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We examine distributed estimation of the average power of

a random signal in wireless sensor networks (WSNs). Due to

stringent bandwidth/power constraints, each sensor quantizes its

observation into one bit of information and sends the quantized

data to a fusion center, where the signal power is estimated. We

firstly introduce two fixed quantization (FQ) schemes, with the

first using a single threshold and the second employing a pair of

symmetric thresholds. The maximum likelihood (ML) estimators

associated with the two FQ schemes are developed, and their

corresponding Cramér-Rao bounds (CRBs) are analyzed. We

show that the FQ approach, especially the second one, can achieve

an estimation performance close to that of a clairvoyant estimator

using unquantized data if the optimum quantization threshold is

available; however, the optimum threshold is dependent on the

unknown signal power, and as the threshold deviates from its

optimum value, the performance degrades rapidly. To cope with

this difficulty, we propose a distributed adaptive quantization

(AQ) approach by which the threshold is dynamically adjusted

from one sensor to another in a way such that the threshold

converges to the optimum threshold. Our analysis shows that

the proposed AQ approach is asymptotically optimum, yielding

an asymptotic CRB equivalent to that of the FQ approach with

optimum threshold.
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I. INTRODUCTION

Recent developments in computing and wireless

communication technology have led to the emergence

of small, inexpensive sensors capable of sensing,

processing, and communication. A wireless sensor

network (WSN) consisting of a large number of

such sensors is able to accomplish a variety of

tasks including environment monitoring, battlefield

surveillance, target localization and tracking, and

many more [1, 2]. Distributed parameter estimation

is one of the fundamental problems arising from the

wide applications of WSNs.

Since sensors in a network are powered by

small-size batteries whose energy resource is severely

limited, energy constraints are a primary issue

that needs to be taken into account in designing

distributed estimation algorithms. A multitude of

studies along this line have appeared recently, e.g.,

distributed estimation in the context of decentralized

compression-estimation [3, 4], optimal resource

allocation [5—7], and distributed estimation in the

framework of sensor cooperation [8, 9]. Meanwhile,

some other works [10—17] considered distributed

estimation using aggressive quantization strategies,

aimed to address not only the energy constraint,

but also the bandwidth constraint which is inherent

in WSNs. In this setup, quantization becomes an

integral part of the estimation process and is critical

to the estimation performance. Different quantization

schemes were proposed to attain an acceptable

estimation accuracy while meeting the stringent

power/bandwidth budgets.

Specifically, Bayesian techniques, which model

the unknown parameter as a random parameter, were

proposed in, e.g., [10], [18], [19]. These methods

require knowledge of the joint distribution of the

unknown parameter and the observed signals for

quantizer design. Another category of methods

treat the unknown parameter as a deterministic

unknown parameter. A notable example is a fixed

quantization (FQ) approach, where a common

quantization threshold ¿ is applied at all sensors
[11, 12]. The drawback of the FQ approach is that its

estimation performance is sensitive to the quantization

threshold, whose choice is always a tricky problem in

practice. A remedy is to employ multiple thresholds

instead of one threshold, hoping that one of the

thresholds is close to the optimum value. In [11],

the authors propose to periodically apply one of a

set of thresholds; each threshold is employed with

equal frequencies (through a periodic control signal

or dithering added before quantization). Also, in [12],

an unequal-frequency multi-thresholding strategy

was developed, which allows some thresholds (in

particular those statistically closer to the optimum

threshold) to be used more frequently than the others.

Another recent method addressing quantization
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with deterministically unknown parameters was

introduced in [16], where the idea is to optimize the

worst case performance by maximizing the minimum

asymptotic efficiency between two maximum

likelihood (ML) estimators using quantized and,

respectively, unquantized observations.

Most studies on distributed quantization and

estimation, including [10]—[17], however, consider

the estimation of a mean or location parameter

under an additive model: xn = μ+wn, where xn
denotes the unquantized sensor observation made

at sensor n, μ is the unknown mean parameter, and
wn is the sensor noise with zero-mean and known
distribution. While the above model covers a range of

important applications, we are interested in a different

problem arising from other applications such as

spectrum sensing, whose objective is energy detection

and estimation. The problem is to estimate a scale

parameter associated with the sensor observations.

Specifically, suppose we have N spatially distributed

sensors, each sensor making an independent and

identically distributed (IID) observation xn from
a certain distribution pX(x) with zero-mean and
unknown variance ¾2.
The problem of interest is to design one-bit

quantization strategies fQn(¢)g to convert fxng into
binary data fbng which are forwarded to a fusion
center (FC) and to find an effective estimate of the

standard deviation or scale parameter ¾ from fbng at
the FC. Such a problem finds important applications,

for example, in cognitive radios where a group of

secondary users collaboratively measure the power

of a primary user signal for opportunistic spectrum

usage [20—25], and in many other sensor network

applications such as detection and estimation which

need to collect the statistics of a signal/observation

noise for the algorithm design, e.g., [26], [27]. When

a quantization strategy is given, ML estimation of ¾
using quantized data was considered in [28]. In this

paper, we consider joint quantization and estimation,

examine the impact of quantization on the estimation

performance, and develop a new adaptive quantization

(AQ) approach for the estimation of ¾.
Specifically, two FQ schemes are firstly introduced

in this paper, where a single threshold and a pair of

symmetric thresholds are employed, respectively.
Theoretical analysis shows that the FQ scheme using

dual thresholds has a better estimation performance,
yielding a Cramér-Rao bound (CRB) that is about one

half that of the FQ scheme with a single threshold.

