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Optimal Precoding Design and Power Allocation for
Decentralized Detection of Deterministic Signals

Jun Fang, Member, IEEE, Hongbin Li, Member, IEEE, Zhi Chen, and Shaoqian Li

Abstract—We consider a decentralized detection problem in a
power-constrained wireless sensor network (WSN), in which a
number of sensor nodes collaborate to detect the presence of a
deterministic vector signal. The signal to be detected is assumed
known a priori. Each sensor conducts a local linear processing
to convert its observations into one or multiple messages. The
messages are conveyed to the fusion center (FC) by an uncoded
amplify-and-forward scheme, where a global decision is made.
Given a total network transmit power constraint, we investigate
the optimal linear processing strategy for each sensor. Our study
finds that the optimal linear precoder has the form of a matched
filter. Depending on the channel characteristics, one or multiple
versions of the filtered/compressed message should be reported
to the FC. In addition, assuming a fixed total transmit power, we
examine how the detection performance behaves with the number
of sensors in the network. Analysis shows that increasing the
number of sensors can substantially improve the system detection
reliability. Finally, decentralized detection with unknown signals
is studied and a heuristic precoding design is proposed. Numerical
results are conducted to corroborate our theoretical analysis and
to illustrate the performance of the proposed algorithm.

Index Terms—Decentralized detection, detection outage, pre-
coding design, wireless sensor networks.

I. INTRODUCTION

D ECENTRALIZED detection is an important problem
that has attracted much attention over the past decade

[1]–[20]. In a wireless sensor network (WSN), a large number
of sensors are deployed in an area to monitor the environment.
Each sensor makes noisy observations of a binary hypothesis
on the state of the environment and transmits its data to the
fusion center (FC), where a final decision regarding the state of
nature is made. Due to stringent power/bandwidth constraints,
each sensor needs to compress its original data before the trans-
mission. A typical processing is to conduct a local detection at
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each node. The local binary decision is then sent to the FC for
reaching a global decision. A large number of studies [1]–[15]
were carried out in this context. A key problem that appeared
in the above setting is the optimization of local decision rules
such that the probability of detection error is minimized. It
was shown in [2], [3], and [5] that for both Bayesian and
Neyman-Pearson criteria, the optimal local sensor decision for
a binary hypotheses testing problem is a likelihood ratio test
(LRT). This property drastically reduces the search space for
an optimal collection of local detectors [14]. Nevertheless, the
search of optimal local detectors is still exponentially complex
because the optimal local thresholds are generally different
and need to be jointly determined along with the global fusion
rule. In some other studies [16]–[18], the observations of each
sensor are encoded into a real-valued summary message. The
message are sent to the FC via noisy channels to form a global
decision. The transmission/decision strategy, namely, which
sensor should report (termed as “censoring” in [17] and [18])
and what should be transmitted, was studied by explicitly
taking into account the power/rate constraints. In particular,
the work [18] considered a problem formulation that admits a
general class of network constraints and transmission modes.
In this paper, the problem of decentralized detection is studied

under an explicit total transmit power constraint. Battery-pow-
ered wireless sensor networks are plagued with stringent energy
constraints. It is therefore of utmost importance to incorporate
energy awareness into the decentralized detection algorithm de-
sign. We suppose that each sensor uses a simple analog am-
plify-and-forward transmission scheme to transmit their data.
As in [19], the local processing at each sensor node is confined
to be a linear operator, which is referred to as linear precoding.
This linear precoding allows for a simple implementation and
is suitable for low-cost sensors with limited computational re-
sources. However, unlike [19], in our study, we do not restrict
the linear precoder to be a compression vector. In fact, since
we already imposed a power constraint, there is no need to ex-
plicitly specify the number of messages sent by each sensor.
This is also a major difference between our work and the works
[16]–[18] aforementioned.
We are interested in examining the following fundamental

questions: under a transmit power constraint, what is the optimal
linear processing strategy at sensor nodes? shall we transmit a
single compressed message, or multiple compressed messages,
or just send the raw data to the FC? Sending more messages
and sending one message have their own advantages: the former
provides a diversity whereas the latter renders a better channel
quality. The choice between these different strategies seems dif-
ficult before conducting a thorough mathematical analysis. Note
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that although linear precoding design for decentralized detec-
tion remains new, its counterpart for distributed estimation has
been extensively investigated, e.g. [21], [22]. In addition, the
asymptotic behavior of the overall detection performance with
an increasing number of sensors is examined in this paper, and
a generalized likelihood ratio test (GLRT) is proposed for the
scenario of unknown signals.
We briefly discuss the relationship between our work and

[23], [24]. Although [23], [24] studied a decentralized estima-
tion problem, some formulations and concepts (e.g., outage
probability) in [23], [24] are closely connected to our work.
Under similar energy constraint formulations, [23], [24] studied
an optimal power allocation with the objective of minimizing
the estimation error. Interestingly, it turns out that, although
with different performance criteria, both our work and [23],
[24] eventually arrive at a similar power allocation problem
that has a common water-filling solution.
The rest of the paper is organized as follows. In Section II,

we introduce the data model, basic assumptions, and the decen-
tralized detection problem. Section III first develops an optimal
Bayesian decision rule at the FC. The optimal precoding de-
sign and optimal power allocation (among sensors) are studied
in Section IV. The impact of number of sensors on the overall
detection performance is analyzed in V. Decentralized detection
with unknown parameters is discussed in VI, followed by con-
cluding remarks in Section VII.

