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We consider a decentralized detection problem in which a
number of sensor nodes collaborate to detect the presence of an
unknown deterministic vector signal. To cope with the
power/bandwidth constraints inherent in wireless sensor networks
(WSNs), each sensor compresses its observations using a linear
precoder. The compressed messages are transmitted to the fusion
center (FC), where a global decision is made by resorting to a
generalized likelihood ratio test (GLRT). The aim of the work
presented here is to develop effective linear precoding strategies and
study their detection error exponents under the asymptotic regime
where the number of sensors tends to infinity. Two precoding
strategies are introduced: a random precoding scheme which
generates its precoding vectors following a Gaussian distribution,
and a sign-assisted random precoding scheme which assumes the
knowledge of the plus/minus signs of the signal components and
designs its precoding vectors with the aid of this prior knowledge.
Performance analysis shows that utilizing the sign information can
radically improve the detection performance. Also, it is found that
precoding-based schemes are more effective than the energy detector
in detecting weak signals that are buried in noise. Specifically, the

Manuscript received May 15, 2013; revised November 10, 2013; released
for publication January 23, 2014.

DOI. No. 10.1109/TAES.2014.130328.

Refereeing of this contribution was handled by S. Marano.

This work was supported in part by the National Science Foundation of
China under Grant 61172114, and in part by the National Science
Foundation under Grant ECCS–0901066.

Authors’ current addresses: J. Fang, National Key Laboratory of Science
and Technology on Communications, University of Electronic Science
and Technology of China, Chengdu 611731, China. E-mail:
(JunFang@uestc.edu.cn); X. Li, Huawei Technologies, Co. Ltd.,
Chengdu, China; H. Li, Department of Electrical and Computer
Engineering, Stevens Institute of Technology, Hoboken, NJ 07030; L.
Huang, Department of Electronic and Information Engineering, Harbin
Institute of Technology Shenzhen Graduate School, Shenzhen, China.

0018-9251/14/$26.00 C© 2014 IEEE

sign-assisted random precoding scheme outperforms the energy
detector when the observation signal-to-noise ratio (SNR) is less than
1/(π – 2). Numerical results are conducted to corroborate our
theoretical analysis and to illustrate the effectiveness of the proposed
algorithms.

I. INTRODUCTION

Decentralized detection using wireless sensor
networks (WSNs) is an important problem that has
attracted much attention over the past decade [1–21]. Such
a problem has a variety of applications in environment
monitoring, battlefield surveillance, and space missions
(satellite monitoring). A sensor network, consisting of a
large amount of low-cost battery-powered devices, usually
has very stringent energy and bandwidth constraints. To
address this issue, each sensor needs to locally process its
sensor observations in order to reduce the amount of
information being transmitted. A typical processing is to
conduct a local Neyman-Pearson test at each node. The
local binary decision is then sent to the fusion center (FC),
where a global decision is made. A large number of
studies [1–15] were carried out in this context. The
problem of interest in the above setting is the
determination of the optimal local decision rules. It was
shown in [2, 3, 5] that for both Bayesian and
Neyman-Pearson criteria, the optimal local sensor decision
for a binary hypotheses testing problem is a likelihood
ratio test (LRT). Nevertheless, the search of optimal local
detectors is still exponentially complex because the
optimal local thresholds are generally different and need
to be jointly determined along with the global fusion rule.
In some other studies [16–18], the observations of each
sensor are encoded into a real-valued summary message
such as the local likelihood ratio. To address the tradeoff
between energy efficiency and the detection performance,
the send/no send “censoring” problem was studied to
decide which sensors should transmit [16–18]. All the
above works, however, assume that each sensor has a
perfect knowledge of the distributions of its local
observations under respective hypotheses. This requires
that, under a deterministic model, the signal to be detected
is known a priori, or the probability density function (pdf)
of the signal is available if a stochastic model is adopted.
Nevertheless, in practice, the knowledge of the signal or
its pdf may not be available. Consequently one cannot
compute the local likelihood ratio and make a local
decision at each sensor. Developing effective
decentralized detection methods in such scenarios has
not received much attention and is the focus of this
paper.