Also, by choosing an optimum quantization threshold,
both FQ schemes are able to achieve an estimation

performance close to that of an ML estimator using

unquantized data (also referred to as “clairvoyant
estimator” in this paper). Specifically, for Gaussian

distribution, the estimation variance of the FQ with

a single threshold is within about 3 times that of the
clairvoyant estimator, and the estimation variance of

the FQ with a single threshold is within about 1.5
times that of the clairvoyant estimator.
Although the FQ approach provides a comparable

performance to the clairvoyant estimator while
requiring only one-bit information from each sensor,
its problem lies in that the optimum quantization
threshold is dependent on the unknown parameter to
be estimated, which is not usable in practice. Also,
as the threshold deviates from its optimum value,
its performance drops rapidly. To cope with this
difficulty, we propose an AQ approach which, with
sensors sequentially broadcasting their quantized data,
allows each sensor to adaptively adjust its quantization
threshold. We design our AQ scheme by resorting
to the ML estimator and a relationship between the
optimum threshold and the unknown parameter found
by an analysis. Our analysis shows that our proposed
AQ scheme is asymptotically optimum, which yields
an asymptotic CRB equivalent to that of the FQ
approach with optimum threshold.
Note that our AQ scheme here can be considered

as an extension of [17] to a scale parameter estimation
problem. This extension, however, is not that
straightforward and yields many interesting results.
Firstly, the fundamental approach of [17] and the
resulting optimality is tied to the notion that as the
quantization threshold approaches the parameter
to be estimated, the performance of the estimation
approaches the best possible performance level. This
fact may not be true for general parameter estimation
problems. For example, for the scale parameter
estimation in this paper, the relationship between
optimal threshold and the parameter to be estimated
is nontrivial and needs to be found out by numerical
search. In this case, our results show that the AQ
approach can be easily extended to incorporate this
generalized relationship, and the asymptotic optimality
still remains true. Secondly, the technical analysis
(especially the asymptotic performance analysis
of the AQ-ML scheme) of [17] is restricted to the
Gaussian noise setup. In this paper, we have relaxed
this restriction, and it is shown that the asymptotic
optimality of the proposed AQ approach holds for any
continuous noise distribution.
The rest of the paper is organized as follows.

Two fixed quantization schemes are introduced in
Section II with their ML estimation (MLE) developed
and CRB analyses carried out. In Section III, an AQ
approach is proposed, and its asymptotic performance
analysis is derived. Numerical results and comparisons
are presented in Section IV, followed by concluding
remarks in Section V.

II. FIXED QUANTIZATION

A. Fixed Quantization: Single Threshold

As in [11], [12], we employ a common threshold

¿ for all sensors to quantize the observations into
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one-bit information:

bn = sgn(xn¡ ¿), n= 1,2, : : : ,N (1)

where

sgnfxg=
½
0 if x· 0
1 if x > 0

:

To facilitate our analysis, we express xn as

xn = ¾vn, n= 1,2, : : : ,N (2)

where vn denotes a random variable having the

same distribution as xn but with zero mean and unit
variance; ¾ is the unknown scale parameter to be
estimated. It can be readily shown that the probability

mass function (pmf) of bn is given by

P(bn;¾) = (1¡FV(¿=¾))bn(FV(¿=¾))1¡bn (3)

where pV(x) and FV(x) denote the probability density
function (pdf) and the cumulative distribution function

(cdf) of vn, respectively. Since fbng are IID, the
log-pmf or log-likelihood function is

LFQS(¾)
¢
=log[P(b1, : : : ,bN ;¾)]

=

NX
n=1

fbn log[1¡Fv(¿=¾)] + (1¡ bn) log[Fv(¿=¾)]g

(4)

where we use the subscript FQS (FQ with a single

threshold) to represent the current FQ scheme. The

ML estimate and CRB associated with this scheme are

given in the following proposition.

PROPOSITION 1 For the FQS scheme, the ML estimate

of ¾ is given by

¾̂ =
¿

F¡1V
³
1¡

³PN
n=1 bn

´
=N
´ (5)

where F¡1V denotes the inverse of the cdf. Furthermore,

the CRB for any unbiased estimator based on fbng is

CRBFQS(¾) =
1

N

¾4

¿2
FV(¿=¾)(1¡FV(¿=¾))

p2V(¿=¾)
: (6)

PROOF See Appendix A.

We see that CRBFQS(¾) depends on the
quantization threshold ¿ . To find an optimum ¿ , we
rewrite (6) as

CRBFQS(¾) =
¾2

N

¾2

¿2
FV(¿=¾)(1¡FV(¿=¾))

p2V(¿=¾)

=
¾2

N

1

°2
FV(°)(1¡FV(°))

p2V(°)

¢
=
¾2

N
GFQS(°) (7)

Fig. 1. Gaussian observations: CRBs of FQS and FQD schemes

versus °, N = 100.