II. PROBLEM FORMULATION

We consider a binary hypothesis testing problem in which
a number of sensors collaborate to detect the presence of a
known deterministic vector signal . The binary hypoth-
esis testing problem is formulated as follows:

(1)

where is the known observation matrix defining
the input/output relation, and generally we have for
some in order to distinguish between these two hypotheses,

denotes the sensor’s vector observation,
denotes the additive multivariate Gaussian noise with zero mean
and covariance matrix , and the noise is assumed inde-
pendent across the sensors. Unlike many existing works, the
signal to be detected here is assumed to be a vector instead of
a scalar. Vector models arise from a variety of scenarios. For
example, if the underlying phenomena to be detected is a dy-
namic process, we can obtain vector signals by sampling the
dynamic process at different time instances. Sensing of a target
using multiple modalities (e.g., optical, chemical, thermal, mag-
netic, ultrasonic, etc.) also leads to multidimensional signals.
Let denote the precoding matrix for sensor . Without

loss of generality, we assume that is a matrix that
could be full rank or rank deficient, which accommodates dif-
ferent linear processing strategies. Each sensor uses an uncoded
analog amplify-and-forward scheme to transmit its data to the
FC. The signal at the FC received from the th sensor is then
given by

(2)

Fig. 1. Decentralized detection in a power-constrained network. Each node
processes its vector observations through a linear precoder. Messages are then
sent to the FC via wireless channels.

where denotes the fading multiplicative channel matrix,
and represents the additive Gaussian channel noise with
zero-mean and covariance matrix . The knowledge of the
channel state information is assumed available at the FC.
The FC, based upon the received data , forms a final de-

cision concerning the presence or absence of . Fig. 1 provides
an illustration of the decentralized detection. The problem of
interest is to determine the precoding matrix for each sensor,
and to develop an optimal detector to detect for the FC. Note
that a transmit power constraint has to be imposed on the sensor
nodes, otherwise we can always ensure ideal links between sen-
sors and the FC by scaling the precoding matrices with an arbi-
trarily large factor. Let and denote the prior probabilities
of the hypotheses and , respectively. The average power
radiated from sensor is given by

(3)

However, in some detection applications, determining the prior
probabilities of the respective hypotheses may not be possible.
In this case, Neyman-Pearson detection without requiring the
prior probabilities can be used. If the target/event to be de-
tected occurs with a very small but unknown probability (this
is exactly the case for many disaster detection applications), it
is reasonable to consider a power constraint under hypothesis

only [16], i.e., (3) with . More discussions of the
Neyman-Pearson detection will be provided later in this paper.
In the following, assuming that the precoding matrices are

prespecified, we will first develop a Bayesian detector at the FC.
The precoding matrix design is then investigated based on the
detection performance analysis.

III. BAYESIAN DETECTOR

Suppose that the precodingmatrices are prescribed. Let
denote the vector received at the FC,

is a Gaussian random vector with its mean and covariance
matrix given by

(4)
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in which

(5)

Our objective is to design a decision rule that minimizes the
average probability of error, i.e.,

(6)

where is the probability of deciding when is
true. According to [25], in order to achieve a minimum , the
decision rule is a likelihood ratio test (LRT) given as follows:

(7)

Noting that are mutually independent for a given hypoth-
esis, the LRT can be further expressed as

(8)

Taking logarithm on both sides of (8), the Bayesian decision rule
can finally be put in the following form:

(9)

where

is a constant independent of the observed data. Hence the
LRT-based fusion rule is in fact a weighted linear combination
of the data .
Define

Since is a summation of a set of Gaussian random variables,
also follows a Gaussian distribution. It can be readily derived

that its mean and variance under hypotheses and are
given, respectively, as

(10)

where

(11)

are dependent on the precoding matrices . Clearly, the de-
tection performance of the Bayesian detector fundamentally re-
lies on the choice of these precoding matrices.

