related across sensors. To meet stringent power and bandwidth
budgets inherent in WSNs, local data dimensionality reduction is
performed at each sensor to reduce the number of messages sent
to a fusion center (FC). The problem of interest is to jointly design
the compression matrices associated with those sensors, aiming at
minimizing the estimation error at the FC. Such a dimensionality
reduction problem is investigated in this paper. Specifically, we
study a homogeneous environment where all sensors have identical
noise covariance matrices and an inhomogeneous environment
where the noise covariance matrices across the sensors have the
same correlation structure but with different scaling factors. Given
a total number of messages sent to the FC, theoretical lower bounds
on the estimation error of any compression strategy are derived
for both cases. Compression strategies are developed to approach
or even attain the corresponding theoretical lower bounds. Per-
formance analysis and simulations are carried out to illustrate the
optimality and effectiveness of the proposed compression strategies.

Index Terms—Distributed estimation, dimensionality reduction,
wireless sensor network (WSN).

1. INTRODUCTION

IRELESS sensor networks (WSNs) have been of signifi-
W cant interest over the past few years due to their potential
applications in environment monitoring, battlefield surveillance,
target localization and tracking [1], [2]. Power is a primary
issue in sensor networks as the sensors constructing the network
are powered by small batteries that are often irreplaceable in
practice. Also, in a sensor network, communication consumes
a significant portion of the total energy as compared with the
sensing and computation related energy cost. It is therefore im-
portant to develop bandwidth- and energy-efficient strategies for
various sensor network processing tasks. A multitude of studies
along this line have appeared recently in the context of distributed
detection (e.g., [3]-[5]), low-rate quantization-based distributed
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estimation (e.g., [6]-[12]), distributed estimation using reduced
dimensionality sensor observations (e.g., [13]-[18]), and others.

In this paper, we consider distributed estimation of a determin-
istic vector parameter, where the unknown vector parameter is
observed by multiple sensors whose observations are processed
and sent to a fusion center (FC) to reconstruct the unknown
parameter. Vector parameters/observations arise from a variety
of scenarios. For example, the sensor observation at each sensor
can be signals collected from different time instances of a dy-
namic process (e.g., temperature measurements for different
time points), or can be multi-modal signals regarding a target
state (e.g., measurements of the location, speed, and bearing
of a vehicle at a certain time). To meet the stringent bandwidth
and power constraints inherent in WSNs, the high-dimensional
sensor observation should be converted into low-dimensional
data by carrying out local data dimensionality reduction. The
problem of interest is to jointly design the compression matrices
associated with those sensors such that the estimation error
at the FC is minimized. Such a problem has been extensively
investigated in a number of studies [13]-[22]. The first study
possibly appeared in [13], where the authors considered di-
mension reduction and data fusion for a two-sensor case. The
multi-sensor distributed compression-estimation problem was
addressed laterin [14], followed by [15]-[17]. In these works, the
communication links between sensors and the FC are assumed
ideal. This assumption was relaxed in [18], [22], where the link
noise and the transmit power constraint were taken into account
in designing the compression matrices. Despite all these efforts,
optimum dimensionality reduction and the best achievable per-
formance for the multi-sensor case are still an open problem.
The most attractive solution [14], [16]-[19] so far is to employ
a Gauss-Seidel iterative technique to reduce the number of op-
timization variables, which yields an iterative algorithm. An
asymptotic distortion analysis of this iterative algorithm was pro-
videdin [21] in aninfinite dimensional regime. Nevertheless, this
algorithm is not guaranteed to converge to a global minimum, and
itis unclear how close the stationary point to which the algorithm
converges is to the global minimum. Another problem with these
algorithms [14], [16]-[18] is that they require a priori knowledge
of the compression dimension associated with each sensor. As
different compression dimension assignments usually lead to dif-
ferent estimation performance, it is desirable to jointly consider
the compression dimension assignment and the compression
matrix design. Note that an iterative approach that can adaptively
determine the compression dimensions was proposed in [19].
Nevertheless, this algorithm still suffers from local maxima
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and stationary points. In addition, due to its iterative nature, a
performance evaluation is difficult to carry out, which, to some
extent, may hinder its practical applications.

In this paper, we continue the efforts to investigate dimen-
sionality reduction for distributed estimation. Unlike most ex-
isting works [13]-[22] modeling the unknown parameter as a
random parameter, our study focuses on deterministic parame-
ters. The extension of our results to random parameters will also
be briefly discussed in this paper. We first develop an efficient
iterative algorithm for a general noise scenario. We then focus
on two specific but important noise scenarios: a homogeneous
environment where all sensors have identical noise covariance
matrices and an inhomogeneous environment where the noise
covariance matrices across the sensors have the same correla-
tion structure but with different scaling factors. The following
questions are considered: given a specified number of messages
sent to the FC, what is the minimum achievable estimation error,
and how to jointly assign the compression dimension and design
the compression matrices to approach or even attain this theo-
retical lower bound? These questions will be addressed to pro-
vide a fundamental understanding of dimensionality reduction
for distributed estimation. Specifically, for a homogeneous en-
vironment, our results reveal that the rows of each compression
matrix should be chosen from the eigenvectors of the noise co-
variance matrix, and the number of messages corresponding to a
certain eigenvector should be proportional to the square root of
the corresponding eigenvalue. Our performance analysis shows
that the proposed compression strategy is very effective. In par-
ticular, when the noise covariance matrix has one or only a few
dominant eigenvalues, it is even possible to achieve almost the
same estimation performance as that of a centralized estimator
using all original observations, while transmitting only 1/p (p
denotes the dimension of the vector parameter) times the total
number of messages required by the centralized estimator. For
the inhomogeneous scenario, two compression strategies are
developed: the first strategy is effective when the eigenvalues
of the noise covariance matrix are diverse, while the second
strategy achieves optimum/near-optimum performance for the
case of identical or roughly identical eigenvalues. We note that
a similar dimensionality reduction problem was studied within
a vector quantization context in [23]. Nevertheless, the study
[23] was confined to the case where each sensor compresses its
vector observation into only a one-dimensional message, while
the current work considers dimensionality reduction under a
more general compression dimension assignment framework.

The following notations are adopted throughout this paper,
where []T stands for transpose, tr(A) denotes the trace of A,
and A > 0 means that the matrix is positive semidefinite. We
let [A];; denote the (i, j)th entry of A, L, denote an m x m
identity matrix. The symbols R"*™ and R™ stand for the set of
n X m matrices and the set of n-dimensional column vectors
with real entries, respectively.

The rest of the paper is organized as follows. In Section II,
we introduce the data model, basic assumptions, and the dis-
tributed compression-estimation problem. Section III presents
an iterative algorithm for compression design for general noise
scenarios. The compression design for the special cases (in-
cluding a homogeneous case and an inhomogeneous case) is
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Fig. . Dimensionality reduction for distributed estimation: each sensor makes
a noisy observation of the unknown parameter € and then convert its noisy ob-
servation x,, into some low dimensional data y,, .

studied in Section IV. The generalization of the optimization
and the extension to the random parameter case are discussed in
V. Simulation results are provided in Section VI, followed by
concluding remarks in Section VIIL.