where °
¢
=¿=¾ denotes the ratio of the threshold to

the unknown parameter to be estimated. To minimize

the CRB, the optimum ° is the one minimizing the
function GFQS(°).
Specifically, for the Gaussian distribution, the

optimum ° is about §1:57 (see Fig. 1). Hence
the optimum quantization threshold is §1:57¾ for
the Gaussian distribution. To better evaluate the

performance of the FQS scheme, we compare it

with the ML estimator using unquantized data

(also referred to as “clairvoyant estimator”), which

provides a lower bound on the achievable estimation

performance of all rate-constrained methods and

serves as a benchmark for evaluating the efficiency of

the proposed quantization schemes. It is easy to derive

(the derivation is straightforward and hence omitted

here) that for the Gaussian observations fxng, the CRB
for any unbiased estimator based on the unquantized

data fxng is given as
CRBNQ(¾) =

¾2

2N
(8)

where we use the subscript NQ to stand for “no

quantization.” Clearly, we see that the minimal CRB

achieved by the FQS scheme using the optimum

quantization threshold is only about 2GFQS(1:57)¼
3 times that of the clairvoyant estimator using

unquantized data. Nevertheless, from Fig. 1, we

observe that the performance of the FQS scheme

degrades rapidly as the threshold ¿ deviates from its

optimum value 1:57¾. Note that without any prior
information of the true ¾, the optimum choice of

the quantization threshold is unknown because the

optimum threshold minimizing the CRB is dependent

on the unknown parameter ¾.

B. Fixed Quantization: A Pair of Symmetric
Thresholds

Our previous analysis for FQS (i.e., the CRB is

an even function of the threshold) motivates us to
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consider a symmetric quantization scheme using a pair

of symmetric thresholds §¿ , which is defined as

bn = sgn(jxnj ¡ ¿) =
½
0 if ¡ ¿ · xn · ¿
1 otherwise

:

(9)

Intuitively, this quantization scheme is able to achieve

a better performance as compared with the FQS

scheme because the quantized bit bn reveals more
information about the signal variance by locating

the absolute value of the observation. For this dual

thresholds-based quantizer, the pmf of bn is given as

P(bn;¾) = (2¡2FV(¿=¾))bn(2FV(¿=¾)¡ 1)1¡bn :
(10)

It follows that the log-likelihood function is

LFQD(¾) =
NX
n=1

[bn log[2¡ 2FV(¿=¾)]
+ (1¡bn) log[2FV(¿=¾)¡1]]

(11)

where the subscript FQ with dual thresholds (FQD)

represents the current scheme. We have the following

result regarding its ML estimate and CRB.

PROPOSITION 2 For the FQD scheme, the ML estimate

of ¾ is given by

¾̂ =
¿

F¡1V
³
1¡

³PN
n=1bn

´
=(2N)

´ : (12)

The CRB for any unbiased estimator based on fbng is
given by

CRBFQD(¾) =
1

2N

¾4

¿2
(1¡FV(¿=¾))(2FV(¿=¾)¡ 1)

p2V(¿=¾)
:

(13)

PROOF See Appendix B.

As we did for the single threshold case, we can

rewrite (13) as

CRBFQD(¾) =
¾2

2N

1

°2
(1¡FV(°))(2FV(°)¡ 1)

p2V(°)

¢
=
¾2

2N
GFQD(°) (14)

where °
¢
=¿=¾.

Specifically, for the Gaussian distribution, the

optimum ° minimizing the CRB is about 1.48
(see Fig. 1). Consequently the optimum threshold

¿ is 1:48¾ for the Gaussian distribution, and the
corresponding minimal CRB achieved is only about

GFQD(1:48)¼ 1:5 times that of the clairvoyant
estimator (cf. (8)). Also, from Fig. 1, we can see

that the FQD scheme outperforms the FQS scheme

at all thresholds. This can be intuitively justified

since the FQD scheme produces a binary bit that

contains more information about the observation

and the unknown parameter associated with the

observations.

III. ADAPTIVE QUANTIZATION

As we can see from previous analyses, both

FQ schemes are very sensitive to the choice of the

quantization threshold ¿ : the estimation performance
of the FQ schemes degrades sharply as ¿ deviates
from their optimum values. However, the optimum

threshold is dependent on the unknown parameter ¾
to be estimated, which is not usable in practice. To

cope with this difficulty, we propose a data-dependent

distributed AQ approach by which the threshold is

dynamically adjusted from one sensor to another, in a

way such that the threshold converges to the optimum

threshold. We adopt the following assumptions for the

AQ approach:

Assumption 1 We assume each sensor sends its

quantized data to the FC sequentially with the help of

a scheduling algorithm, e.g., [29].

Assumption 2 While each sensor transmits, the

other sensors can listen to the transmission due to

the broadcasting nature of the wireless channel. To

focus on the quantization problem, we assume that the

quantized data are received without errors (by using,

e.g., a strong error correction code).

A detailed discussion of these two assumptions is

provided in Section IIIC.

A. AQ

For the AQ approach, each sensor, say sensor

n, finds its quantization threshold ¿n by using the
quantized data fbkgn¡1k=1 received from previous

sensors. We firstly employ the ML estimator to

compute ¾̂n, where ¾̂n denotes an estimate of ¾ at
sensor n based on fbkgn¡1k=1. The threshold ¿n is then
calculated according to the ¿opt » ¾ relationship
established by the FQ analyses, e.g., for Gaussian

observations, ¿opt = 1:57¾ if a single threshold
quantization scheme is adopted or ¿opt = 1:48¾
if a pair of symmetric thresholds are adopted. In

this section, we only consider the AQ approach

employing a pair of symmetric thresholds, i.e., each

sensor quantizes its observation using the form

of (9) as it yields better estimation performance.

The details of the AQ scheme are described as

follows.