IV. PRECODING DESIGN & POWER ALLOCATION

In this section, we examine the problem of the precoding de-
sign, aiming at minimizing the probability of error . Recalling
results in the previous section, we know that the FC makes a
global decision based on

(12)

where is a Gaussian random variable with mean if
is true, otherwise ; the variance under the

null and alternative hypotheses remains the same. This hypoth-
esis testing problem is called the mean-shifted Gauss-Gauss
problem. For this type of detection problem, the detection per-
formance is monotonic with the deflection coefficient [25]

(13)

that is, decreases monotonically with . With and
, it is easy to derive that

(14)

which indicates that the larger the variance , the better the
detection performance. As shown in (11), is a function of

. Therefore the problem of minimizing is equivalent to

(15)

As aforementioned, we have to impose a transmit power con-
straint on the sensor nodes, otherwise the optimization is ill-
posed since we can always ensure ideal links between sensors
and the FC by scaling the precoding matrices with an arbitrarily
large factor. To make the problem meaningful, we hereby im-
pose an average total transmit power constraint. The precoding
design can therefore be formulated as follows:

(16)

The above optimization can be decoupled into two sequential
subtasks, namely, a power allocation (among sensors) problem
and a set of independent precoding design problems. Let us sup-
pose, for the time being, that a power allocation is prespecified
and given as . Then the optimal precoding ma-
trix for each sensor can be obtained by solving

(17)
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where the power constraint is represented as an equality instead
of an inequality because the objective function is a monotoni-
cally increasing function of the transmit power. In the following,
we first study the optimal precoding design by considering a
simple but important channel scenario. Its extension to a gen-
eral channel case is then followed.

A. Optimum Precoding Design: A Simple and Important Case

Due to size and cost limitations, each sensor node is very
likely to be equipped with only one transmit antenna. If mul-
tiple messages need to be sent to the FC, a time-division multi-
plexing technique can be used, in which case the channel matrix
is diagonal. Also, we assume that its diagonal elements are

identical, i.e., . This could be the case for slowly
varying channels. The optimization therefore can be reduced to

(18)

where . The optimization (18) is complicated in
its current form. To simplify the problem, we perform a series
of matrix transformations in the following. Define

(19)

and substitute them into (18), the optimization becomes

(20)

Furthermore, let denote the singular value de-
composition (SVD) of , in which we drop the subscript for
those matrices for simplicity. Without loss of gen-
erality, we assume that the diagonal matrix has nonnegative
diagonal elements, i.e., . Substituting the SVD into (20),
we arrive at a new optimization that searches for an optimal or-
thonormal matrix and an optimal diagonal matrix ( is
canceled and therefore can be any orthonormal matrix)

(21)

Let , and denote the th diagonal element
of . We have the following properties regarding the diagonal
elements :

(22)

In above properties, the first follows from the fact that is a
positive-semidefinite matrix. The second can be easily derived
by resorting to the trace identity and noting
that is a rank-one matrix (cf. (19)), where denotes
the largest eigenvalue of .

Treating as a new optimization variable, the optimization
(21) can be reexpressed as

(23)

which, as we can see, involves only the diagonal elements of
, while irrespective of its off-diagonal entries. The solution to
(23) is given in the following lemma.
Lemma 1: The optimal solution to (23) is given by

(24)

(25)

Proof: See Appendix A.
Utilizing Lemma 1, we can determine the optimal precoding

matrix. The results are summarized as follows.
Theorem 1: The optimal precoding matrix, that is, the op-

timal solution to (18), is a matrix with its first row a nonzero
vector, whereas all other rows equal to zeros, i.e.

(26)

where

is a scaling factor to satisfy the power constraint.
Proof: Clearly, we have

The optimal is a diagonal matrix with its diagonal elements
given by (25). From , it is easy to deduce that the
orthonormal matrix that yields (24) must be

(27)

where is an orthonormal matrix obtained from the eigen-
value decomposition (EVD): , in which the
diagonal elements of are arranged in a descending order.
Also, we assume since can be any orthonormal ma-
trix. Therefore we have

(28)
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where the last equality comes from the fact that is a rank-one
matrix and the eigenvector of corresponding to the nonzero/

largest eigenvalue is equal to . The
proof is completed here.
Remark 1: Note that the optimal solution (26) has only one

nonzero row. This suggests that in order to achieve best de-
tection performance, each sensor’s local measurements should
be compressed into only one message. Also, it can be readily
observed that the compression/precoding vector is exactly a
matched filter in a vector form. Matched filter detection in a
conventional context (i.e., centralized and no power constraint)
is a well-studied topic. Nevertheless, to our best knowledge,
the optimality of the matched filter in distributed power-con-
strained networks has never been established before.
Remark 2: Although the optimality of transmitting one single

message is established for this simple channel scenario, as we
will show in the next subsection, its optimality is no longer valid
for the general channel case.