II. PROBLEM FORMULATION

Consider a WSN consisting of N spatially distributed sen-
sors. Each sensor makes a noisy observation of an unknown de-
terministic vector parameter € R?
n=1

Xn, =0+ w,, yooon N )

where w,, € RP denotes the additive noise with zero mean and
full rank auto-covariance matrix R, . The noise is assumed un-
correlated across sensors and the knowledge of the noise co-
variance matrices is available at the FC. In the above model,
the observation matrix H,, defining the input/output relation:
x, = H,0 + w,, is assumed to be an identity matrix. Such a
simplified model occurs in many practical applications, for ex-
ample, the sensor observation is a collection of multiple snap-
shots of a dynamic process (temperature or humidity) of interest.
The extension to the general linear model will be discussed in
Section V.B.

To meet the stringent bandwidth/power budgets inherent in
WSNs, dimensionality reduction is carried out at each sensor to
convert the observation vector x,, into low-dimensional data y,,
by using a linear compression matrix B,, € R *?(¢q,, < p),i.e

n=Bnx, n=1,...,N. 2)
These compressed data {y, })_, are then sent to the FC to
reconstruct the unknown parameter 6 (see Fig. 1). We adopt
the following assumptions for the dimensionality reduction

problem:

[A1] there is no intersensor communication;
[A2] the compressed messages {y,, }2_; are sent to the
FC without distortion;
[A3] the total average transmit power is proportional
to the total number of compressed messages sent
to the FC.
Remarks: In assumption (A2), we assume that the com-

pressed messages can be reliably transmitted to the FC without
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any distortion. This assumption was also adopted in many other
decentralized compression-estimation works, e.g., [14]-[19].
Assumption (A3) is a simple but reasonable assumption. In
many practical scenarios, a centralized FC could be located far
away from the deployed sensor field, and the distances between
the sensors and the FC are roughly identical. The average
energy spent by each sensor in transmitting a message reliably
to the FC are roughly identical in a statistical sense.

Lety 2 [yT yI ... y%]7 denote a column vector formed
by stacking the data received from all sensors. We have

y = Bx = BJ0 + Bw 3)

where B = diag{B;,...,By} is a block diagonal ma-
trix with its nth block-diagonal element equal to B,,x =
xT xI .. x5 wEwl wi ... whT T 2 1y,
in which 11 is an N-dimensional column vector with its all
entries equal to one, ® denotes the Kronecker product, and I,
denotes an p X p identity matrix. Using the received data y, the

best linear unbiased estimator (BLUE) is given by [24]

6= [JTBT(BR— B")"'BJ]7'I"BT(BRyB")!

Z C

N
Z BY (B,R., B])" yn] “

(B anBT) B,

where Ry, 2 E[ww?]. The covariance matrix of 8 is

R; £ E[(6-6)(0-0)")
= [JTBT(BR«BT) 'BJ] !

-1

N
> BI(B.R., Bl)"'B,

n=1

&)

with the variance of each component given by the corresponding
diagonal element of Ry, i.e., var(f;) = [R;]i;. For general
linear models, if the observation noise is Gaussian, the BLUE
is also the minimum variance unbiased (MVU) estimator and
attains the Cramér-Rao bound. A natural question arising from
the above scenario is to find out an overall optimum compres-
sion matrix B, or equivalently, a set of individual compression
matrices {B,,}1_;, to achieve a minimum overall estimation
distortion at the FC. The optimization therefore can be formu-
lated as follows:

-1

'B, (6)

N

2B

min tr{R;} = tr B 2Ry BT
{Bn} { 9} n )

Note that in the above optimization, we assume that the com-
pression dimensions {g¢, } are specified a priori. This assump-
tion will be relaxed later in Section IV and we will consider
compression matrix design along with the compression dimen-
sion assignment. In the following, we will first develop an effi-
cient iterative algorithm for compression design under a general
noise scenario.
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III. COMPRESSION DESIGN: A GENERAL CASE

The optimization (6) involves determining N compression
matrices. To simplify the problem, we employ a Gauss-Seidel
approach [25] to develop an iterative algorithm, where, at every
iteration, we optimize the compression matrix for each sensor
given the other compression matrices fixed. This iterative pro-
cedure has also been adopted in other works, e.g., [14], [18],
to determine the compression matrices in a random parameter
framework. As we will show later, an efficient iterative algo-
rithm for the deterministic case can be readily developed based
on previous results [14], [18].

Let Q) = >z Bh (BuRy, BY) 7' B, the optimization
of By, given fixed {B,, } ¢, is formulated as

_ —1
arg I%ikn tr { (Qk + B} (BiRu, Bf) ! Bk) } .
(7

Utilizing the Woodbury identity, the objective function of (7)
can be rewritten as

tr { (Qk +B7 (B4R, BY) ™ Bk)_l}
= {Q;' - Q. 'Bf
x [B (R, +Q;1)B£]‘1BkQ;1}. 8)
Since Q is fixed, (7) becomes
ot { Q7 BY B (Ru, + Q") BT BLQr )
)

The above optimization has been solved by previous works, e.g.,
[14], [18]. Its solution is summarized as follows. Let G, £
Ry + Q;l. The optimum solution to (9) is given by

B, =V'G,? (10)
where V € RP* % is obtained as the eigenvectors corresponding
to the ¢, largest eigenvalues of G;(l Z)leQk_,lG;(l/Q).

Based on the above results, we can establish an iterative algo-
rithm by successively optimizing and replacing each compres-
sion matrix Bj. The algorithm is summarized as follows.

1) Randomly generate a set of compression matrices {B,(?)}

as an initialization.
2) At iteration 7 + 1 (L =

0,1,...): determine Bg”l)
{B(l) )}

B](Ci+1)

glven. determine given:
{B{*Y, B,(:+11)7B,(:J)rl7 B fork=2,...,N.

3) Go to Step 2)if [F({BYVY}) — FUBYY)] > €, where
f(+) denotes the objective function defined in (6), and € is
a prescribed tolerance value; otherwise stop.

Clearly, in this algorithm, every iteration results in a nonin-
creasing objective function value. In this manner, the iterative
algorithm converges to a stationary point and finds an effective
set of compression matrices. Nevertheless, this algorithm is not
guaranteed to converge to the global minimum, and it is unclear
how close the achieved stationary point is to the global min-
imum. Moreover, for this iterative algorithm, the compression
dimension, g, associated with each sensor needs to be known a
priori. Given the total number of compressed messages, finding
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the compression dimension for each sensor is in fact a resource
allocation problem. It is desirable to integrate this resource al-
location problem into the compression design framework.