We firstly generate two quantized bits b1 and b2
for initialization. For sensor 1, we use an arbitrary

positive threshold, say ¿1 = 1, to generate b1:

b1 = sgn(jx1j ¡ ¿1): (15)
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Then, b1 is sent to the FC and all other sensors. Upon
receiving b1, sensor 2 computes ¿2 = ¿1¢

b1¢b1¡1, that
is, ¿2 = ¿1¢ if b1 = 1 and ¿2 = ¿1=¢ if b1 = 0, and
uses it to generate b2, where ¢ is a stepsize whose

choice is discussed shortly. Also, we assume that the

initial threshold ¿1 and the stepsize ¢ are known to all

sensors. Based on the received fb1,b2g, sensor 3 finds
the ML estimate of ¾ as

¾̂3 = argmax¾
L3(¾;b1,b2,¿1,¿2) (16)

where

L3(¾;b1,b2,¿1,¿2) =
2X
k=1

[bk log[2¡ 2FV(¿k=¾)]
+ (1¡ bk) log[2FV(¿k=¾)¡ 1]]

(17)

denotes the log-likelihood function of ¾ given binary
observations b1,b2 and the associated thresholds ¿1,¿2,
where ¿2 can be recovered from ¿2 = ¿1¢

b1¢b1¡1. The
stepsize ¢ used by sensor 2 should be large enough

such that b1 and b2 have different discrete values.
Otherwise, it can be shown that ¾3 obtained above
is either infinity or zero (depending on the values

of b1 and b2), which should be avoided. Although
there is always a non-zero probability for b1 and b2
to have identical values, the probability can be made

practically small by choosing ¢ sufficiently large. In

addition, if for a chosen ¢, the first two quantized bits
are still of an identical value, the following sensors

can keep adjusting the threshold by ¿n+1 = ¿n¢
bn¢bn¡1

until a binary bit of a different value is generated, at

which point the quantization process is switched to

use the ML estimator.

The threshold ¿3 is then computed as

¿3 = ¹¾̂3 (18)

where ¹ is the coefficient of the relationship between
the optimum threshold ¿opt and the unknown
parameter ¾ for the corresponding FQ approach.
Here ¹ is chosen to minimize (14) since a pair of
symmetric thresholds are used here.

In general, for sensor n, it first recovers the
previous thresholds f¿kgn¡1k=1 from the received

quantized data fbkgn¡2k=1, which can be computed

straightforwardly by the following recursive

calculation:

¿2 = ¿1¢
b1¢b1¡1

¿3 = ¹¾̂3 ¾̂3 = argmax
¾
L3(¾;b1,b2,¿1,¿2)

(19)
...

¿n¡1 = ¹¾̂n¡1 ¾̂n¡1 = argmax
¾
Ln¡1(¾;fbkgn¡2k=1,f¿kgn¡2k=1):

After obtaining f¿1,¿2, : : : ,¿n¡1g, sensor n computes its
current threshold ¿n as ¿n = ¹¾̂n, with ¾̂n given by

¾̂n = argmax¾
Ln(¾;fbkgn¡1k=1,f¿kgn¡1k=1) (20)

where

Ln(¾;fbkgn¡1k=1,f¿kgn¡1k=1) =

n¡1X
k=1

[bk log[2¡ 2FV(¿k=¾)]

+ (1¡ bk) log[2FV(¿k=¾)¡ 1]]
(21)

is the log-likelihood function of ¾ given fbkgn¡1k=1.

The ML estimator at the FC to find the final

estimate of ¾ from the received quantized data

fb1,b2, : : : ,bNg is given by
¾̂ = argmax

¾
LAQ(¾;fbkgNk=1,f¿kgNk=1) (22)

where all thresholds f¿1, : : : ,¿Ng can be recovered
from the quantized data fb1,b2, : : : ,bN¡1g in a
recursive way described above. Note that unlike

the FQ schemes, the ML estimators (21) and (22)

generally admit no closed-form solution, and a

searching algorithm has to be utilized. Nevertheless,

the computational complexity is moderate since only a

one-dimensional search is involved.

B. CRB

We evaluate the performance of the proposed AQ

approach through analysis of the corresponding CRB,

a lower bound on the mean-squared error (MSE)

that is asymptotically achieved by the MLE (22). By

following the same derivation as in Appendix B, it can

be easily verified that the second-order derivative of

LAQ(¾) is

L̈AQ(¾) =
1

¾2

NX
n=1

½¡2 ¿n
¾
pV(¿n=¾)(bn¡ 2+2FV(¿n=¾))

(1¡FV(¿n=¾))(2FV(¿n=¾)¡ 1)

+
¡2 ¿

2
n

¾2
p2V(¿n=¾) + ¿n(bn¡ 2+2FV(¿n=¾)) _pV(¿n=¾)
(1¡FV(¿n=¾))(2FV(¿n=¾)¡ 1)

¡
¿ 2n
¾2
p2V(¿n=¾)(4FV(¿n=¾)¡ 3)(bn¡ 2+2FV(¿n=¾))

[(1¡FV(¿n=¾))(2FV(¿n=¾)¡ 1)]2
¾

¢
=

NX
n=1

A(bn,¿n,¾): (23)

The Fisher information is given by

JAQ(μ) =¡E[L̈AQ(¾)]

=¡
NX
n=1

Ebn ,¿n[A(bn,¿n,¾)] (24)

where Ebn,¿n denotes the expectation with respect
to the joint distribution of bn and ¿n (note that f¿ng
are also random variables as they are determined by

fbng). Since
P(bn,¿n;¾) = P(¿n;¾)P(bn j ¿n;¾) (25)
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we can write