B. Optimum Precoding Design: A General Channel Case

A general channel matrix may arise as a result of coherent
transmissions with the aid of multiple transmit antennas1. The
optimization (17), although has a more complex formulation
than (18), can still be solved by following the same procedure
and utilizing Lemma 1. Suppose that (the exten-
sion to a non-square matrix is considered in Appendix D) is full
rank and denotes the corresponding SVD.
Without loss of generality, the singular values are arranged in

a descending order. Re-defining , the opti-
mization (17) can be re-expressed as

(29)

Substituting the SVD of into (29), similarly
we arrive at an optimization that searches for an optimal or-
thonormal matrix and an optimal diagonal matrix

(30)

which can be further written as follows:

(31)

where denotes the th singular value of . To gain an in-
sight into solving (31), we construct a new optimization which

1Although it is unlikely that a low-cost sensor node is equipped with multiple
transmit antennas, we still consider the general channel case to provide a com-
plete treatment of the problem.

uses a surrogate function upper-bounding the objective func-
tion (31)

(32)

We can readily see that the optimal solution to (32) is given by
(24)–(25). Besides, (32) and (31) achieve the same objective
function value for the given solution (24)–(25). Therefore we
can quickly infer that the optimal solution to (31) is given by
(24)–(25) as well.
The optimal precoding matrix for the general channel case

can be obtained by tracing back from the optimal solution of
(31). The results are summarized as follows.
Theorem 2: Suppose that is full rank. The

optimal precoding matrix, that is, the optimal solution to (17),
is given by

(33)

where is the right singular vector of associatedwith
the largest singular value.
Remark 1: We observe that the optimal solution (33) has a

structure with its rows all identical except with different scaling
factors. This suggests that multiple messages should be trans-
mitted to the FC for the general channel case. Nevertheless,
these multiple messages are obtained by one single compressed
message multiplied by different amplification gains that are
proportional to the components of . Again, the com-
pression/precoding vector, , used to produce the
single compressed message has a classic matched filter form.
The objective of transmitting multiple identical messages with
different amplification gains is to improve the signal quality by
exploiting the channel diversity. Note that if is diagonal,
its right singular vector is a unit column vector with only one
non-zero entry. Hence in this case, only one message needs
to be sent to the FC. This is exactly the case we discussed in
previous subsection.
Remark 2: Although is assumed a square matrix, the

above results hold valid for a nonsquare channel matrix
. This can be easily derived and the details are provided

in Appendix D.

C. Optimum Power Allocation

In previous subsections, we studied the optimum precoding
design when a power assignment among sensors is specified.
Substituting the optimum precoder back into (16), we obtain the
following power allocation problem

(34)
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For the general channel case, the power allocation problem
remains the same except that is replaced by . It
is easy to verify that the optimization problem (34) is convex.
Although (34) is efficiently solvable by numerical methods, it
can also be solved analytically by resorting to the Lagrangian
function and Karush-Kuhn-Tucker (KKT) conditions, which
leads to a water-filling type power allocation scheme. The
details are elaborated in Appendix E. Briefly speaking, for
a threshold that is uniquely determined by a procedure
described in Appendix E, we have

(35)

where

and stands for for notational convenience.
Remark: We see that the optimal power allocation requires

the knowledge of the observation noise statistics , the
observation matrices , as well as the channel state infor-
mation and the channel noise variance . Although
it provides the best performance, optimal power allocation usu-
ally involves considerable communication overheads from sen-
sors to the FC.

D. Summary and Numerical Results

For clarity, we now summarize the proposed optimal solution.
1) Given the prior knowledge of the noise statistics, the
signal , and the observation and channel matrices, com-
pute and .

2) Given the total power constraint , find the optimal
power allocation among sensors via (34). The solution of
(34) is elaborated in Appendix E.

3) With the optimal power assignment, determine the optimal
precoding matrices via (17), whose solution is given
by (26) for the case and (33) for the general
channel case.

We now provide numerical examples to verify the analytical
results. In the simulations, the prior probabilities of the null
and alternative hypotheses are assumed identical. The vector
parameter is a three-dimensional vector with its entries equal
to one, i.e., . We first consider a single-sensor
system which has only one sensor node. We set

, and . Fig. 2 shows the average probability
of error as a function of the transmit power for both optimal
precoding and no precoding, in which no precoding corresponds
to sending the original data, i.e., . It can be seen that the
optimal compression strategy outperforms the noncompression
strategy, which corroborates our theoretical analysis.
The detection performance under different power allocation

schemes is also investigated. We set
and for all . The absolute

channel gains, , are assumed independent and identically
distributed (i.i.d.) Rayleigh-fading random variables with unit

Fig. 2. Average probability of error versus transmit power for optimal pre-
coding and no precoding strategies.

Fig. 3. Average probability of error vs. transmit power for optimal power allo-
cation and equal power allocation schemes.

variance. Fig. 3 plots the detection performance of two different
power allocation schemes, namely, an optimal power allocation
and an equal power allocation. Results are averaged over one
million independent runs. For both schemes, optimal precoders
(conditioned on optimal and equal power allocation) are used.
From Fig. 3, we see that for i.i.d. Rayleigh-fading channels, op-
timal power allocation presents a clear performance advantage
over the equal power allocation scheme.

