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Super-Resolution Compressed Sensing: An
[terative Reweighted Algorithm for Joint
Parameter Learning and Sparse Signal Recovery
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Abstract—In many practical applications such as direction-of-
arrival (DOA) estimation and line spectral estimation, the spar-
sifying dictionary is usually characterized by a set of unknown
parameters in a continuous domain. To apply the conventional
compressed sensing to such applications, the continuous param-
eter space has to be discretized to a finite set of grid points.
Discretization, however, incurs errors and leads to deteriorated
recovery performance. To address this issue, we propose an it-
erative reweighted method which jointly estimates the unknown
parameters and the sparse signals. Specifically, the proposed
algorithm is developed by iteratively decreasing a surrogate
function majorizing a given objective function, which results in
a gradual and interweaved iterative process to refine the un-
known parameters and the sparse signal. Numerical results show
that the algorithm provides superior performance in resolving
closely-spaced frequency components.

Index Terms—Compressed sensing, parameter learning, sparse
signal recovery, super-resolution.

I. INTRODUCTION

HE compressed sensing technique finds a variety of appli-

cations in practice as many natural signals admit a sparse
or an approximate sparse representation in a certain basis. Nev-
ertheless, the accurate reconstruction of the sparse signal relies
on the knowledge of the sparsifying dictionary. While in many
applications, it is often impractical to preset a dictionary that can
sparsely represent the signal. For example, for the line spectral
estimation problem, using a preset discrete Fourier transform
(DFT) matrix suffers from a considerable performance degrada-
tion because the true frequency components may not lie on the
pre-specified frequency grid [1], [2]. This discretization error is
also referred to as the grid mismatch.
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The grid mismatch problem has attracted a lot of attention
over the past few years, e.g. [1]-[8]. Specifically, in [4], [5], to
deal with the grid mismatch, the true dictionary is approximated
as a summation of a presumed dictionary and a structured pa-
rameterized matrix via the Taylor expansion. The recovery per-
formance of this method, however, depends on the accuracy of
the Taylor expansion in approximating the true dictionary. The
grid mismatch problem was also examined in [6], [7], where
a highly coherent dictionary (very fine grids) is used to miti-
gate the discretization error, and the technique of band exclu-
sion (coherence-inhibiting) was proposed for sparse signal re-
covery. Besides these efforts, another line of work [1], [2], [8]
studied the problem of grid mismatch in an undirect but more
fundamental way: they circumvent the discretization issue by
working directly on the continuous parameter space (this ap-
proach is also referred to as super-resolution techniques). In
[1], [2], an atomic norm-minimization approach was proposed
to handle the infinite dictionary with continuous atoms. Never-
theless, finding a solution to the atomic norm problem is chal-
lenging. Although the atomic norm problem can be cast into a
convex semidefinite program optimization for the complex si-
nusoid mixture problem, it still remains unclear how this refor-
mulation generalizes to other scenarios. In [8], by treating the
sparse signal as hidden variables, a Bayesian approach was pro-
posed to iteratively refine the dictionary, and is shown able to
achieve super-resolution accuracy.

In this paper, we propose an iterative reweighted method for
joint parameter learning and sparse signal recovery. The algo-
rithm is developed by iteratively decreasing a surrogate func-
tion that majorizes the original objective function. Our experi-
ments show that our proposed algorithm achieves a significant
performance improvement as compared with existing methods
in distinguishing and recovering complex sinusoids whose fre-
quencies are very closely separated.

II. PROBLEM FORMULATION

In many practical applications such as direction-of-arrival
(DOA) estimation and line spectral estimation, the sparsifying
dictionary is usually characterized by a set of unknown param-
eters in a continuous domain. For example, consider the line
spectral estimation problem where the observed signal is a sum-
mation of a number of complex sinusoids:

I
Ym = Z(Jék,eijwkm m = 17...7]\4 (1)
k=1
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where wi € [0,2]7) and «j denote the frequency and the
complex amplitude of the k-th component, respectively. Define
a(w) £ [e7v eI e 7M21T the model (1) can be

rewritten in a vector-matrix form as

y=Alw)a ()

wherey = [ ... wya)', @ 2 [ar ... ag]T, and
Alw) & [a(w) a(wg)]. We see that the dictionary
A(w) is characterized by a number of unknown parameters
{wy} which needs to be estimated along with the unknown
complex amplitudes {c;, }. To deal with this problem, conven-
tional compressed sensing techniques discretize the continuous
parameter space into a finite set of grid points, assuming that
the unknown frequency components {wy, } lie on the discretized
grid. Estimating {w;.} and {3} can then be formulated as a
sparse signal recovery problem y = Az, where A € CM*¥
(M < N) is an overcomplete dictionary constructed based on
the discretized grid points. Discretization, however, inevitably
incurs errors since the true parameters do not necessarily lie
on the discretized grid. This error, also referred to as the grid
mismatch, leads to deteriorated performance or even failure in
recovering the sparse signals.