JAQ(¾) =¡
NX
n=1

E¿nfEbnj¿n[A(bn,¿n,¾)]g

(a)
=

NX
n=1

E¿n

·
2
¿2n
¾4

p2V(¿n=¾)

(1¡FV(¿n=¾))(2FV(¿n=¾)¡ 1)
¸

(b)
=
2

¾2

NX
n=1

Z
P(¿n;¾)G

¡1(¿n;¾)d¿n (26)

where E¿n denotes the expectation with respect to the

distribution P(¿n;¾),
1 Ebnj¿n denotes the expectation

with respect to the conditional distribution P(bn j
¿n;¾), (a) follows from the fact that bn is a binary
random variable with P(bn = 1 j ¿n,¾) = 2¡ 2FV(¿n=¾)
and P(bn = 0 j ¿n,¾) = 2FV(¿n=¾)¡1, and we define

G(¿n;¾)
¢
=
¾2

¿2n

(1¡FV(¿n=¾))(2FV(¿n=¾)¡ 1)
p2V(¿n=¾)

(27)

in (b).
To compute the exact Fisher information (26),

we need to determine the distributions of f¿ng, i.e.,
fP(¿n;¾)g. Since the ML estimator used to find
the threshold is a nonlinear function, the threshold
¿n is a discrete random variable with the number
of possible values for ¿n increasing exponentially
with n. Specifically, sensor n has 2n¡1 possible
threshold values with each value chosen with a certain
probability. The exact computation of P(¿n;¾) is,
therefore, cumbersome, especially when the number
of sensors, N, is large. To circumvent the difficulty
in computing the exact P(¿n;¾), we examine the
asymptotic performance which offers additional
insight into the AQ scheme.

PROPOSITION 3 For continuous noise distribution
pV(x) as N increases, the CRB of the proposed AQ
scheme converges to the CRB of the FQ scheme using
the optimum threshold, i.e.,

NCRBAQ(¾)!NCRBFQD(¿opt;¾): (28)

PROOF See Appendix C.

Note that we multiply the CRBs on both sides of
(28) by a factor N because we have to properly
normalize the CRBs; otherwise both terms vanish
with an increasing N, and the claim loses its meaning.
This result indicates that our AQ scheme adaptively
finds the best threshold by learning from prior
transmissions. Without any prior knowledge of the
unknown parameter, the proposed AQ scheme is able
to asymptotically achieve a CRB attained by the FQD
scheme with an optimum threshold.

1As we will discuss shortly after, the threshold ¿n is a discrete

random variable. However, we still treat it as a continuous random

variable by using the dirac-delta function so that we can present our

expressions more conveniently by using the integral operator.

C. Discussions

As compared with the FQ schemes, the AQ

scheme involves a scheduling policy and needs

the sensors to spend more power in reception and

computation. The design of transmission scheduling

in WSNs has been addressed in many works, e.g.,

[29] and the references therein. The FC can be used

to collect the statistics of the data and to develop a

scheduling algorithm. Also, the scheduling algorithm

can be dominated by the FC to relieve the sensors

from transmitting any overhead information for

scheduling. For the power consumption issue,

it is suggested in [30] that in a sensor network,

communication consumes a significant portion (about

70%) of the total energy, whereas reception, sensing,

and computation consume only a small portion of the

total energy. Hence, considering the performance gain

the AQ approach achieves relative to the FQ schemes,

the additional reception and computation power

consumed by the AQ scheme may be acceptable in

many scenarios.

In order to focus on the quantization problem, we

assume that the quantized data are received without

errors for our approach (see Assumption 2). Imperfect

communication due to noisy channels and limited

transmission power will affect the performance of

all distributed estimation schemes, including ours.

Albeit important, we consider this a separate issue.

Moreover, in practice, we can minimize the adverse

effect of imperfect communication by implementing

the AQ approach in a proper manner. For example,

an effective way is to let the FC dominate the whole

process. The sensors no longer need to hear from

other sensors and compute the quantization threshold,

instead, the FC keeps track of the quantization

threshold as in (19)—(21) (assuming energy budget

for the FC is not a major issue). Each sensor wakes

up only when polled by the FC; during this process

(polling), the FC assigns the quantization threshold to

each sensor sequentially and the polled sensor, based

on the assigned quantization threshold, generates

its quantized data and reports back to the FC. This

FC-dominated AQ can effectively suppress the

imperfect communication problem since it involves

communication only between the FC and the sensors.

Of course, the channel links from the sensors to the

FC may still be unreliable due to the sensors’ limited

transmission power (the links from the FC to the

sensors can be considered ideal as the power of the

FC is not a major issue). However, as long as the

transmission error probability (from the sensors to the

FC) is kept low, the AQ approach is expected to be

robust to the communication errors and the resultant

error propagation because each quantization threshold

is computed by the ML estimator at the FC based on

all previous quantization thresholds (these thresholds

are exactly known at the FC as they are calculated by
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the FC) and all quantized data received from previous

sensors, and therefore the computed quantization

threshold will still keep the tendency towards the

optimal threshold.

IV. SIMULATION RESULTS

In this section, we illustrate the performance

of the FQ and AQ schemes. Two examples are

considered where the observations fxng are assumed
IID Gaussian random variables and IID Laplace

random variables (also known as double exponential

distribution), respectively.