IV. COMPRESSION DESIGN: SPECIAL CASES

In this section, we study two important specific scenarios,
namely, a homogeneous environment where the sensors have
identical observation noise covariance matrices and an inhomo-
geneous environment where the noise covariance matrices have
the same correlation structure with different scaling factors.
These two scenarios can be modeled as R,,, = a,zw,an, Vn
with identical or nonidentical scaling factors. Many applica-
tions can be characterized by this specific noise model. For
example, in many cases, due to the underlying physical sensing
mechanism, the sensor observation is a linear or nonlinear
function of the signal of interest, ie., X, = f(8) + w,,
where f( - ) is a known linear or nonlinear vector function (for
example, f(-) can be a linear function with each component
of @ amplified with a different amplification factor), and w,
is usually additive measurement noise with zero mean and
covariance matrix o, I. By carrying out the inverse of f(-)
or resorting to a local estimator of 6, the general observation
model can be reduced to a simplified model: x,, = 8 +w,,, with
the noise having the same noise correlation structure (which is
introduced by the function inverse) but identical or different
scaling factors. The optimization can be formulated as

N -1

1 -1
min tr —BZ: BanBf B,
{Bn}.{gn} ngl ’37,’", ( )
N
s.t. Z g =K
n=1
where B, € R™"*P Vn, (11)

Note that unlike (6) assuming a priori specified compression
dimension assignment, in the above optimization, the compres-
sion dimensions {¢,, } associated with the compression matrices
{B,.} are also variables to be optimized. The constraint on the
total number of compressed messages is equivalent to placing
a total transmit power constraint since we assume that the total
average transmit power is proportional to the total number of
compressed messages sent to the FC (see (A3)). To deal with
(11), we first carry out the following simplifications. Let R, =
U.,D,UZ denote the eigenvalue decomposition (EVD) and

w

C, 2 BnU,wDS,}/Q). We have

1

B7 (B,R,BI) B,
= U,D,?CT (C,CT) "' €, DL UT. (12)

Furthermore, we can write C,, = P,,C,,, where P,, € R%»*a»
is a full rank matrix and C,, € R?*? consists of ¢,, orthonormal
rows, i.e., C, CZ = I, (note that without loss of generality, we
assume C,, is a full row rank matrix, i.e., the compression ma-
trix has ¢,, independent rows; otherwise the messages sent to
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the FC contain redundant information, which wastes the com-
munication resource and is obviously undesirable). Substituting
C, = P,C, into (12), we arrive at

B! (B,R.B!)'B,
- u,D,’Cc? (c,cT) ' ¢,D, Ul

- u,D.°cTc, D, UT. (13)
n ~“n-w w

As we can see, the expression on the right-hand side of (13) cir-
cumvents the inverse of a variable matrix and is much easier for
our following development. Therefore we shall focus our study
on the design of these newly constructed compression matrices
{C.,.}. The original compression matrices {B,,} can be easily
recovered from the relationship

B, = P,,C,D, U, (14)

where P,, can be any arbitrary full rank matrix as it can be
readily verified that the objective function value is independent
of the choice of P,,. By substituting (13) into (11), and using
the trace identity tr(A;As) = tr(A2A), the optimization (11)
can be reformulated as

-1

N
1
min tr —CgCn D,
{Cu}{an) ,LZ::I o
st.  C,CI =1, Vne{l,...,N}

N

Z gn = K. (15)
n=1

The optimization (15) involves a joint search over compression
dimensions and compression matrices, which is complicated for
analysis. To gain an insight into (15), we first develop a theo-
retical lower bound on the estimation error of any compression
strategy associated with a specific choice of {¢,, }, that is, a lower
bound on the minimum achievable objective function value of
the following nonconvex optimization for a given {¢,} ({¢.}
satisfies the constraint Zﬁ;l g, = K):

-1

]\T
1
i t cTfc,| D,
st. C,CI'=1, VYne{l,....,N}. (16)

A. Lower Bound on the Estimation Error

The results regarding the lower bound on the estimation error
of any compression strategy for a specified {¢,} are summa-
rized as follows.

Lemma 1: Consider the case where the noise covariance ma-
trices across the sensors have the same correlation structure, i.e.,
R,, = afu;an. For each specific compression dimension
assignment {q, }_,, the estimation error of any compression
strategy is lower bounded by

2
1 p
tr(Ré> Z Z ; \ Au;,’i,

a7
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where ), ; denotes the ith eigenvalue of R,,, i.e., the 7th diag-
onal element of D,,, and L is defined as

1
A
n=1  Wn
This lower bound can be attained if the compression matrices

{C,} satisfy the constraints C,,CI = I, ,Vn and also the
following condition

(18)

C'D,C = D* £ diag(d;,...,d}) (19)

in which C € RE*? is a matrix formed by stacking the N
compression matrices

cs[cT cf cL]t (20)

D, denotes a block diagonal matrix with its nth block equal to
(1/07%, )L,

D, £ diag | 1, ZLLD,...,ZLIW 1)
w,1 w,2 Ow,N
and d is defined as
ar o IvVAwi (22)
D> ERV2
Proof: See Appendix A. ]

For each compression dimension assignment {g,, }, Lemma
1 not only reveals the best achievable performance of any com-
pression strategy, but also provides the conditions under which
the compression design can approach or even attain the cor-
responding theoretical lower bound. We note that the derived
lower bound is inversely proportional to L, which is a value
generally dependent on the compression dimension assignment
{qn} (exception occurs for the homogeneous case due to iden-
tical observation qualities). Hence the derived lower bound (17)
is a lower bound for a specific compression dimension assign-
ment, but in general not a universal lower bound that applies to
all feasible compression dimension assignments. Nevertheless,
as will be shown later, the results are still helpful and shed light
on how to choose effective compression dimension assignment
and design the compression matrices. In the following, for pre-
sentation clarity, a homogeneous case is first considered, then
followed by an inhomogeneous case with nonidentical scaling
factors.

B. A Homogeneous Case

Clearly, for the homogeneous case R, R.,Vn (as-
suming aim = 1 without loss of generality), the parameter L
is equivalent to L = Zgzl ¢n = K, which is a constant inde-
pendent of the compression dimension assignment. Therefore
the theoretical lower bound (17) derived specifically for a given
compression dimension assignment in fact becomes a universal
lower bound. The results are summarized as follows.

Theorem 1: Consider a homogeneous environment where all
sensors have identical noise covariance matrix R,,. Suppose
that the number of total compressed messages sent to the FC is
K. Then for any compression dimension assignment {¢,, }, the
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estimation error of any compression strategy is lower bounded
by

p 2
tr {Ry} > % Z_; Vil - (23)
Proof: The results come directly from Lemma 1 by noting
that 02, = 1,Vn. [ |
To approach this universal theoretical lower bound, we pro-
pose the following compression strategy which uses any K of
N sensors (implicitly we assume N > K), with each sensor
compressing its observation into only one message. Let
.
L & Vie{l,...,p}.
T €f{l,....p}
The details of the compression strategy are as follows.
* Proposed compression strategy: We divide the K sensors
into p groups, with the ith group consisting of f; sensors,
where f; is obtained by rounding /; to its nearest integer
while still preserving their summation, i.e., Y ¢+, f; =
P_,l; = K. All sensors in the ith group choosing e;

to be their compression vectors, i.e.

(24)

C.=e] VYn=iy,is,...,if (25)

where e; € RP is a unit column vector with its ith
entry equal to one, whereas other entries equal to zero;
{i1,42,...,iy,} are the indices of the sensors in group 7.
Since each compression vector C,, is selected to be a unit row
vector, the constraints C,,C% = I, ,Vn imposed on the com-
pression matrices {C,,} in (15) are automatically satisfied. We
have the following easily verified result regarding the proposed
compression strategy.
Proposition 1: The estimation error achieved by the above
proposed compression strategy is given by

tr{Rg} =3 Ao

w,
o (26)
If {I;} have integer values, i.e., f; = [;, then the achieved esti-
mation error attains the universal lower bound (23).