To circumvent this issue, we treat the overcomplete
dictionary as an unknown parameterized matrix A(8) =
[a(61) a({fn )], with each atom a(,,) determined by an
unknown frequency parameter 6,,. Estimating {wy. } and {c}
can still be formulated as a sparse signal recovery problem.
Nevertheless, in this framework, the frequency parameters
6 = {6,,}¥_, need to be optimized along with the sparse signal
such that the parametric dictionary will approach the true spar-
sifying dictionary. Specifically, the problem can be presented
as follows: we search for a set of unknown parameters {f,,}7_,
with which the observed signal y can be represented by as few

atoms as possible. Such a problem can be readily formulated as

min llzllo

s.t. y=A(0)z 3)

where ||z||o stands for the number of the nonzero components
of z. The optimization (3), however, is an NP-hard problem.
Thus, alternative sparsity-promoting functionals which are
more computationally efficient in finding the sparse solution
are desirable. In this paper, we consider the use of the log-sum
sparsity-encouraging functional for sparse signal recovery.
Log-sum penalty function has been extensively used for sparse
signal recovery, e.g. [9]-[13]. It was proved theoretically
[14] and shown in a series of experiments [11] that log-sum
based methods present uniform superiority over the conven-
tional /1 -type methods. Replacing the £y-norm in (3) with the
log-sum functional leads to

N
. o L2
min L(z) = 210;.{( zi|* +€)
s.t. y=A(0)z 4)
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where z; denotes the :th component of the vector 2, and ¢ > 0 is
a positive parameter to ensure that the function is well-defined.
Note that the above optimization (4) can be formulated as an
unconstrained optimization problem by removing the constraint
and adding a penalty term, A||y— A(8)z||3, to the objective func-
tional. A two-stage iterative algorithm [15] can then be applied:
given an estimate of &, the sparse signal z is recovered using
conventional compressive sensing techniques; and estimate &
based on the estimated z. The trade-off parameter A for this
scheme, however, is difficult to determine due to the non-con-
vexity of the objective function. In addition, the two-stage algo-
rithm is very likely to be trapped in undesirable local minima,
possibly because the estimated signal, instead of optimized in
a gradual manner, undergoes an abrupt change from one itera-
tion to another and thus easily deviates from the correct basin of
attraction. In the following, we develop an iterative reweighted
algorithm which less likely suffers from the local convergence
issue.

III. PROPOSED ALGORITHM

The proposed algorithm is developed based on a bounded op-
timization approach, also known as the majorization-minimiza-
tion approach [11], [16]. The idea is to iteratively minimize a
simple surrogate function majorizing a given objective function.
Note that although the use of this approach for sparse signal re-
covery is not new (e.g. [11]-[13]), previous works concern only
recovery of the sparse signal. In this work, we generalize the ap-
proach for joint parameter learning and sparse signal recovery.

A surrogate function, usually written as Q(z|2(t> ), is an upper
bound for the objective function L(z). Precisely, we have

Q(z[2") - L(z) > 0 (5)

with the equality attained when z = 2. We will show that
through iteratively decreasing (not necessarily minimizing) the
surrogate function, the iterative process yields a non-increasing
objective function value and eventually converges to a sta-
tionary point of L(z). We first find a suitable surrogate function
for the objective function defined in (4). Ideally, we hope that
the surrogate function is differentiable and convex. It can be
readily verified that an appropriate choice of such a surrogate
function is given by

N
Q(z|2(1‘)) é Z (|4i|2+6
1

ﬁft)\2+6

+ log ( 202 4 e) - 1) (6)

Replacing the log-sum functional in (4) with (6), we arrive at
the following optimization

min 2" Dt

z.0

8.5 y=A(0)z (7

where [-]# denotes the conjugate transpose, and D isa diag-
onal matrix given as

1 1
D 2 diag
LEE e P 4
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Given 8 fixed, the optimal z of (7) can be obtained by resorting
to the Lagrangian multiplier method and given as

2= (D) ATO)(AO)DD) AT0) Ty ®

Substituting (8) back into (7), the optimization simply becomes
searching for the unknown parameter 8:

win o (AQD)ATO) Ty O

An analytical solution of the above optimization (9) is difficult
to obtain. Neverthele§s, in our algorithm, we only need to search
for a new estimate §+1) such that the following inequality
holds valid

yH (A(é(t+1))(D(t))flAH(é(tJrl))) ‘1y
< (Q(t))HD(t)g(f) (10)
Such an estimate can be found by using the gradient descent
method. Note that since the optimizations (9) and (7) attain the
same minimum objective function value, we can always find an
estimate 801 to meet (10). In fact, our experiments suggest
that finding such an estimate is much easier than searching for
a local or global minimum of the optimization (9).
Given 90+ 24+ can be obtained via (8), with 0 replaced
by 8011 je.