A. Gaussian Observations

We firstly examine the information loss of the FQ

and AQ schemes relative to the ML estimator using

unquantized data. The concept “information loss” is

borrowed from [11], which is defined as the ratio (in

dB) of the CRB for the proposed scheme to the CRB

for the clairvoyant estimator using unquantized data:

IL
¢
=10log10

CRBQ-based(¾)

CRBNQ(¾)
(29)

where we use the subscript Q-based to represent

any quantization scheme. Note that although, for the

AQ scheme, an exact computation of the CRB is

impossible, nevertheless, (26) can still be evaluated

numerically by Monte Carlo integration. We set ¾ = 1.
Fig. 2 shows the information loss of the FQ and AQ

schemes as a function of the number of sensors N.
It can be seen that the information loss of the FQ

schemes is independent of the number of sensors N.
Also, when the optimum thresholds are used, i.e.,

¿ = 1:57 for FQS and ¿ = 1:48 for FQD, the FQ
schemes incur a moderate information loss, which

is about 5 dB for FQS and 2 dB for FQD. However,

the FQ schemes are very sensitive to the value of

¿ ; as the threshold ¿ becomes more apart from the

optimum value (even not too far apart, e.g., ¿ = 4), the
performance of the FQ schemes degrades significantly.

As for the AQ scheme, the information loss decreases

with an increasing N. This is because the AQ scheme
benefits from the previous transmissions by adaptively

choosing a proper quantization threshold. Also, we

observe that the information loss of the AQ scheme

approaches that of the FQD scheme with optimum

threshold, i.e., ¿ = 1:48, which corroborates our
previous claim in Proposition 3.

The MSEs of the ML estimators for the FQD and

AQ schemes are included and compared with the

corresponding CRB in Fig. 3 where we set ¾ = 1. For
the AQ scheme and the FQD scheme with optimum

threshold ¿ = 1:48, it is observed that the MSEs
approach the CRBs within a moderate number of

sensors N. However, this is not true for the FQD
scheme with a nonoptimum threshold ¿ = 3. In this

Fig. 2. Gaussian observations: Information loss of FQ and AQ

schemes relative to ML estimator using unquantized data ¾ = 1.

Fig. 3. Gaussian observations: MSEs and CRBs of FQD and AQ

schemes ¾ = 1.

Fig. 4. Gaussian observations: MSEs and CRBs of FQ schemes

versus °, ¾ = 1, N = 100.

case, the ML estimator needs many more sensors to

converge to its corresponding CRB. As we also see

from this figure, the performance of the AQ scheme

approaches that of the FQD with optimum threshold

(¿ = 1:48) without knowing any prior information of
the unknown parameter ¾.
We plot the MSEs of the ML estimators for the

FQ schemes as a function of ° = ¿=¾ in Fig. 4, where
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Fig. 5. Gaussian observations: CRBs of respective schemes

versus unknown parameter ¾, N = 100.

we set N = 100 and ¾ = 1. It is seen that the ML
estimators achieves its asymptotic performance with

moderate number of sensors (N = 100) when the ratio
° is around its optimum value.

Our analysis shows that the performance of the FQ

schemes is dependent on the value of the unknown

parameter ¾, even if the ratio ° = ¿=¾ is fixed (cf.
(6) and (14)). Specifically, the CRBs are proportional

to ¾2, indicating that a smaller ¾ results in a better
performance. Such a relationship also applies for the

clairvoyant estimator and the AQ scheme, which can

be easily observed from their CRB expressions. The

performance of the respective schemes versus the

unknown parameter is plotted in Fig. 5, where ° is
chosen to be 1.48 and 3 for the FQD scheme and 1.57

and 3 for the FQS scheme, respectively, the number of

sensors N is set to be 100.

B. Laplace Observations

We consider the case where the observations fxng
follow a Laplace distribution with zero mean and

variance ¾2, i.e.,

pX(xn) =

p
2

2¾
exp

Ã
¡
p
2jxnj
¾

!
: (30)

Fig. 6 depicts the CRBs of the FQ schemes versus

°, the ratio of the quantization threshold ¿ to the
unknown parameter ¾ to be estimated. As compared
with Fig. 1, we see that the FQ schemes demonstrate

a similar behavior for both Gaussian and Laplace

distributions: in both cases the FQ approach suffers

from a rapid performance loss when the threshold

deviates from the optimum value. A numerical search

finds that for the Laplace observations, the optimum

threshold is 1:30¾ for the FQS scheme and 1:125¾ the
FQD scheme.

We now examine the information loss of the FQ

and AQ schemes relative to the ML estimator using

unquantized data. It is easy to derive (the derivation

is straightforward and hence omitted here) that for

Fig. 6. Laplace observations: CRBs of FQS and FQD schemes

versus °, N = 100, ¾ = 1.

Fig. 7. Laplace observations: Information loss of FQ and AQ

schemes relative to ML estimator using unquantized data ¾ = 1.

the Laplace observations, the CRB for any unbiased

estimator based on the unquantized data fxng is given
by

CRBNQ(¾) =
¾2

N
: (31)

Fig. 7 shows the information loss of the FQ and

AQ schemes as a function of the number of sensors

N where we set ¾ = 1. Again, the AQ approach
achieves an asymptotic optimum performance with

an increasing N, irrespective of the observation
distributions.