We study the problem of detecting the presence of an
unknown deterministic vector signal using a WSN. Due to
the lack of signal knowledge, previous approaches that
conduct a local Neyman-Pearson test at each node are
infeasible. Instead, here we consider using a linear
precoder to compress each sensor’s observations into a
single real-valued message. Such linear operator has the
advantage of simple implementation and is suitable for
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low-cost sensors with limited computational resources.
Upon receiving the compressed messages from all sensors,
a generalized likelihood ratio test (GLRT) detector is used
at the FC to form a final decision. We note that linear
precoding design for decentralized detection has also been
studied in [19, 21]. Nevertheless, in [19], the signal to be
detected is modeled as a multivariate Gaussian random
variable and the pdf of the signal is assumed available at
the FC (although not known by sensors). In another work
[21], optimal precoding design was studied by assuming
the knowledge of the deterministic signal. The work [21]
also touched lightly on the problem of decentralized
detection of unknown deterministic signals, in which a
sign-assisted random precoding scheme was briefly
discussed. Nevertheless, the analysis in [21] is confined to
the case where the signal to be detected is known. The
results, therefore, are not suitable in evaluating the
performance of the GLRT detector developed in this work.
As compared with [21], our current work conducts a
thorough analysis and provides a fundamental
understanding of the behavior of the proposed precoding
strategies in detecting unknown deterministic signals.

The aim of this paper is to develop effective linear
precoding strategies and study their detection error
exponents in the asymptotic regime. Specifically, we
propose in this paper two different precoding schemes,
namely, a random precoding scheme and a sign-assisted
random precoding scheme. The random precoding
scheme, randomly generating its precoding vector
following a certain distribution, does not need any prior
knowledge of the signal. The sign-assisted random
precoding scheme, however, assumes the knowledge of
the plus/minus signs of the signal components, and utilizes
this information for precoding design. We study the
performance of the precoding schemes under the
asymptotic regime where the number of sensors tends to
infinity. Our theoretical analysis leads to two major
findings. Firstly, exploiting the sign information has the
potential to radically improve the detection accuracy of
precoding-based schemes: the sign-assisted random
precoding scheme can provide superior performance for
scenarios where the random precoding scheme fails.
Secondly, precoding schemes are potentially more
effective than the energy detector [22] in detecting weak
signals that are overwhelmed by noise. Specifically, if the
signal to be detected has a balanced energy distribution
across its components, the sign-assisted random precoding
scheme outperforms the energy detector when the
observation signal-to-noise ratio (SNR) is less than
1/(π – 2). In this low SNR regime, the energy detector
performs barely satisfactorily but the sign-assisted random
precoding scheme still renders reliable and accurate
detection accuracy.

We note that, besides the studies in the framework of
parallel (fusion) architectures, there is a rich literature on
another class of decentralized detection work where no
fusion center is required and sensors reach consensus (in
decision) through local interactions with neighboring

nodes, e.g. [23–28]. This type of work is attractive due to
scalability and improved robustness against link failure.
Specifically, [23] considered consensus-based detection
operating in two phases, namely, a sensing phase in which
sensors collect measurements and a communication phase
in which sensors exchange data with their neighboring
nodes and run the consensus algorithm to reach consensus.
In some other works, e.g. [24, 26, 28], sensing and
communication are operating simultaneously. Readers are
referred to [25] for a more detailed discussion of this type
of work. In addition to the above type of work, the study
of decentralized detection in a serial (tandem) network
(e.g. [29–31]) has also attracted interest because the
simple serial structure could serve as a basis for the
analysis of more complicated tree architectures.

The rest of the paper is organized as follows. In
Section II, we introduce the data model, basic
assumptions, and the decentralized detection problem.
Section III develops a GLRT detector at the FC. Two
precoding strategies are introduced in Section IV, and their
asymptotic performance is analyzed in Section V.
Comparison with the energy detector is discussed in
Section VI, followed by numerical results in Section VII
and concluding remarks in Section VIII.