E. Extension to Neyman-Pearson Detection

The extension of our theoretical results to the Neyman-
Pearson variant of the detection problem is straightforward.
The Neyman-Pearson detection aims at maximizing the detec-
tion probability subject to a given false alarm probability. The
decision rule is still a LRT, except that its threshold is deter-
mined by the specified false alarm probability. As indicated
earlier, in the Neyman-Pearson formulation, the prior prob-
abilities of the null and alternative hypotheses are unknown.
Nevertheless, when the event/target to be detected has a rare
occurrence, the power constraint could be a constraint on the
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behavior of the system under hypothesis (corresponding to
) [16]. Following a similar derivation, it is easy to show

that the precoding design under the Neyman-Pearson frame-
work is still given by the optimization (16), but with .
Therefore the optimal precoding design and the optimal power
allocation hold valid for the Neyman-Pearson detector, simply
with replaced by zero. It can be readily observed that the
optimal precoding design for Neyman-Pearson detector still
has a matched filter structure, but with a different scaling factor
to satisfy the power constraint.

V. EQUAL POWER ALLOCATION: DETECTION DIVERSITY

In this section, given a fixed total transmit power, we ana-
lyze the impact of the number of sensors on the overall detec-
tion performance, assuming the channels between sensors and
the FC experience i.i.d. fading. Throughout this section, we as-
sume , in which the channel gains are i.i.d.
random variables following a certain distribution.
To facilitate our analysis, we consider an equal-power allo-

cation scheme in which all sensors transmit the same amount of
power. Also, we assume a homogeneous scenario where

, and for all .When optimal precoders
(conditional on the equal-power allocation) are used, according
to (34), the deflection coefficient is given by

(36)

where comes from the fact that . For
notational convenience, define

When the total number of sensors, , increases without bound,
asymptotically approaches

(37)

where the last equality follows from and the
strong Law of Large Numbers (LLN) under the assumption of
i.i.d. . The detection performance under different number
of sensors is illustrated in Fig. 4. In this example, we assume
that , and

for all . ’s are assumed i.i.d. Rayleigh-
fading random variables with unit variance. Results are aver-
aged over one million independent random realizations. The
asymptotic performance when the number of sensors increases
without bound is also included for comparison. We see from
Fig. 4 that, for a fixed amount of transmit power, the detection
performance improves notably as we increase the number of

Fig. 4. Average probability of error versus transmit power for different number
of sensors.

sensor nodes, which suggests that exploiting channel diversity
can achieve a substantial performance improvement.
The detection diversity gain can be explored from a different

perspective. In [24], the notion of “estimation outage proba-
bility” was proposed to quantify the reliability of the overall es-
timation system. Following [24], two new concepts called “de-
tection diversity” and “detection outage probability” were intro-
duced in [15]. Inspired by these two works, we hereby adopt the
concept “detection outage probability” to quantify the reliability
of the detection system. The detection outage probability is de-
fined as the probability of the detection probability being less
than a specified requirement given a certain false alarm proba-
bility, i.e.

(38)

Note that the detection probability is for a given channel
realization, while the outage probability that is less than a
specified requirement is calculated by taking into account all
possible channel realizations. The definition here is slightly dif-
ferent from that defined in [15], in which the outage probability
is defined as the probability that a different performance metric
called “J-divergence” is smaller than a certain threshold.
Recall that the test statistic is a Gaussian random variable

with its mean and variance under the null and alternative hy-
potheses given by (10). Therefore for a prescribed false alarm
probability, the detection probability is given as

(39)

where denotes the -function. Utilizing the above result,
the detection outage probability can be rewritten as

(40)
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Fig. 5. Outage probability versus total transmit power for different number of
sensors.

in which . We see that the detec-
tion outage probability is in fact the probability of the deflection
coefficient being less than a certain threshold.
From (37), it can be observed that when is sufficiently

large, the deflection coefficient is approximately equal to the
sample mean of i.i.d. random variables . According
to the large deviation theory [26], for any , we have the
outage probability decreasing exponentially with as follows:

(41)

where means asymptotic convergence as becomes large,
is the common distribution of , and is the

rate function of

(42)

with the moment-generating function of . From (41),
we see that if the specified and satisfy the following
condition:

(43)

then the detection outage probability can be made arbitrarily
small by increasing the number of sensors , even with the
total transmit power fixed. Note that since is proportional
to the total transmit power, (43) can always be met for a suffi-
ciently large transmit power. The behavior of the outage proba-
bility with different number of sensors is illustrated in Fig. 5.We
set , and , and assume other simu-
lation parameters the same as in previous example. Results are
averaged over one million independent random realizations. It
can be verified that (43) is satisfied as long as . From
Fig. 5, we see that the outage probability decreases considerably
even though we slightly increase the number of sensors.