V. CONCLUSION

The problem of power estimation from

multi-sensors’ observations was considered. In

particular, we assume each sensor makes an

independent observation from a certain distribution

with zero mean and unknown variance. The objective

is to estimate the standard deviation associated with

the distribution in bandwidth/power constrained

WSNs. Two FQ schemes and an AQ scheme were

proposed and their corresponding MLEs were
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developed. CRB analyses show that the FQ schemes

are able to achieve an estimation performance close

to that of the clairvoyant estimator using unquantized

data when the optimum quantization thresholds are

employed. A drawback of the FQ approach is that its

estimation performance is sensitive to the quantization

threshold, whose choice is always tricky in practice

since the optimum thresholds are dependent on the

unknown parameter. The proposed AQ scheme, in

contrast to the FQ approach, can effectively address

this problem. Our analysis shows that the proposed

AQ approach is asymptotically optimum. Without

any prior knowledge of the unknown parameter,

it yields an asymptotic CRB equivalent to that

of the FQ approach with the optimum threshold.

Simulation results were presented to corroborate our

claims.

APPENDIX A. PROOF OF PROPOSITION 1

By noting that

@FV(¿=¾)

@¾
=¡ ¿

¾2
pV(¿=¾) (32)

the first derivative and the second derivative of

LFQS(¾) are given as follows, respectively,

_LFQS(¾) =

NX
n=1

½
bn
@ log(1¡FV(¿=¾))

@¾

+(1¡ bn)
@ logFV(¿=¾)

@¾

¾

=
¿

¾2

NX
n=1

½
bn

pV(¿=¾)

1¡FV(¿=¾)
¡ (1¡ bn)

pV(¿=¾)

FV(¿=¾)

¾

=
¿

¾2

NX
n=1

pV(¿=¾)(bn¡ 1+FV(¿=¾))
FV(¿=¾)(1¡FV(¿=¾))

(33)

L̈FQS(¾) =
1

¾2

NX
n=1

½¡2 ¿
¾
pV(¿=¾)(bn¡ 1+FV(¿=¾))
FV(¿=¾)(1¡FV(¿=¾))

+
¡ ¿

2

¾2
p2V(¿=¾) + ¿(bn¡ 1+FV(¿=¾)) _pV(¿=¾)

FV(¿=¾)(1¡FV(¿=¾))

¡
¿2

¾2
p2V(¿=¾)(2FV(¿=¾)¡ 1)(bn¡ 1+FV(¿=¾))

[FV(¿=¾)(1¡FV(¿=¾))]2
¾

(34)

where _pV(¿=¾)
¢
=@pV(¿=¾)=@¾. By setting the first

derivative of LFQS(¾),
_LFQS(¾) to zero, the ML

estimate of ¾ can be easily obtained as (5).
The Fisher information for the estimation problem

is given by

JFQS(¾) =¡Ebn[L̈(¾)] (35)

where Ebn denotes the expectation w.r.t. the
distribution P(bn;¾) (see (3)). Since

Ebn[(bn¡ 1+FV(¿=¾))] =¡FV(¿=¾)(1¡FV(¿=¾))
+ (1¡FV(¿=¾))FV(¿=¾)

= 0 (36)

it can be readily verified that

JFQS(¾) =N
¿2

¾4
p2V(¿=¾)

FV(¿=¾)(1¡FV(¿=¾))
: (37)

Hence the CRB is given by

CRBFQS(¾) =
1

J(¾)

=
1

N

¾4

¿2
FV(¿=¾)(1¡FV(¿=¾))

p2V(¿=¾)
: (38)

The proof is completed here.

APPENDIX B. PROOF OF PROPOSITION 2

The first derivative and the second derivative of

LFQD(¾) are given as follows, respectively:

_LFQD(¾) =

NX
n=1

½
bn
@ log[2¡ 2FV(¿=¾)]

@¾

+(1¡ bn)
@ log[2FV(¿=¾)¡ 1]

@¾

¾

=
¿

¾2

NX
n=1

½
bn

pV(¿=¾)

1¡FV(¿=¾)
¡ 2(1¡ bn)

pV(¿=¾)

2FV(¿=¾)¡ 1

¾

=
¿

¾2

NX
n=1

pV(¿=¾)(bn¡ 2+2FV(¿=¾))
(1¡FV(¿=¾))(2FV(¿=¾)¡ 1)

(39)

L̈FQD(¾) =
1

¾2

NX
n=1

½¡2 ¿
¾
pV(¿=¾)(bn¡ 2+2FV(¿=¾))

(1¡FV(¿=¾))(2FV(¿=¾)¡ 1)

+
¡2 ¿

2

¾2
p2V(¿=¾)+ ¿(bn¡ 2+2FV(¿=¾)) _pV(¿=¾)
(1¡FV(¿=¾))(2FV(¿=¾)¡ 1)

¡
¿2

¾2
p2V(¿=¾)(4FV(¿=¾)¡ 3)(bn¡ 2+2FV(¿=¾))

[(1¡FV(¿=¾))(2FV(¿=¾)¡ 1)]2
¾
:

(40)
Since

Ebn[(bn¡ 2+2FV(¿=¾))]
=¡2(1¡FV(¿=¾))(2FV(¿=¾)¡ 1)
+2(2FV(¿=¾)¡ 1)(1¡FV(¿=¾))

= 0 (41)
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it can be readily verified that the Fisher information is

JFQD(¾) =¡Ebn[L̈dual(¾)]

=¡2N ¿
2

¾4
p2V(¿=¾)

(1¡FV(¿=¾))(2FV(¿=¾)¡ 1)
:

(42)
Therefore the CRB is given by

CRBFQD(¾) =
1

2N

¾4

¿2
(1¡FV(¿=¾))(2FV(¿=¾)¡ 1)

p2V(¿=¾)
:

(43)
The proof is completed here.