II. PROBLEM FORMULATION

We consider a binary hypothesis testing problem in
which a number of sensors collaborate to detect the
presence of an unknown deterministic process. Each
sensor collects p noisy samples of the process: xn =
[xn(1) . . . xn(p)]T. The binary hypothesis testing problem is
formulated as follows:

H0 : xn = wn, ∀n = 1, . . . , N

H1 : xn = θ + wn, ∀n = 1, . . . , N
(1)

where θ = [θ1 . . . θp]T is the signal vector containing
signal samples obtained by sampling the process at
different time instances, wn ∈ R

p denotes the additive
multivariate Gaussian noise with zero mean and
covariance matrix σ 2

n I, and the noise variance σ 2
n is known

a priori. In practice, the knowledge of σ 2
n may come from

sample estimation after a training phase. The noise {wn} is
assumed independent across the sensors. In many previous
works (e.g. [19]), the signal to be detected is modeled as a
random process. Nevertheless, these stochastic methods
require knowledge of the pdf of the signal, which may not
be available in practice. Also, the inaccuracy of the prior
knowledge of the signal’s pdf could severely degrade the
detection performance. Here we model the signal to be
detected as a deterministic signal. Our objective is to
detect the presence of the unknown deterministic vector
signal θ from noise-corrupted measurements.

To meet the stringent bandwidth/power budgets
inherent in WSNs, each sensor sends only one real-valued
message to the FC, where a global decision is made (see
Fig. 1). Let cn ∈ R

qn denote the precoding vector for
sensor n. To focus on the precoding vector design, we
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Fig. 1. Decentralized detection of unknown deterministic vector signal.
Each node processes its vector observations through linear precoder.

Messages are then sent to FC to form final decision.

assume a perfect channel scenario where the real-valued
message can be received by the FC without distortion. The
signal received from the nth sensor is then given by

yn = cT
n xn n = 1, . . . , N (2)

The FC, based upon the received data {yn}Nn=1, forms a
final decision concerning the presence or absence of θ .
The problem of interest consists of two aspects: 1) develop
a detector to detect θ and provide an estimate of θ if the
signal is present, 2) develop suitable precoding strategies
and analyze their corresponding detection performance. In
the following, assuming that the precoding vectors are
prespecified, we first develop a GLRT detector at the FC.
Precoding strategies are then discussed and analyzed.

III. GLRT DETECTOR

Suppose that the precoding vectors {cn} are
predetermined. We can use a GLRT that replaces the
unknown parameters with their maximum likelihood
estimates (MLEs). In the case where there are no unknown
parameters under H0, the GLRT decides H1 if

LG(y) = p(y|θ̂ ; H1)

p(y|H0)
> η (3)

where y �= [y1 y2 . . . yN ]T , and θ̂ is the MLE of θ found
by maximizing

p(y|θ ; H1) = 1

(2π)N/2|�|1/2

× exp

{
−1

2
(y − Pθ )T �−1(y − Pθ )

}
(4)

in which � is a diagonal matrix with its nth diagonal
element given by σ 2

n cT
n cn, and

P �= [c1 c2 . . . cN ]T (5)

The MLE of θ can be solved by taking the logarithm of
p(y|θ ; H1) and setting the first derivative with respect to θ

equal to zero, which gives

θ̂ = (PT�−1P)†PT�−1y (6)

where † denotes the pseudoinverse of a matrix.
Substituting θ̂ back into (3), we have

ln LG(y) = 1

2
yT �−1P(PT �−1P)†PT �−1y (7)

In other words, we can decide H1 if

2 ln LG(y) = yT �−1P(PT �−1P)†PT �−1y > η′ (8)

From [32, Sect. 6.5], we know that when N → ∞, the test
statistic 2 ln LG(y) follows a central chi-squared pdf with p
degrees of freedom under the null hypothesis, and a
noncentral chi-squared pdf with p degrees of freedom and
noncentrality parameter λ under the alternative hypothesis.
The noncentrality parameter λ can be computed as

λ = (θ1 − θ0)T I(θ0)(θ1 − θ0)

= θT PT �−1Pθ = θT

(
N∑

n=1

cncT
n

σ 2
n cT

n cn

)
θ (9)

where θ0 = 0 and θ1 = θ denote the value of θ under H0

and H1, respectively, and I(θ) = PT
∑−1P denotes the

Fisher information matrix (FIM), which can be readily
obtained by computing the expectation of the second
derivative of ln p(y|θ). We see that the noncentrality
parameter λ is a function of the precoding vectors. This
suggests that the detection performance fundamentally
relies on the choice of the precoding vectors {cn}.