Remark 1: The assumption that {l;} are integers may not
be satisfied in practice. In this case, the universal lower bound
cannot be attained. Nevertheless, the performance degradation
caused by the rounding operation is usually very mild due to the
smoothness of the estimation error cost function (26), which is
also corroborated by our simulation results. In particular, since
l; is proportional to K, as K increases, the estimation error (26)
can be arbitrarily close to the universal lower bound (23).

Remark 2: With (25), the original compression matrix B,,
can be recovered from (14), i.e.,, B,, = PnCnD;(l/Z)Ug,
where P, is a scalar as ¢, = 1. Since C,, is a unit row vector,
we see that B, is a scaled eigenvector of the noise covariance
matrix R,,. Also, we observe that the number of messages/sen-
sors corresponding to a certain eigenvector should be propor-
tional to the square root of the corresponding eigenvalue (see
(24)). This result has an intuitive explanation. Note that a larger
eigenvalue indicates that the corresponding eigenvector direc-
tion has a larger amount of noise power. Intuitively, to minimize
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the estimation error over all directions, more resources should
be assigned to the directions with larger amounts of noise power
because this can lead to a more significant overall estimation
error decrease as compared with putting the same amount of re-
sources to the directions with less noise power. This judicious
resource allocation renders a power-distortion efficiency, as we
will discuss later. Moreover, we see that this resource allocation
is closely tied to the criterion of minimizing the overall estima-
tion error. Other criteria may lead to other resource allocation
schemes.

Remark 3: Since sensors have identical observation quali-
ties, messages corresponding to a same eigenvector but coming
from different sensors make no difference. Also, bear in mind
that each sensor can compress its observation into multiple com-
pressed messages, as long as these messages correspond to dif-
ferent eigenvectors. Therefore we can find other compression
strategies which need fewer number of sensors (less than K)
but have the same number of messages corresponding to each
eigenvector as that of the current strategy.

Comparison With the Non-Compression Estimator: It is also
interesting to examine the performance of the proposed com-
pression strategy as compared with a BLUE estimator using
T(T < N) sensors’ original observations {x, }1_,. Clearly, if
T = N, the BLUE estimator is the centralized estimator which
provides a benchmark on the performance of all rate constrained
methods. It can be easily verified that the estimation error of the
BLUE estimator is given by

T -1 p
1
Ry neh =t [SORI P =2 > A @D
n=1 =1

where the subscript ‘NC’ stands for a estimator with no
data compression. Since the proposed compression strategy
approaches the universal lower bound (23), the ratio of the
estimation error of the proposed compression strategy to that of
this noncompression BLUE estimator is given by

tr{R; (5 . rws)
tr{Ré,Nc} K (32iz1 Awi) K
where ,
1')— \V Awt
i=1 \w,i

Using the Cauchy-Schwarz inequality, we can show that 7 is
a value lower and upper bounded by: 1 < n < p. The upper
bound p is reached when all the eigenvalues {\,, ;} are iden-
tical. On the other hand, if the eigenvalues are diverse, then n
tends towards its lower bound 1. We see that in order to achieve
the same estimation performance as that of the noncompression
BLUE estimator, the proposed compression strategy requires to
send a total number of K = T'n messages, which is n/p times
the total number of messages needed by the noncompression es-
timator. Since (n/p) < 1, our compression scheme is generally
more efficient than the noncompression estimator as it requires
fewer messages to meet a distortion target. In particular, if the
noise covariance matrix have one or only a few dominant eigen-
values, n approaches its lower bound 1, meaning that we can
attain almost the same estimation performance as that of a non-
compression estimator by sending only 1/p times the number of
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messages required by the noncompression estimator. The above
result can also be perceived from a power perspective. From As-
sumption A3), we can say that our compression scheme is more
efficient in a power-distortion sense.

C. An Inhomogeneous Case

From Lemma 1, we know that for the inhomogeneous case,
the derived theoretical lower bound (17) is inversely propor-
tional to L, which is a value dependent on the compression di-
mension assignment {g¢y, }. This is different from the homoge-
neous case where the lower bound is only dependent on the total
number of compressed messages K. Naturally one may wish
to increase L (consequently decrease the lower bound (17)) by
assigning more compression resources, i.e., larger g,,, to those
sensors with better observation qualities. However, it is gener-
ally difficult for us to find a compression strategy to approach
the corresponding lower bound for such an intuitive compres-
sion dimension assignment.

In the following, we consider the compression design under
two different compression dimension assignment schemes. In
the first scheme, each sensor compresses its observation into only
one message, irrespective of the disparity of the sensors’ obser-
vation qualities. For the second scheme, the observation qualities
are taken into account and only a small number of sensors are se-
lected to transmit their data. Two different universal lower bounds
are developed to evaluate these two proposed compression strate-
gies, respectively. Our analysis reveals that the first compression
strategy is effective when the eigenvalues of the noise covariance
matrix are diverse, while the second compression strategy is
able to achieve optimum/near optimum performance for the
case of identical or roughly identical eigenvalues.

1) Proposed Compression Strategy I: Without loss of gener-
ality, we assume that the scaling factors {012”,,1} are in ascending
order. We first introduce the following theorem which provides
a universal lower bound on the estimation error of any compres-
sion strategy.

Theorem 2: Suppose that the number of total compressed
messages sent to the FC is K, where K < N. Then for any
compression dimension assignment {g,, }, the estimation error
of any compression strategy is lower bounded by

1 < A
tr(R;) > — Aw.i = ULB 30
f(Ra) 2 73 A 1 (30)
where
K
1
hEY = 31)

Proof: To prove (30), we construct a BLUE estimator
which has access to the first K sensors’ original observations
{x,}E_| (note that the first K sensors have the best K ob-
servation qualities since {02 , } are in ascending order). The
estimation error of this estimator is given by [24]

1 P
= J_l ; )\'w,i-

(32)

K -1

1
> Ry

n=1W:n

tr{Rj yo} = tr
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Now consider any compression strategy which sends K com-
pressed messages to the FC. Since these K messages come from
at most K sensors, the above constructed estimator provides a
benchmark (lower bound) on the performance of any K -mes-
sage constrained method. [ |
We now introduce the following compression strategy which
can approach the universal lower bound (30) under certain
circumstances.

* Proposed strategy: Suppose that the total number of com-
pressed messages sent to the FC is K. We select the first K
sensors with the best observation qualities and divide these
K sensors into p groups (the partition principle will be dis-
cussed below). Let the sensors in the 7th group choose e;
to be their compression vector, i.e.

C., —eT Yn =i1,192,..., 1K, (33)

where {71, 12, ...,ik, } are the indices of sensors in group
1, and K; denotes the number of sensors of group .
For notational convenience, define

1K,

e ¥

n=i; WN

Vie{l,...,p}. (34)

It can be easily verified that the estimation error of the proposed
compression strategy is given by

-1

=1 Xi
35)

K

tr(Ry) = tr [Z 21

n—=1 _Ww,n

from which we can see that the estimation error is a function
of {x:}, and consequently dependent on the sensor partition.
We have the following results (which can be easily proved) re-
garding the proposed compression strategy.