APPENDIX C. PROOF OF PROPOSITION 3

Note that sensor m computes its threshold as
¿m = ¹¾̂m, where ¾̂m is estimated as

¾̂m = argmax¾
Lm(¾;fbkgm¡1k=1 ,f¿kgm¡1k=1 )

= argmax
¾

m¡1X
k=1

[bk log[2¡2FV(¿k=¾)]

+ (1¡ bk) log[2FV(¿k=¾)¡ 1]]: (44)

It can be easily verified that the above log-likelihood

function satisfies the “regularity” conditions, and

hence, for large data records (i.e., m is large), the ML
estimate ¾̂m is consistent

2 [31, 32]. Consequently, for

any small ² > 0, we can find a sufficiently large m
such that

P(j¾̂n¡¾j< ²)> 1¡ ², n¸m: (45)

Considering (26), we express JAQ(¾) as the summation
of the following two terms

JAQ(¾) =
2

¾2

m¡1X
n=1

Z
P(¿n;¾)G

¡1(¿n;¾)d¿n

+
2

¾2

NX
n=m

Z
P(¿n;¾)G

¡1(¿n;¾)d¿n

¢
=J1 + J2 (46)

2The consistency of the ML estimator has been studied and

proved by some earlier works, e.g., [31, Appendix 7B] and the

reference therein. In [31, Appendix 7B], the authors stated that

the ML estimator is consistent if the likelihood function satisfies

the following two “regularity” conditions: 1) the first-order and

second-order derivatives of the log-likelihood function are well

defined; 2) E[ _LAQ(¾)] = 0. These two conditions are exactly

satisfied for our case. The second condition can be easily verified

by utilizing the property (41). However, to simplify the discussion,

[31, Appendix 7B] only provided a proof for IID observations. The

consistency proof for the generally dependent observations can be

found in [32]. Note that for the AQ scheme, the quantized data fbng
is non IID due to the fact that the threshold ¿n used to generate bn
is dependent on the previous data fbmgn¡1m=1

.

where m is chosen to satisfy (45). Clearly, we have

0< J1
¢
=
2

¾2

m¡1X
n=1

Z
P(¿n;¾)G

¡1(¿n;¾)d¿n

<
2

¾2
(m¡ 1)G¡1(¿min;¾) (47)

where ¿min is the value minimizing the function
G(¿ ;¾) defined in (27). By comparing (27) to (13), it
is easy to see that ¿min = ¿opt = ¹¾, where ¿opt denotes
the optimum quantization threshold for the FQD

scheme.

Similarly, J2 is upper bounded by

J2
¢
=
2

¾2

NX
n=m

Z
P(¿n;¾)G

¡1(¿n;¾)d¿n

<
2

¾2
(N ¡m+1)G¡1(¿min;¾): (48)

On the other hand, its lower bound can be derived as

J2 =
2

¾2

NX
n=m

Z
P(¿n;¾)G

¡1(¿n;¾)d¿n

=
2

¾2

NX
n=m

·Z
¿n:j¿n¡¿minj<¹²

P(¿n;¾)G
¡1(¿n;¾)d¿n

+

Z
¿n:j¿n¡¿minj¸¹²

P(¿n;¾)G
¡1(¿n;¾)d¿n

¸

>
2

¾2

NX
n=m

Z
¿n:j¿n¡¿minj<¹²

P(¿n;¾)G
¡1(¿n;¾)d¿n

(a)
>
2

¾2
(G¡1(¿min;¾)¡ ±)

NX
n=m

Z
¿n:j¿n¡¿minj<¹²

P(¿n;¾)d¿n

=
2

¾2
(G¡1(¿min;¾)¡ ±)

NX
n=m

P(¿n : j¿n¡ ¿minj< ¹²;¾)

(b)
>
2

¾2
(G¡1(¿min;¾)¡ ±)(N ¡m+1)(1¡ ²) (49)

where (a) comes from the fact that G¡1(¿) is a
continuous function; therefore for any ± > 0, we can
find a ² such that for all ¿ : j¿ ¡ ¿minj< ¹², we have
G¡1(¿min;¾)¡G¡1(¿ ;¾)< ±; (b) follows from
P(¿n : j¿n¡ ¿minj< ¹²;¾) = P(¾̂n : j¹¾̂n¡¹¾j< ¹²;¾)

= P(j¾̂n¡¾j< ²)
> 1¡ ² (50)

in which the inequality comes from (45).

Combining (47)—(49), we therefore have

2NG¡1(¿min;¾)
¾2

> JAQ(¾)

>
2(N ¡m+1)(1¡ ²)(G¡1(¿min;¾)¡ ±)

¾2
:

(51)
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The CRB is, therefore, lower bounded and upper

bounded by

¾2G(¿min;¾)

2N

< CRBAQ(¾)

<
¾2G(¿min;¾)

2N

NG¡1(¿min;¾)
(1¡ ²)(G¡1(¿min;¾)¡ ±)(N ¡m+1)

:

(52)

Considering NÀm, m is sufficiently large to ensure
²! 0 and ±! 0, and noticing that ¿min = ¿opt, hence
we have

NCRBAQ(¾)!NCRBFQD(¿opt;¾) =
¾2GFQD(¿opt;¾)

2
:

(53)

The proof is completed here.
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