%(t+1) — (D(t))71AH(é(t+1))

A . ~1
x (AGEDYDD) AT @) Ty (1)
In the following, we will show that the new obtained estimate

2D results in a non- -increasing objective function value, that
is, L(z*Y) < L(z"). Firstly, we have

(5D H 0 54D

" N —1
=y (A@EYDV) T AT(O1)) Ty

—~
e
g

< (é(t))HD(t)é(t) (12)

where (@) comes from the inequality (10) Recalling (6), we can
quickly reach Q(2“*V(3) < Q(2M|2%) from (12). Hence
we arrive at

L(é(t—l-l)) = L(z (t+1) ) - Q(z (t+1) |é(t)) + Q(A(t-l-l)‘%(t))
< L(2 (t)) Q(z (t)|z(t>) +Q(z (t+1>|z(t))
< 1Y) - QY EY) + Q)
=I(:") (13)

where the first inequality follows from the fact that
Q(z]2'9) — L(2) attains its minimum when z = 39 the
second inequality follows from Q(2+1|2(M) < (39 [3).
We see that through iteratively decreasing (not necessarily
minimizing) the surrogate function, the objective function L(z)
is guaranteed to be non-increasing at each iteration.
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For clarity, we summarize our algorithm as follows.

1) Given an initialization 20,

2) Atiterationf = 0,1, ...: Based on the estimate 2(”, con-
struct the surrogate function as depicted in (6). Search for
a new estimate of the unknown parameter vector, denoted
as 001 by using the gradient descent method such that
the inequality (10) is satisfied. Compute a new estimate of
the sparse signal, denoted as 2(”1), via (11).

3) Goto Step2if||z2(T1 —21||, > ¢, where e is a prescribed
tolerance value; otherwise stop.

The second step of the proposed algorithm involves searching
for a new estimate of the unknown parameter vector to meet the
condition (10). As mentioned earlier, this can be accomplished
via a gradient-based search algorithm. Define

5(8) £ y¥ (AO)(DW) 1 A7 (0)) 'y
X2 mmwm)MWm

Using the chain rule, the first derivative of f(8) with respect to

6;, Vi can be computed as

A g o p T - - T vk

af(8) o af @)\ 90X . af(e)\ ox
6. |\ ox ) oe [T\ \oxT ) o4,

where X ™ denotes the conjugate of the complex matrix X, and

916) _ itr X1} =—(x 'yfix )"
9X )
010 D
ox- ~ ox-riw X =0
9X 7]
_ (N1 A H
X S AD) A 0)
P H
— 2400) pwy1 4t (g) + (o)D) A0

The current estimate #(*) can be used as an initialization point
to search for the new estimate §(‘+1). Our experiments sug-
gest that a new estimate which satisfies (10) can usually be ob-
tained within only a few iterations. When the iterations achieve
a steady state, the estimates of {#; } can be refined in a sequen-
tial manner to help achieve a better reconstruction accuracy, but
only those parameters whose coefficients are relatively large are
required to be updated every iteration.

We see that in our algorithm, the unknown parameters and the
signal are refined in a gradual and interweaved manner. This in-
terweaved and gradual refinement enables the algorithm, with a
high probability, comes to a reasonably nearby point during the
first few iterations, and eventually converges to the correct basin
of attraction. In addition, like [12], we can improve the ability
of avoiding undesirable local minima by using a monotonically
decreasing sequence {e(t) }, instead of a constant ¢, in updating
the weighting parameters in (6). For example, at the beginning,
(9 can be set to a relatively large value, say 1, in order to pro-
vide a stable coefficient estimate. We then gradually reduce the
value of ¢(*) in the subsequent iterations until ¢(*) attains a pre-
scribed value, say, 1078,
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IV. SIMULATION RESULTS

We now carry out experiments to illustrate the performance of
our proposed algorithm! and its comparison with other existing
methods. We assume that the signal u = [u; ur]? isa
mixture of K complex sinusoids, i.e.