Proposition 2: The proposed compression strategy achieves
its minimum estimation error when

Jl \V4 )‘w,’i

Xi = =3 Vie{l,...,p} (36)
,IL':1 vV )\'w,i
and the minimum estimation error is
» 2
1
tr(Ry) = - (2_; \/Aw,i> 37)

which is exactly the theoretical lower bound (17) specific to the
compression dimension assignment ¢, = 1,Vn € {1,..., K}.
Also, the ratio of the minimum estimation error of the compres-
sion strategy to the universal lower bound (30) is given by

A tI‘{Ré} N
1= =
ULB;

(38)

where 7 is defined in (29).

Remark 1: Clearly, in order to achieve a smaller estimation
error, the K sensors should be properly partitioned into p
groups. Specifically, if we can find a partition such that {y;}
satisfy (36), the proposed compression strategy achieves the
minimum estimation error (37). Of course, finding a partition
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exactly satisfying (36) may not be possible in practice. How-
ever, finding a set {x;} roughly equivalent to their optimal
values is not that difficult when K >> p, in which case the pro-
posed strategy approaches the minimum estimation error (37).

Remark 2: Recalling that  is a value lower and upper
bounded by: 1 < n < p, and tends towards its lower bound
1 if the eigenvalues are diverse. Therefore the proposed com-
pression strategy is effective and should be used for the case
of diverse eigenvalues {\, ;}. In particular, when the noise
covariance matrix have one or only a few dominant eigen-
values, it is even possible to achieve almost the same estimation
performance as the universal lower bound, i.e., the performance
of a noncompression estimator with access to all the best K
sensors’ original observations.

2) Proposed Compression Strategy II: The proposed com-
pression strategy 1 is effective when the eigenvalues of the
noise covariance matrix are diverse. For the case where the
eigenvalues are identical or roughly identical, we propose the
following strategy. Before proceeding, we first introduce an-
other universal lower bound which is obtained by maximizing
L in (17).

Theorem 3: Suppose that the number of total compressed
messages sent to the FC is K, where we write K = Mp +
k, M = floor(K/p) is an integer and k& < p. Then for any com-
pression dimension assignment {¢,, } and compression strategy,
the estimation error is lower bounded by

(i

2
tr(R) ) £ ULBy (39)

HlaX

where
M
=S
—1 Own Oy M+1

(40)

max

Proof: From (18), L is maximized when the com-
pression resource is allocated as follows: ¢, = p for
n € {l,....M},q, = kforn = M+ 1,and g, = 0
otherwise (note that g,, cannot be greater than p). The max-
imum L is then given by (40). Substituting (40) into (17), the
estimation error of any compression strategy therefore is lower
bounded by (39). [ |

The universal lower bound (39) is in fact the lower bound (17)
specific to the following particular compression dimension as-
signment: ¢, = pforn € {1,... , M}, q, = kforn=M+1,
and g, = O otherwise. For such an intuitive compression di-
mension assignment, it is generally difficult to find a compres-
sion strategy to approach the corresponding lower bound. Nev-
ertheless, when the eigenvalues of the noise covariance matrix
are identical, the following compression strategy is able to ap-
proach or attain the universal lower bound (39).

* Proposed strategy: Suppose K = Mp+ k. The first M + 1

sensors are selected to transmit their data. Specifically, the
compression matrices {C,, } are designed as follows:

I, ifne{l,...,M}
Co=¢L[l:k:], fn=M+1 41
0, otherwise

where I,[1 : k, :] denotes a submatrix consisting of rows 1
thru k of I,.
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Clearly, the constraints C,,,CZ = I,,,VYn imposed on the
compression matrices {C,, } in (15) are satisfied with the above
choice (note that only those sensors which transmit need to be
considered).

Proposition 3: The estimation error achieved by the proposed
compression strategy is approximately given by

Mo
tr(Ry) ~ tr [Z 5

n=1 ll} ,T

-5 (%)

where the approximation becomes an equality when K = Mp,
i.e., k =0, and J, is defined as (note that M = floor(K/p))

-1

—CTc,| D,

(42)

M

JﬁZJl

2
n=1 w,n

(43)

The ratio of the estimation error of the proposed compression
strategy to the universal lower bound (39) is

Lmax /]‘3— )‘wi Lmax 1
o Pmax iz T LB g
2 ( ?:1 \V4 )\w,i) J2 n n

where the above approximations become an identity when K =
Mp.

Remark 1: When all eigenvalues {\,;} are identical,
(1/m) = (1/p), therefore we have v2 = 1 (or 72 = 1), sug-
gesting that the estimation error is approximately (or exactly)
identical to the universal lower bound (39). The original com-
pression matrix B,, can be easily recovered from (14) and (41).
It can be easily verified that B,,,Vn € {1,..., M} can in fact
be any full rank matrix.

3) Discussions of Two Proposed Compression Strategies:
Note that both lower bounds (30) and (39) provide a benchmark
(lower bound) on the achievable performance of any com-
pression strategy. The reason for us to propose two different
universal lower bounds is that both universal lower bounds
are not always tight. In fact, it can be readily verified that the
latter lower bound (39) is tighter than the former one when the
eigenvalues are identical, i.e., ULBy; > ULBj. On the other
hand, for the case where the eigenvalues are diverse, the former
lower bound (30) could be tighter than the latter one. In gen-
eral, the compression Strategy I should be used for the case of
diverse eigenvalues, while Strategy II is near-optimal/optimal
for the case of identical or roughly identical eigenvalues. Of
course, with the information of the eigenvalues and the scaling
factors, a more accurate decision can be made from (37) and
(42) to determine which compression strategy yields a lower
estimation error.

From (38) and (44), we can show that the ratio of the lower es-
timation error of the two strategies to the tighter universal lower
bound is smaller than or equal to the minimum of 7 and p/7), i.e.

min(tr(Rg’I)./ tr(Ré,H)) ) < p>
< min (7, —
n

max(ULBy, ULByy)
where for clarity, we use tr(Ry ;) and tr(R; ;;) to denote the
estimation error of Strategy I and I, respectively. Since 1 < 7 <

(45)
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p, the maximum value of the function min(n, (p/n)) is /p. i.e.,
max, min(7n, (p/n)) = /p- Therefore we can guarantee that,
for any set of eigenvalues, the best strategy out of the proposed
two strategies can achieve an estimation error within a factor /p
of the tighter universal lower bound.

We provide an intuitive explanation for the effectiveness of
the proposed compression strategies. If the eigenvalues are di-
verse, most noise power is concentrated on a small number of
eigenvector directions. Assume a limiting case where there are
p — 1 zero eigenvalues and one nonzero eigenvalue. When 6
is projected on the p — 1 eigenvectors associated with the null
eigenvalues, we have a perfect estimate for these p — 1 projec-
tions. Therefore, the best strategy is to let each sensor transmit
one message, with p — 1 sensors to provide perfect reconstruc-
tions of these p — 1 projections, while other sensors are used
to reconstruct the projection onto the noisy eigenvector direc-
tion. Transmitting multiple messages for any sensor may not be
a good idea since it may entail more than necessary messages
to reconstruct these p — 1 projections onto the p — 1 noiseless
eigenvectors (note that multiple messages coming from each
sensor have to correspond to different eigenvectors). For the
case where the eigenvalues are identical, the noise power is
evenly distributed among all eigenvector directions. Therefore
the best strategy is to let sensors with the best observation qual-
ities report the projections along all directions.