IV. PRECODING STRATEGIES

If the knowledge of the signal θ is available, the
optimal precoding vector has been shown to be a matched
filter in the conventional centralized scenario [32] or in a
power-constrained distributed scenario [21]. Nevertheless,
when θ is unknown, determining the optimal precoding
vector is impossible. In this case, effective precoding
strategies with appealing detection performance need to be
developed. In the following, we introduce two precoding
schemes, namely, a random precoding scheme and a
sign-assisted random precoding scheme. For the random
precoding scheme, sensors design their own precoders
without any knowledge of the signal to be detected. The
sign-assisted random precoding scheme needs to know the
plus/minus signs of the signal components. Nevertheless,
as we show later, its detection performance can be
radically improved by utilizing the sign knowledge of the
unknown signal.

A. Random Precoding

The precoder at each sensor is randomly generated
according to a Gaussian distribution with zero mean and
unit variance, i.e.,

cn,i ∼ N (0, 1) ∀n, i (10)

where cn,i denotes the ith component of the precoding
vector cn. For this precoding scheme, no knowledge of the
signal is needed. We note that, instead of employing a
common precoder, the proposed scheme independently
generates the precoding vector for each sensor. The reason
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is that a common precoder, although it admits a simple
implementation, fails to provide consistent detection
accuracy since its performance is critically dependent on
the signal being detected. Using a set of randomly
generated vectors has an averaging effect which helps
improve the detection reliability. In addition, when the
number of sensors is far greater than the signal dimension,
i.e., N 	 p, the independently generated precoders
guarantee that the full column rank condition of P is
satisfied with a high probability. In this case, a joint
detection and estimation can be accomplished, that is, an
effective estimate of the signal can be provided given that
the signal is being detected, otherwise the MLE (6)
involves an ill-posed inverse problem.

The GLRT detector developed at the FC requires the
information of the precoding vectors {cn} to make a final
decision [c.f. (6)]. Hence we need to find a way to share
the knowledge of the precoding vectors between sensors
and the FC, which inevitably incurs additional
communication overhead. Note that other precoding-based
decentralized detection methods such as [19] also face the
same issue. Clearly, letting each sensor report the
compressed message along with the precoding vector to
the FC is undesirable since it involves sending the same
number of real-valued messages as transmitting the
original observations to the FC. A feasible solution to
address this problem is to have both the FC and sensors
equipped with a common lookup table that consists of a
number of randomly generated vectors [the entries are
generated according to (10)]. In this case, each sensor can
randomly select one item from its lookup table as its
precoding vector, and send the item index, along with the
compressed message, to the FC. The FC recovers the
precoding vector from the lookup table based on the
received item index. Another way is to let the FC choose a
precoding vector for each sensor from the lookup table,
and assign the corresponding item index to the sensor. We
see that the above scheme incurs minimum
communication overhead for sharing the knowledge of the
precoding vectors between the FC and sensors. Of course,
this comes at the expense of using a certain amount of
memory resources at both sensors and the FC.

B. Sign-Assisted Random Precoding

In practice, the plus/minus sign of each component of
the signal θ may be known a priori. For example, in gas
leak detection, the atmospheric concentration of the gas
measured at node n is given by [33]

sn(t) = M

4πDt
exp

(
−‖dn − d0‖2

4Dt

)

which are quantities greater than zero; here D is the
diffusion coefficient of the gas, M is the mass of the gas
released at point d0, dn is the position vector of sensor n,
and t represents the relative time at which the
measurement is taken. In some other scenarios, detection
is performed based on signal intensity measurements. As

an example, when using microphone sensors to detect
acoustic sources, the acoustic intensity measured by
sensors can be expressed as [34]

sn(t) = gn

a(t − t0)

‖dn − d0‖
where gn denotes the sensor gain factor of the nth acoustic
sensor, a(t – t0) is the intensity of the acoustic source
measured 1 m from the source, and t0 is the propagation
delay of the acoustic source from the source to sensor n,
dn and d0 are the position vectors of sensor n and the
source, respectively. Again, in this instance, the
measurements at sensors have positive values. The prior
knowledge about the plus/minus signs of the signal being
detected can be utilized for precoding design to improve
the detection performance.