VI. DECENTRALIZED DETECTION WITH UNKNOWN SIGNALS

From preceding analyses, we see that the decision rule at
the FC, the precoding design, and the power allocation all re-

quire the knowledge of the signal to be detected. A funda-
mental assumption made in previous sections is that the signal
is known a priori or the signal can be estimated from the

training data before the detection task is performed. In the fol-
lowing, we discuss, if the knowledge of the signal to be de-
tected is not available, how to form a final decision at the FC
and design the precoder for each sensor. Since the optimality
of compression-transmission strategy is already established in
previous sections, we are only concerned about the precoding
vector design. The channels are assumed equal to
throughout this section.

A. GLRT Detector

Suppose that the precoding vectors are predetermined,
we can use a generalized likelihood ratio test (GLRT) which
replaces the unknown signal with their maximum likelihood es-
timates (MLEs). In the case there are no unknown parameters
under , the GLRT decides if

(44)

where is the MLE of found by maximizing

(45)

in which is a diagonal matrix with its th diagonal element
given by , and

...
(46)

The MLE of can be solved by taking the logarithm of
and setting the first derivative equal to zero, which

gives

(47)

Note that has to be full column rank, otherwise the MLE
requires solving an ill-posed inverse problem (more details re-
garding the choice of the precoding vectors such that is full
column rank will be provided later). Substituting back into
(44), thus we have

(48)

or we decide if

(49)

It is shown in ([25], Section 6.5) that when , the GLRT
statistic under hypothesis follows a chi-squared
distribution with degrees of freedom, which does not depend
on any unknown parameters. Therefore the threshold required
to maintain a constant can be found.
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B. Precoding Design With Unknown Signals

When is unknown or the estimate of is not available, de-
termining the optimal precoding vectors is not possible. In this
case, we propose a heuristic method for precoding design.
In practice, the sign of each component of the vector

may be obtained from the signal dynamic range or es-
timated from the observations. This knowledge can be exploited
for precoding vector design. Let be a sign column vector
with its elements given by , where if
, and otherwise.We design the precoding vector
for each sensor as follows:

(50)

where is a column vector whose entries are randomly gen-
erated according to a Gaussian distribution with zero mean and
unit variance, takes the absolute value of each entry of
denotes the entry-wise multiplication, and is a scaling

factor which ensures that the precoding vector satisfies the spec-
ified power constraint (note that can be determined without
the knowledge of if we set ). The rationale behind
this heuristic design is to preserve the signal energy as much
as possible by using the sign information. To see this, note that
under the alternative hypothesis, the compressed message can
be written as

(51)

where is the whitened observation noise. Utilizing the sign
knowledge of , the precoding vector design (50) preserves
the signal energy by aligning the signs of the signal components
of . This explains the use of the term in (50). On
the other hand, as mentioned earlier, the matrix defined in
(46) has to be full column rank, otherwise the GLRT detector
involves an ill-posed inverse problem. Therefore the term

is entry-wise multiplied by a randomly generated
vector which guarantees that is full column rank with a
high probability. This heuristic design shares the same ratio-
nale as the optimal precoding design since the matched filter
solution (26) and (33) has the effect of maximizing the signal
energy while suppressing the noise energy.
It is interesting to examine how well this heuristic precoding

design performs. We consider a homogeneous scenario where
, and for all . Also, we assume an equal

power allocation throughout our following discussion. The de-
flection coefficient is then given by

(52)

in which

(53)

denotes the individual deflection coefficient for each sensor. The
precoding vector, at the same time, has to satisfy the transmit
power constraint

(54)

where since we assume an equal power alloca-
tion. Define

(55)

The individual deflection coefficient can be reexpressed in terms
of and

(56)

and the power constraint (54) can be rewritten as

(57)

Solving from the power constraint (57), and substituting it
back into (56), we arrive at

(58)

Clearly, the individual deflection coefficient is a monotoni-
cally increasing function of . If is known, the maximum
attained by the optimal precoding vector is equal to

(59)

where is the dimension of . On the other hand,
for the heuristic precoding design (50), is given by

(60)

For notational convenience, let and , respectively,
denote the overall deflection coefficients attained by the
heuristic precoding design and the optimal precoding design.
The ratio of these two deflection coefficients is then given as