V. DISCUSSIONS

A. Generalization of the Optimization (6)

Note that in the optimization (6), the objective is to minimize
the overall estimation distortion of the vector parameter. In cer-
tain practical applications, we may wish to place more emphasis
on some components of 8. With this in mind, we can generalize
the optimization criterion (6) to the following:

{min tr{R;®}

N -1

2B

(B.R., BT) B, @ (46)

where ® £ diag(¢y, bo, ..., ¢p) is a diagonal matrix and ¢;
is a positive weighting factor of user choice. The optimization
(46) can be rewritten as

-1

. 1T -1 -1
min tr Z@ :B! (B,R,,B.)” B,® ]
47)
Let B,, £ B,,®(1/2)_ We can reformulate (47) as
N . -1

min tr Z BZ (Bni)%an <I>%B5> B,

By | |2
(43)

which has a same formulation as (6) and hence can be solved
by the proposed compression strategies. In fact, the optimiza-
tion (6) can be further generalized by considering an objective
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function in the form of trace(SR;S”), where S can be arbi-
trary matrix of appropriate size. A similar approach can be used
to solve this problem.

B. Extension of the Data Model

Throughout this paper, a simplified linear data model: x,, =
0 + w,, is considered, in which the observation matrix defining
the input/output relation is assumed to be an identity matrix. We
now discuss the extension to a general linear model
x, = H,0 +w, n=1,...,N, 49)
where H,, € R™*? is assumed to be a full column rank (this
condition is usually met in practice) matrix known at the FC.
When the observation matrices across the sensors are identical,
i.e., H,, = H,Vn, the compression design problem for the case
(R, = 02 ,R,,) can be reduced to the optimization problem
(15) (see Appendix C for a detailed derivation). On the other
hand, if the observation matrices in (49) are different across sen-
sors, then we have to resort to the iterative algorithm proposed in
Section III to search for an effective compression design. Note
that by following the same derivation as we did in Section III,
the proposed iterative algorithm can be readily adapted to ac-
commodate this general linear model (the details are omitted
here).

C. Extension to the Random Parameter Case

The unknown parameter 6 is modeled as a deterministic pa-
rameter in our paper. In many other studies, @ is treated as a
random parameter with zero mean and covariance matrix Ry.
In that case, a linear minimum mean-square error (LMMSE) es-
timator can be used and the corresponding covariance matrix of
the estimate error € = @ —  is given by [24]

R. = Elee]
-1
= [R;' +37B” (BR+B”) ' BJ]

N -1

R,'+Y BT (B,R, BT) B,

n=1

(50)

Note that a different formulation of R, was adopted in some
other works, e.g., [18], [19]. Nevertheless, as shown in ([24, Th.
12.1]), they are in fact identical for general linear models. The
compression design problem therefore can be formulated as

N -1

R;'+Y B! (B.,R.,B!) B,

n=1

min tr
{B.}

(G

Although such a compression design problem (51) has been ex-
tensively studied in [14]-[19], as we mentioned earlier, all these
algorithms are iterative and suffer from local maxima and sta-
tionary points. In the following, we show that the compression
strategies proposed in this paper could be effective solutions to
(51). We take the homogeneous case as an example. The exten-
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sion to the inhomogeneous case with R,,, = Ui,an follows
a similar derivation.

Let ARr, min denote the smallest eigenvalue of Rygy. The
estimation error of the LMMSE estimator is upper and lower
bounded by

fub({Bn})
N -1
2w{ |3 B! (B.R,B!) B, > tr{R.}
n=1

N —1

> tr{ |Ap! I+ Y B! (B.R.B!) B,
n=1

2 fw({Bn}) (52)

since tr(A~1) is convex over the set of positive definite ma-
trix and )\}};’minl — Re_l > 0. The upper bound f.,({Bx})
is exactly the estimation error of the BLUE estimator for the
deterministic case. Recalling that the compression strategy pro-
posed in Section IV-B approaches its universal lower bound
(23), therefore the proposed compression strategy is able to at-

tain an estimation error upper bounded by

2
> tr{R.}. (53)

fu({Ba}) = % [Z Ve
=1

Also, for any compression dimension assignment, the estima-
tion error of the LMMSE estimator achieved by any compres-
sion strategy is lower bounded by (see Appendix D for a detailed
derivation)

(R} > fin({Bu)) > —

P 2
> \/Aw,i] (54)
=1

ol

where

P
K 2 050 min D Awi + K. (55)

i=1

Combining (53) and (54), we can assure that the estimation
error of the LMMSE estimator achieved by our compression
strategy is within a factor K /K of the minimum achievable
estimation error. Suppose Ry = I and R,, = I, we have
K/K = 1+ (p/K), which approaches one when K is rela-
tively larger than p.

D. Discussions of an Existing Suboptimal Solution

In [15], to circumvent the difficulty in solving the optimiza-
tion (6), the authors proposed to consider a more tractable
criterion

N
max tr {Z B! (B,R,, BY)™ Bn} . (56)
n=1

{Bn}

Although the above optimization (56) can be analytically
solved, it does not always guarantee to yield an effective solu-
tion. To see this, let us consider a simple example where ¢,, = ¢,
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and R,,, = A,Vn, A is a diagonal matrix with ascending di-
agonal elements. The optimization (56) can be decoupled into
a set of identical subtasks with each compression matrix B,,
determined from the following optimization:
max tr {BI(B,ABI) 'B,}. (57)
It can be readily verified that the optimal solution B,, is given
by the first ¢ rows of the identity matrix I, and all compression
matrices {B,,} are identical. Clearly this is not a meaningful
solution because with such a compression choice, all sensors
transmit only the noisy observations of the first ¢ parameters,
whereas the information concerning the last p — ¢ parameters is
not reported to the FC. Mathematically, this solution leads to a
rank-deficient matrix Y2_ BT(B,,ABZ)~!B,,. In this case,
the overall estimation error can be considered going to infinity.

VI. SIMULATION RESULTS

In this section, we carry out experiments to corroborate our
previous analysis and to illustrate the performance of our com-
pression strategies.