Let sgn(x) be a sign column vector with its elements
given by sgn(xi), where sgn(xi) = 1 if xi > 0, and sgn(xi)
= – 1 otherwise. We design the precoding vector for each
sensor as follows

cn = |rn| � sgn(θ) ∀n (11)

where rn is a column vector whose entries are
independently and randomly generated according to a
Gaussian distribution with zero mean and unit variance,
|rn| takes the absolute value of each entry of rn, and �
denotes the entry-wise multiplication. The rationale
behind this precoding design is to preserve the signal
energy as much as possible by aligning the signs of the
signal components. This explains the use of the term
sgn(θ) in (11).

For the sign-assisted random precoding scheme,
sharing the knowledge of precoding vectors between
sensors and the fusion center can also be achieved by
equipping a common lookup table at both the FC and
sensors. First, the FC broadcasts the sign information of
the signal to all sensors. Each sensor then randomly
selects one item (i.e. a random vector) from its lookup
table and designs its precoder according to (11) by using
the knowledge of signs. This sign-assisted precoding
vector can be easily recovered at the FC based on the
received item index and signs of the signal components.

V. ASYMPTOTIC PERFORMANCE ANALYSIS

In this section, we examine the exponential rate of
decay in the miss probability as the number of sensors N
tends to infinity. The decaying rate in miss probability,
also referred to as the error exponent, is a natural
performance measure for large-scale sensor networks. In
some other works (e.g. [35–37]), their proposed
decentralized detection strategies were also evaluated by
the error exponent metric under the same asymptotic
regime N →∞. The detection error exponent is defined as

K
�= lim

N→∞
− 1

N
log PM(N) (12)

where PM denotes the miss probability, and N inside ()
indicates the dependence of the miss probability on N. The
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error exponent not only gives a rough idea of how many
sensors are needed in order to attain a certain level of
detection performance, but also reveals how the test power
is influenced by other parameters such as the SNR and the
energy distribution pattern of the signal to be detected.

Recall that the test statistic 2 ln LG(y) follows a central
or a noncentral chi-squared pdf with p degrees of freedom.
The chi-squared pdf arises as a result of summing the
squares of p independent Gaussian random variables with
zero or nonzero means. According to the central limit
theorem, the test statistic 2 ln LG(y) can be approximated
by a Gaussian distribution for a sufficiently large p. As
pointed out in [22], in practice, this approximation is
accurate even for a moderately large p, say, p ≥ 10. It can
be easily verified that 2 ln LG(y) is asymptotically
normally distributed as

2 ln LG(y)
a∼

{
N (p, 2p) H0

N (p + λ, 2p + 4λ) H1
(13)

Based on (13), a closed-form expression of the detection
probability can be derived. Suppose that PFA is the
specified false alarm probability. We have

PFA = Pr(2 ln LG(y) > η; H0) = Q

(
η − p√

2p

)
(14)

which gives η = √
2pQ−1(PFA) + p. The miss

probability can therefore be written as

PM = 1 − Pr(2 ln LG(y) > η; H1)

= 1 − Q

(√
2pQ−1(PFA) − λ√

2p + 4λ

)
(15)

We see that the detection performance of the GLRT
detector is determined by the noncentrality parameter λ.
The expression inside Q(·), i.e. (

√
2pQ−1(PFA) − λ)/√

2p + 4λ can be proved to be a monotonically decreasing
function of λ (proof is provided in Appendix A). Hence a
larger λ results in better detection performance.

To compute the exponential rate of decay in miss
probability, we need to analyze the asymptotic behavior of
λ when N → ∞. For simplicity, we first assume a
homogeneous scenario where σ 2

n = σ 2 for all n (the
extension to the inhomogeneous scenario is discussed
later).

In this case, λ can be expressed as

λ = 1

σ 2

N∑
n=1

θT cncT
n θ

cT
n cn

(16)

Define βn as a metric measuring the correlation between
the two vectors cn and θ

βn
�= (cT

n θ )2

‖cn‖2‖θ‖2
(17)

Note that for both precoding schemes, precoding vectors
are independently generated according to a common
distribution. Hence {βn} are independent and identically
distributed (IID) random variables. As N → ∞, the ratio

of the noncentrality parameter λ (16) to the number of
sensors N therefore approaches

λ

N
= pγ

N

N∑
n=1

βn

N→∞→ pγE[βn] (18)

where γ
�= ‖θ‖2/(pσ 2) is the average SNR of sensor

observations, and the last equality comes from the strong
law of large numbers (LLN).