(61)
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where in , we define , the approx-
imation in the second line comes from the Law of Large
Numbers for independent but non identically distributed
random variables: the sample average converges almost surely
to the expected value, i.e., .
Note that are i.i.d., hence are independent but
nonidentically distributed. We see that the ratio converges to

as the number of sensors increases. Utilizing
(59)–(60), we have

(62)

where the last equality comes from the fact that are
i.i.d. chi-square random variables with one degree-of-freedom.
Combining (61)–(62), we conclude that the ratio of the deflec-
tion coefficient achieved by the precoding design (50) to that
attained by the optimal precoding design is within .
Simulations are conducted to illustrate the performance of

the GLRT with precoding design (50) (denoted as GLRT-pre-
coding), and its comparison with the GLRT with no pre-
coding (that is, ), and the Neyman-Pearson test
which assumes the knowledge of and employs optimal pre-
coding design (denoted as NP-OP). In our simulations, we
set , and for all ,
and . The absolute coefficients

are assumed i.i.d. Rayleigh-fading random variables
with unit variance. There are 100 sensors. The false alarm
probability is set to . The detection probabilities
of the GLRT and NP-OP are shown in Fig. 6. We see that
GLRT with precoding (50) presents a clear performance ad-
vantage over GLRT with no precoding. This suggests that a
properly designed precoding, even not optimal, is more en-
ergy-efficient than no precoding. Also, it can be observed that
to achieve a same detection performance, the GLRT with pre-
coding requires about twice of the transmit power needed by
NP-OP.

VII. CONCLUSION

We considered a decentralized detection problem in which
a number of sensors collaborate to detect the presence of a
deterministic vector signal. The sensor network is subject to
a total power constraint, and each sensor uses an analog am-
plify-and-forward transmission scheme to send their data to
the FC. In this context, we studied the optimal precoding de-
sign for each sensor, aiming at minimizing the probability of
detection error at the FC. Our study found that the optimal

Fig. 6. Detection probability versus total transmit power for GLRT with pre-
coding (50) and no precoding, and NP test with optimal precoding (OP).

precoder has a form of a matched filter which converts each
sensor’s original measurements into a single message, and de-
pending on the channel characteristics, one or multiple copies
of this compressed message should be transmitted to the FC.
More specifically, if the channel matrix is diagonal, then only
one message needs to be sent, otherwise multiple versions of
the compressed message which are multiplied by different am-
plification factors should be transmitted to the FC. Note that
although matched filter detection is a well-studied topic, its op-
timality in a distributed power-constrained network has never
been established before.
Given a fixed power constraint, the impact of the number

of sensors on the overall detection performance was analyzed.
Numerical results showed that a substantial performance im-
provement can be achieved by exploiting channel diversity.
Besides, the concept “outage probability” was introduced to
quantify the system detection reliability. Our analysis suggests
that if a certain condition is satisfied, then the outage proba-
bility can be made arbitrarily small by increasing the number
of sensors. Finally, a GLRT detector and a heuristic precoding
design were proposed when the exact knowledge of the signal
to be detected is not available. Numerical results were pro-
vided to illustrate its performance and its comparison with the
Neyman-Pearson detector which assumes the knowledge of the
signal.
The analog amplify-and-forward scheme considered in this

paper, albeit simple, is not the best scheme in terms of energy-ef-
ficiency. Other digital communication schemes (e.g., QAM and
QPSK) could provide a better receiver quality at a lower en-
ergy cost. Nevertheless, the optimal precoding and transmission
strategies for digital communications schemes are still unclear.
This is a topic worthy of future investigation. We believe that
the formulations and the approach adopted in [23] are helpful to
tackle the power-constrained decentralized detection problem
with digital communication schemes. In addition, precoding de-
sign for the unknown signal case and its corresponding perfor-
mance of the GLRT detector is lightly touched and deserves fu-
ture study.
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APPENDIX A
PROOF OF LEMMA 1

Let , and . The optimization (23) can
be rewritten as

(63)

The above optimization involves optimizing two sets of vari-
ables and . To solve (63), we first optimize one set of
variables, given that the other set of variables are fixed. Suppose
that are predetermined, and are arranged in a descending
order, i.e., . Then optimizing condi-
tional on fixed can be formulated as

(64)

which can be analytically solved by resorting to the Lagrangian
function and Karush-Kuhn-Tucker (KKT) conditions (details
are elaborated in Appendix B). The optimal solution is given
by

(65)

where is equal to if , otherwise it is zero; is a
parameter that is uniquely determined from the procedure de-
scribed in Appendix B.
Let denote the optimal solution conditional on given

. Substituting back into (63), we
come to an optimization involving only :

(66)

In the following, we show that the optimal solution to (66) is
given by

(67)

Notice that the parameter in (65) needs to be determined
through an iterative search. Therefore we cannot directly sub-
stitute the solution of into (66). To make the problem

tractable, we start from a two-dimensional case . The
extension to arbitrary dimension can be accomplished based
on the two-dimensional results, which will be shown later. De-
fine

(68)

In Appendix C, we proved that is the optimal solution to
(66) for , that is

(69)

for any satisfying the constraints defined in (66).
Therefore for , the optimal solution to (63) is given by

(70)

In other words, we have

(71)

for any satisfying , and
.