A. Homogeneous Case

We first consider a homogeneous environment where sen-
sors have identical noise covariance matrices. In this case, the
compression matrices can be determined by the iterative algo-
rithm proposed in Section III or by the near-optimal compres-
sion strategy proposed in Section IV-B. We investigate the per-
formance of our compression strategies and compare them with
a noncompression BLUE estimator using a certain number of
sensors’ original observations. All these schemes send the same
number of messages to the FC (note that different schemes may
need different number of sensors). The universal lower bound
for the estimation error of any compression strategy, which is
given in (23), is also included for comparison. In our simula-
tions, the parameter dimension p is set to 5 and the noise covari-
ance matrix is chosen as R,, = diag(1,0.1,0.1,0.1,0.001).
Fig. 2 depicts the total number of messages K, versus the es-
timation distortion. From Fig. 2, we see that the compression
strategy proposed in Section IV-B attains performance that is
very close to (in fact indistinguishable from) the universal lower
bound, which corroborates our claim that the rounding opera-
tion incurs a very mild performance loss. It is also interesting
to examine the performance of the iterative algorithm proposed
in Section III. We consider three different compression dimen-
sion assignments, namely, each sensor compresses its local ob-
servation into ¢ messages, where ¢ = 1,2, 3, respectively. We
observe that different compression dimension assignments af-
fects the performance of the proposed iterative algorithm: the
performance of the iterative algorithm degrades as q increases.
The reason, as we mentioned in Section IV-C.3, is that transmit-
ting multiple messages for each sensor may result in an insuffi-
cient number of messages to reconstruct the projections onto the
noisier eigenvectors (that is, eigenvectors associated with large
eigenvalues). We also notice that when ¢ = 1 (the same com-
pression dimension assignment as that of the proposed near-op-
timum strategy), the proposed iterative algorithm achieves al-
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Fig.2. Homogeneous case: Overall estimation error versus the total number of
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Fig. 3. Homogeneous case: Overall estimation error versus the total number of
messages, I, sent to the FC for respective schemes.

most the same performance as that of the proposed near-op-
timum strategy. This implies that the iterative algorithm con-
verges to a stationary point that is close to the global minimum,
although theoretically this convergence is not guaranteed. More-
over, it can be seen that all compression strategies present an
advantage over the noncompression estimator in a K -distortion
sense.

We also study an example where the eigenvalues are ran-
domly generated according to A, ; = av; Vi € {1,...,p},
where o = 0.1 and v; ~ X} is a central chi-square distributed
random variable with one degree-of-freedom. Note that the chi-
square distribution has been used to model the sensor noise vari-
ance, e.g., [26]. Since the noise variances are closely related
to the eigenvalues of the noise covariance matrix (in partic-
ular, the noise variances are exactly the eigenvalues when the
noise covariance matrix is diagonal), we adopt the same statis-
tical model to characterize the distribution of the eigenvalues.
Fig. 3 shows the performance of the proposed near-optimum
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Fig. 4. Inhomogeneous case with diverse eigenvalues: Overall estimation error
versus the total number of messages, I\, for our proposed strategies.

strategy and the noncompression estimator. The results are av-
eraged over 500 Monte Carlo runs. We see that our compression
strategy presents a clear advantage over the noncompression es-
timator. To meet the same distortion target, say, 0.01, the number
of messages required by our compression scheme is about 1/2
of that required by the noncompression estimator.

B. Inhomogeneous Case

We conduct experiments to examine the performance of
the two compression strategies proposed in Section IV-C.
As we discussed before, these two compression strategies
are different in nature: the first strategy exploits the diversity
of the eigenvalues of the noise covariance matrix, while the
second one takes advantage of the disparity of the observation
qualities. We assume that the sensors are equally divided into
three clusters, with sensors in each cluster having the same
observation quality, i.e., O’?Dn = agm,Vn e C,,, where C,,
denotes cluster m. In our simulations, the number of messages
sent to the FC is set to K = 3N,, where N. denotes the
number of sensors in each cluster (V. varies from 5 to 50 in
the simulations). In our first example, we set p = 5 and R,,
has one unit (dominant) eigenvalue and four small eigenvalues
0.001. The factors agm for the three clusters are set to be 0.15,
0.6, and 1. The Strategy I involves partitioning sensors into p
groups, with the objective that the variable x; associated with
each group approaches their optimum values (36). This parti-
tion can be easily accomplished in most cases. For example,
suppose N. = 50, it can be calculated that the optimum values
of {x;} are {13.1002,13.1002,13.1002, 13.1002, 414.2657}.
We can easily find a partition whose corresponding values
are {x;} = {13,13,13,12.6667,415} which are close to the
optimum values. Fig. 4 shows the estimation distortions of the
two proposed compression strategies as a function of the total
number of messages sent to the FC. The two universal lower
bounds (30) and (39), referred to as universal lower bound I
and II respectively, are also included to evaluate the proposed
strategies. From Fig. 4, we observe that (30) provides a tighter
lower bound, whereas the lower bound (39) is a loose one. Also,

4349

10 T I
- = =Universal lower bound |
Proposed Strategy | i
+ Universal lower bound Il
- = Proposed Strategy ||
107k
c
Ke)
=
o
@
o 2
10° F ~a R T
10° ' '
0 50 100 150

Number of messages

Fig. 5. Inhomogeneous case with identical eigenvalues: Overall estimation
error versus the total number of messages, ', for our proposed strategies.

it can be seen that the compression Strategy I is very effective
and achieves performance that is close to the universal lower
bound I, which corroborates our analysis in Section IV-C1. In
contrast, the proposed Strategy II yields inferior performance
in this case.

We now study a different scenario where the noise covariance
matrix has identical eigenvalues. We set R,, = I and the fac-
tors azm for the three clusters are set to be 0.1, 0.5, and 1. The
performance is depicted in Fig. 5. We see that, in this case, the
universal lower bound II turns out to be a tighter lower bound.
Also, as we analyzed in Section IV-C2, the proposed Strategy
IT approaches/attains the universal lower bound II. On the other
hand, unlike the previous example, the Strategy I becomes apart
from both universal lower bounds since the eigenvalues of the
noise covariance matrix are identical and no diversity can be
exploited.

VII. CONCLUSION

We considered the problem of distributed estimation of a de-
terministic vector parameter in wireless sensor networks, where
due to the stringent power/bandwidth constraints, each sensor
carries out local data dimensionality reduction to reduce the
transmission requirement. The problem of interest is to jointly
design the compression matrices associated with those sensors
in order to achieve a minimal estimation error at the FC. Such a
compression design problem was investigated in this paper. We
first developed an efficient iterative algorithm for a general noise
scenario. We then examined two specific but important noise
scenarios: a homogeneous environment where all sensors have
identical noise covariance matrices and an inhomogeneous envi-
ronment where the noise covariance matrices across the sensors
have the same correlation structure but with different scaling
factors. Compression strategies were proposed for both noise
scenarios, respectively. Universal lower bounds were derived to
evaluate the performance of the proposed compression strate-
gies. Simulation results were presented to corroborate our anal-
ysis and to illustrate the effectiveness of the proposed compres-
sion strategies.
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An interesting topic of future study is to work beyond the
homogeneous and the specific inhomogeneous cases considered
in this paper. Currently an optimum compression strategy for the
general noise case still remains an open problem. The difficulty
in dealing with the general noise case lies in that the reduction
of the optimization into a tractable form is very difficult, due to
the fact that different noise covariance matrices have different
eigenvalue decompositions, which makes the summation term
inside the inverse operator irreducible. The generalization of our
approach or results to the general noise case requires to find a
way to overcome the above mentioned difficulty.