A. Asymptotic Behavior of λ for Random Precoding

To compute (18), we first analyze the distribution of

βn. Let θ̄ be the normalized vector of θ , i.e., θ̄
�= θ/‖θ‖2.

Then βn can be expressed as

βn = (cT
n θ̄ )2

cT
n cn

= cT
n θ̄ θ̄

T
cn

cT
n cn

(19)

Consider the eigenvalue decomposition (EVD) of θ̄ θ̄
T

:
θ̄ θ̄

T = QDQT , where Q = [θ̄ q2 . . . qp] is orthogonal,
and D = diag {1 0 . . . 0}, then the numerator and the
denominator of βn can be written, respectively, as

cT
n θ̄ θ̄

T
cn = e2

1

cT
n cn = e2

1 + e2
2 . . . + e2

p (20)

where e = [e1 e2 . . . ep]T = QT cn. It can be easily verified
that e, the rotation of cn, contains IID normalized Gaussian
entries as well. Furthermore, βn can be written as

βn = e2
1

e2
1 + e2

2 . . . + e2
p

= 1

1 + ∑p

i=2 e2
i /e

2
1

(21)

where
∑p

i=2 e2
i ∼ χ2

p−1 follows a central chi-squared
distribution with p – 1 degrees of freedom, e2

1 ∼ χ2
1

follows a central chi-squared distribution with one degree
of freedom, and the two chi-squared random variables∑p

i=2 e2
i and e2

1 are independent. From [32], we know that

f
�=

∑p

i=2 e2
i

(p − 1)e2
1

∼ Fp−1,1 (22)

That is, f follows an F distribution with p – 1 numerator
degrees of freedom and one denominator degrees of
freedom. We can express βn in terms of f as

βn = 1

1 + (p − 1)f
(23)

According to [38] (also see [39, Prop. 5]), βn follows a
Beta distribution with parameters 1/2 and (p – 1)/2, i.e.,

βn ∼ β1/2,(p−1)/2 (24)

Recalling the properties of the Beta distribution, we have

E[βn] = 1

p
(25)

Combining (18) and (25), we arrive at

λRP

N

N→∞→ γ (26)
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where the subscript “RP” stands for the random precoding
scheme.

B. Asymptotic Behavior of λ for Sign-Assisted Precoding

For the sign-assisted random precoding, previous
analyses for random precoding are no longer applicable
because the design of the precoding vectors {cn} is
dependent on the signal θ . We, instead, examine the
expectation of βn directly. Clearly, we have

E[βn] = E

[
(cT

n θ )2

‖cn‖2‖θ‖2

]
(a)= E

[(∑p

i=1 |rni
‖θi |

)2

‖rn‖2‖θ‖2

]

= 1

‖θ‖2

p∑
i=1

p∑
j=1

|θi‖θj |E
[ |rni

‖rnj
|

‖rn‖2

]
(27)

where (a) comes from (11), rni
denotes the ith entry of rn.

To calculate E[βn], we need to compute
E[|rni

‖rnj
|/‖rn‖2]. An exact computation seems difficult

as the numerator and the denominator are correlated.
Nevertheless, their correlation is very mild as long as p is
not too small. To see this, notice that the two random
variables rni

and ‖rn‖2 are uncorrelated, i.e., their
correlation coefficient is equal to zero (details are
provided in Appendix B). Since rni

follows a Gaussian
distribution and ‖rn‖2 can be accurately approximated as a
Gaussian random variable even for a moderately large p
(say p ≥ 10), the random variable rni

is therefore
approximately independent of ‖ rn ‖2. Consequently, |rni

|
and ‖ rn ‖2 are independent. Hence we have

E

[ |rni
‖rnj

|
‖rn‖2

]
≈ E[|rni

‖rnj
|]E

[
1

‖rn‖2

]