We now discuss the generalization of our results to arbitrary
dimensional case. Again, suppose that are arranged in de-
scending order, and let . Then the objective
function of (63) is lower bounded by

(72)

in which , and the inequality
comes by utilizing (71). The above objective function can

be further lower bounded as

(73)

in which , and
the inequality, again, comes by using (71). So on and so forth,
we can reach that the objective function is eventually lower
bounded by

(74)
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and this lower bound is attained only when

(75)

(76)

Therefore (75)–(76) are the optimal solution to (63). The proof
is completed here.

APPENDIX B
AN ANALYTICAL SOLUTION TO (64)

The Lagrangian function associated with (64) is given by

(77)

which gives the following KKT conditions [27]:

By solving the first equation of the above KKT conditions, we
obtain

(78)

Also, the KKT conditions: , and imply
that we have either or .
Therefore (78) becomes

(79)

where is equal to if , otherwise it is zero. The
Lagrangian multiplier and the number of nonzero elements

can be uniquely determined from the second equation
of the KKT conditions. The procedure is described as follows.
Suppose we have nonzero elements, i.e.,

(note that are in descending order
since we assume ). Therefore can be
solved by substituting into the second KKT
condition:

(80)

Now substituting back to (79), we get a new solution
. If for this new solution, we

have for , then it is the true solution we are
looking for; otherwise we have to choose another to repeat
the above procedure.

APPENDIX C
PROOF OF INEQUALITY (69)

Note that for the two-dimensional case, the feasible region
of the optimization problem (66) is in fact a line

segment between the two points and (note that
we assume without loss of generality). Let denote
the set which consists of all feasible solutions except . We
divide the region into two disjoint regions. One of the two
disjoint regions is defined as

(81)

where is a threshold such that if , then the optimal
solution to (64) conditional on has the following
form:

(82)

Note that has to be smaller than to ensure that are
arranged in descending order. If , then . For
the case , the complementary region is given by

(83)

It can be easily verified that . Clearly, the two
disjoint regions are obtained by breaking the line segment into
two pieces, with corresponding to the line segment between
the points and (end points are not included), and

corresponding to the line segment between and
.

To prove that is the optimal solution to (66), we first
show that for any . It is easy to derive
that the optimal solutions conditional on and

are, respectively, given as

(84)

Substituting the optimal solution into (68), we have

(85)

and

(86)

Therefore for any

holds. Also, from (86), we know that increases with an
increasing . It means that from the starting point , when
the point comes closer to the end point , the function
value increases.
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We now prove for any . We first
show that for increases with an increasing .
Note that the region can be rewritten as

(87)

Therefore proving that increases with an increasing is
equivalent to showing that decreases with an increasing .
For any , the optimal solution of (64) conditional
on (b) has the following form:

(88)

where for . Substituting the optimal solution
into , we have

(89)

where (a) comes by utilizing (65), (b) follows from (80), and

Let , and define

(90)

We compute the first derivative of :

(91)

It is easy to verify that for any , and , we
have

(92)

Therefore is a monotonically decreasing function of for
. Consequently, decreaseswith an increasing

for , so does the function . In other words,
for increases with an increasing . It means that
from the starting point , when the point approaches
the end point , the function value increases. Due
to the continuity of the function , hence we have

(93)

for any and . The proof is completed here.

APPENDIX D
EXTENSION TO NON-SQUARE CHANNEL MATRIX

To see that the results in Theorem 2 hold valid for non-square
channel matrix, we consider two different cases.
• If , the SVD of can be written as

where , and .
Substituting the SVD of into (17), we reach the same
optimization (29).

• If , the SVD of can be written as

where , and .
Substitute the SVD into (17), and partition into two
parts:

where , and . The opti-
mization (17) can be written as

(94)

Since has nothing to do with the objective function,
it should be set to a null matrix to save the energy. Con-
sequently we arrive at an optimization that is equivalent
to (29).

APPENDIX E
AN ANALYTICAL SOLUTION TO (34)

For notational convenience, let stand for .
Define

The Lagrangian function associated with (34) is given by

(95)

which gives the following KKT conditions [27]:
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By solving the first equation of the above KKT conditions, we
obtain

(96)

Also, the KKT conditions: , and
imply that we have either or
. Therefore (96) becomes

(97)

where is equal to if , otherwise it is zero. The
Lagrangian multiplier and the number of active sensors (those
are assigned nonzero power) can be uniquely determined from
the power constraint.
Suppose we have active nodes, according

to (97), these nodes must be , where is
a set of indices such that . Therefore
can be solved by substituting into the

second KKT condition, where is given by

(98)

Now we substitute back to (97). We will get a new so-
lution . If this new
solution is exactly identical to the one we assumed before, i.e.,

, then it is the true solution we
are looking for; otherwise we have to choose another to
repeat the above procedure. Also, it has been proved that such
a solution is unique and always exists [23].
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