APPENDIX A
PROOF OF THEOREM 1

To derive a lower bound on the minimum achievable objec-
tive function value of (16), we construct a new optimization that
has the same objective function as (16) while with a relaxed con-
straint. From the constraints C,,CL = I, ,Vn € {1,...,N},
we can deduce that

1

tr(C'D,C) = >

tr (CZCH)

QM )

n

Il
—

n >

tr (CnCZ)

I
M=
Q
~

3

2
w

>

3
Il
—

g = L (58)

I
WE
Q
~

2

w,n

3
Il
—

where C and D, are defined in (20) and (21), respectively.
Clearly the identity (58) is more relaxed than the constraints
C,Cl =1, ,Vn because we can derive (58) from these con-
straints, but the converse is not true. Therefore a lower bound on
the minimum achievable function value of (16) can be obtained
by solving the following optimization

-1

D,

N
. 1
min tr l E —-—C,Cy

n=1 _W,m

=tr{[C"D,C|"'D,}

st.  tr(CT'D,C) = L. (59)

This optimization, unlike (16), can be analytically solved and
the results are summarized as follows.

Lemma 2: Let A, ; denote the ith eigenvalue of R, i.e.,
the ith diagonal element of D,,. If any matrix C satisfies the
following condition:

C"D,C = D* £ diag(d},...,d), (60)
then it is an optimum solution to (59), where
)\w 7
d; = : (61)

i D

i=1V /\w;i.
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The minimum objective function value achieved by this op-
timum solution is given by

2
1 [
.fmin = f Z; V )‘w,’i‘| . (62)
Proof: See Appendix B. ]

From Lemma 2, it is clear to see that the estimation error of
any compression design strategy is lower bounded by

(63)

r{Ry} > L [ZW]

The lower bound can be attained if the compression matrices
{C.,.} satisfy the constraints defined in (16) and the condition
(60). The proof is completed here.

APPENDIX B
PROOF OF LEMMA 2

Let CTD,C = UDUTY denote its eigenvalue decomposi-
tion (EVD), where U € RP*P and D € RP*P. By replacing
CTD,C with its EVD, the optimization (59) is reduced to de-
termining the orthonormal matrix U and the diagonal matrix D

II}l,iIIDI tr{UD~'UTD,,}
s.t. tr(D) =L
D = diag(ds,...,d,) di>0 Vi
uUu? =1 (64)

Although the problem (64) involves searching for multiple op-
timization variable matrices, a close examination shows that
it can be decoupled into two sequential subproblems. We can,
firstly, find an optimal U by fixing the variable D (its diagonal
elements {d;}, without loss of generality, are assumed in de-
scending order). By using the following matrix inequality [27]:

P

tr(AB) > 3" M(A)A1-(B)

(65)

where A and B are any positive semi-definite Hermitian ma-
trices with eigenvalues A\x(A) and \;(B) arranged in a de-
scending order, we can reach that the objective function is lower
bounded by

p
tr{UD'UTD,,} > Z lA,w,L-. (66)

<
Il
-

It is easy to verify that this lower bound is attained when U = 1.
Therefore U = T is an optimum solution to (64). With this
result, the optimum diagonal matrix D can be determined via
the following optimization:

nlljin tr{D 1D, }
s.t. tr(D) =L
D = diag(dy,...,dp) d; >0 Yi  (67)
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which is equivalent to finding its diagonal elements by

p
. )\w,i
min

{‘11} i=1 d1

p
s.t. Zdi:L d; >0 Vi.
=1

(63)

The Lagrangian function fy associated with (68) is given by
f L (di TV )

P
A

- A <L - zp: dl) - zp: I/idi, (69)
=1

which gives the following KKT conditions:

Adz +A-y=0 Vi
p
L= di=0
Zzi,;dq;zo Vi
v; >0 Vi
d; >0 V.

The last three KKT conditions imply that »; = 0, Vi. Substi-
tuting this result into the first equation, we obtain

)\m,i

d; = P (70)

The Lagrangian multiplier A can be determined from the second
KKT condition, from which A is given by

D )\ |
_ i=1 w1
VA= s

(71)
By combining (70) and (71), the optimum solution is solved as
L/ Aw,

i P

i=1V /\wvi.

The proof is completed here.

dr = (72)

APPENDIX C
SIMPLIFICATION OF THE COMPRESSION DESIGN OPTIMIZATION

For the data model: x,, = Hf + w, the compression design
problem for the special case R, , Ry 18 formulated into
an optimization as follows (for simplicity, the constraint on the
total number of compressed messages is omitted)

— 42
=0,

N -1

S —L H'B! (B,R,B!)'B,H
(o

n=1

min tr

{Bn}

(73)
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where H € R™*? (r > p), and B,, € R**". Define C,, 2
BnUwDS/Z). We have

(74)

in which S 2 HTU,D,"/?. Let S = U,D,VT denote
the reduced singular value decomposition (SVD) of S, where
U, € RP*?, D, € RP*P, and V, € R"*P. Also, we write
C, = P, C,,, where P,, € R? X% is a full rank matrix and
C,, € R%*" consists of ¢,, orthonormal rows, i.e., CnC£ =
I, . Using these results, (74) can be rewritten as

“'B,H
=U,D,vicic,v,D,UT.

H"B! (B,R.,B})
(75)

Substituting (75) into (73), the optimization (73) becomes

-1
n) Vs] D;?

(76)

min tr

N
VT
{Cu} ° (nz_:l T

s.t. C.Cl =1, Vn.

Let V& € R"*("=P) denote the orthogonal complement of the
subspace V, ie., (VH)TV, = 0 and (VH)TVL = I; and
define V. 2 [V, V1]. Since the columns of V form a com-
plete orthonormal basis, each compression matrix C,, can be
expressed as C,, = = C, VT, where C,, € Re"*", Usmg this
new representation, we can rewrite (76) as

N
1 =
min  tr{ [T cfc,|T"| D2
& R
st.  C,CT=1, Vn (77)

where T 2 VIV = [I, 0].To gain insight into (77), we
decompose each compression matrix C,, into two parts: C,, =
[Cn,l C..,2], where C, 1 € RI"*P and C. 2 € RImX (r—p),
It is easy to verify that

(78)

Therefore the optimization (77) is rewritten as

-1

D_2

s

S ET G

1 - w,n

_ min tr
{Cn,1,Cn 2}

st. CniCly+Cu2CL, =1, Vn. (79

Since I,, = C,1CT | and tr(A~') is convex over the set of
positive definite matrices, it is clear that we should have C,, » =
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0,Vn in order to minimize (79) and eventually we arrive at the
following:

N
1 = =

min tr E p Cf’lCnl D;?

{Cr.1} ne1 Zw,n

s.t. C. 1Cn 1=1,, Vn (80)

which has the same formulation as the problem (16) we studied
in this paper.

APPENDIX D
DERIVATION OF (54)

We only need to prove

Sw({Bn}) > (81)

ZF

N |

By resorting to (12)-(13) and writing /\Ro minl =

e minUwDuw /2p,DyPUL, the minimal fi,({B,})
can be solved as

-1

Ro min UJ+ZCT Dw

min tr

{C.}

st. C,CLl=1, Vne{l,...,N}L (82)

Following a similar derivation in Appendix A, we know that the
minimum achievable function value of the above optimization
is lower bounded by the minimum achievable function value of
the following optimization:

tr { V7t i D + €7 C]7'D,, }

min
{Cn}
st tr(Agy minDw + CTC)
Ank mmz/\w+K K. (83)
=1

The above optimization is equivalent to (59). From Lemma 2,
its minimum achievable function value is given by

2
1|
.fruin = = Z V )‘u),i (84)
K =1
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