K
, L

U = E e IV I=1,...,

k=1

with the frequencies {wy, } uniformly generated over [0, 27 ) and
the amplitudes {«;, } uniformly distributed on the unit circle.
The measurements y are obtained by randomly selecting M en-
tries from L elements of w. We first consider recovering the orig-
inal signal » from the partial observations y. The reconstruc-
tion accuracy is measured by the “reconstruction signal-to-noise
ratio” (RSNR) which is defined as

RSNR = 201log,, (M)

||’U.—ﬁ 2

We compare our proposed algorithm with the Bayesian dic-
tionary refinement compressed sensing algorithm (denoted as
DicRefCS) [8], the root-MUSIC based spectral iterative hard
thresholding (SIHT) [7], and the atomic norm minimization via
the semi-definite programming (SDP) approach [2]. Fig. 1(a)
depicts the average RSNRs of respective algorithms as a func-
tion of the number of measurements, M, where we set L. = 64
and K = 3. Results are averaged over 10® independent runs,
where the frequencies and the sampling indices (used to obtain
y) are randomly generated for each run. We observe that our pro-
posed algorithm outperforms the other three methods in the re-
gion of a small M, where a gain of more than 15 dB is achieved
as compared with the DicRefCS and SDP methods. Note that
the log-sum penalty functional adopted by our algorithm could
be more sparse-encouraging than the atomic norm that is con-
sidered as the continuous analog to the #; norm for discrete
signals. This might be the reason why our proposed algorithm
outperforms the SDP method for a small M. Our algorithm is
surpassed by the SIHT and SDP methods as A increases. Nev-
ertheless, this performance improvement is of less significance
since all methods provide quite decent recovery performance
when M is large.

The recovery performance is also evaluated in terms of the
success rate. The success rate is computed as the ratio of the
number of successful trials to the total number of independent
runs, where {ay} and {w;} are randomly generated for each
run. Note that our algorithm and the DicRefCS method do not
require the knowledge of the number of complex sinusoids, K.
A trial is considered successful if the number of frequency com-
ponents is estimated correctly? and the estimation error between
the estimated frequencies {&} and the true parameters {wy }
is smaller than 1072, i.e. ;- |lw — @||2 < 1073, Fig. 1(b) de-
picts the success rates of respective algorithms vs. the number
of measurements. This result again demonstrates the superiority

IMatlab codes are available at http://www.junfang-uestc.net/codes/SRCS.rar

2For our algorithm, some of the coefficients of the estimated signal keep de-
creasing each iteration, but will not exactly equal to zero. We assume that a
frequency is identified if the magnitude of the coefficient is greater than 1073,

Fig. 1. (a) RSNRs of respective algorithms vs. M ; (b) Success rates of respec-
tive algorithms vs. 3.
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Fig. 2. (a) RSNRs of respective algorithms vs. the frequency spacing coeffi-
cient y¢; (b) Success rates of respective algorithms vs. 1.

TABLE 1
RUN TIMES OF RESPECTIVE ALGORITHMS
Algorithm Proposed SIHT  DicRefCS  SDP
Running Time (sec) 0.63 0.06 0.25 191
RSNR (dB) 152 58 71 116
Success rate 0.99 0.4 0.7 0.86

of the proposed algorithm over other existing methods, particu-
larly for the case when M is small.

We examine the ability of our algorithm in resolving closely-
spaced frequency components. The signal u is assumed a mix-
ture of two complex sinusoids with the frequency spacing d s e
5 (w1 — w») equal to i/ L, where y is the frequency spacing
coefficient ranging from 0.1 to 2. Fig. 2 shows RSNRs and suc-
cess rates of respective algorithms vs. the frequency spacing co-
efficient 1, where we set . = 64 and M = 20. Results are
averaged over 10° independent runs, with one of the two fre-
quencies (the other frequency is determined by the frequency
spacing) and the set of sampling indices randomly generated
for each run. We see that our algorithm can accurately identify
closely-spaced (say, d; = 0.1/L) frequencies with a high suc-
cess rate and presents a significant performance advantage over
other methods when two frequencies are very closely separated.
The average run times of respective algorithms are also pro-
vided (Table I), where d is fixed as 0.6.

V. CONCLUSIONS

We proposed an iterative reweighted algorithm for joint para-
metric dictionary learning and sparse signal recovery. The pro-
posed algorithm was developed by iteratively decreasing a sur-
rogate function majorizing the original objective function. Sim-
ulation results show that the proposed algorithm presents supe-
riority over other existing methods in resolving closely-spaced
frequency components.
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