(a)= E[|rni
‖rnj

|]
p − 2

(b)=

⎧⎪⎪⎨
⎪⎪⎩

2

π(p − 2)
i �= j

1

p − 2
i = j

(28)

where (a) comes from the fact that 1/‖rn‖2 follows an
inverse-chi-squared distribution with p degrees of
freedom; (b) comes by noting that |rni

| and |rni
|2 are

random variables following a half-normal distribution
with E[|rni

|] = √
2/π, and a chi-squared distribution with

one degree of freedom, respectively.
Combining (27)–(28), we arrive at

E[βn] = π + 2(ϕ − 1)

π(p − 2)
(29)

where

ϕ
�= (

∑p

i=1 |θi |)2

θT θ
(30)

is a factor characterizing the energy distribution pattern of
the signal θ . Using the Cauchy-Schwarz inequality, we
derive that ϕ is in the range 1 ≤ ϕ ≤ p, in which ϕ reaches

its upper bound p when the absolute values of the entries
{θ i} are identical, and attains its lower bound 1 if there is
only one nonzero entry in θ .

Substituting E[βn] into (18), the ratio of the
asymptotic λ to the number of sensors N is given by

λSAP

N

N→∞→ pγ
π + 2(ϕ − 1)

π(p − 2)
(31)

where the subscript “SAP” represents the sign-assisted
random precoding scheme.

REMARKS Since a larger λ results in better detection
performance, the sign-assisted random precoding scheme
is most effective when the signal has a uniform energy
distribution across its components, i.e., the components
{θ i} have identical amplitudes, in which case ϕ achieves
its upper bound p. On the other hand, if the energy
distribution is highly unbalanced, exploiting sign
information does not help much. In particular, when there
is only one nonzero component in θ , we have ϕ = 1 and
the sign-assisted random precoding performs similarly as
the random precoding scheme. Nevertheless, many natural
signals such as the concentration of a chemical due to gas
leak are persistent over a certain period of time and have a
balanced time-domain power distribution. The quantity ϕ

of these signals can be very close to the upper bound p. In
addition, numerical results show that the value ϕ

associated with a sinusoidal signal is usually no less than
0.8p. As we show later, the sign-assisted random
precoding scheme presents a significant performance
advantage over the random precoding scheme in detecting
those “well-shaped” signals.

C. Error Exponents

We now analyze the error exponents associated with
the two precoding schemes. Since the noncentrality
parameter λ for both precoding schemes is proportional to
N, λ becomes a dominant factor as N → ∞. Hence the
limit of the miss probability (15) as N → ∞ is

PM
N→∞→ Q

(√
λ

2

)
(32)

Using the Chernoff bound of Q-function: Q(x)
≤ 1

2 exp
(− x2

2

)
, ∀x > 0,the miss probability is upper

bounded by

PM ≤ 1

2
exp

(
−λ

8

)
(33)

This bound is tight when λ becomes large. With the
derived results (26) and (31), the error exponents for both
precoding schemes are, respectively, given by

KRP
�= lim

N→∞
− 1

N
log PM−RP = γ

8

KSAP
�= lim

N→∞
− 1

N
log PM−SAP = pγ (π+2(ϕ−1))

8π(p−2)
(34)

We see that for both precoding strategies, their miss
probabilities converge exponentially to zero as the number
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of sensors increases. The sign-assisted random precoding
scheme achieves a larger error exponent than the random
precoding scheme. In particular, the best error exponent is
attained when the signal components {θ i} are of equal
power. In this case, we have ϕ = p, and the error exponent
of the sign-assisted random precoding scheme is
approximately equal to

KSAP ≈ pγ

4π
(35)

which is about 2p/π times the error exponent of the
random precoding scheme.

We conduct experiments to illustrate the effectiveness
of the error exponent in predicting the behavior of the
error rate for finite N. To this objective, we introduce the
notion “finite-N exponential error rate” which was
originally proposed in [36] to quantify the accuracy of the
error exponent in finite sample approximation. The finite
exponential rate is defined as

K(N)
�= − 1

N
log PM(N)

where limN→∞ K(N) = K. In our experiments, we set p =
20, and PFA = 0.05. The signal is assumed to be a sample
cosine signal α cos(2π fk), where k = 1, . . . , p, f = 1/(2π),
and α is the amplitude of the cosine signal. Also, we
assume a homogeneous case where all sensors have
identical noise variances σ 2

n = 1, ∀n. In Fig. 2, we plot the
error exponents and the finite exponential rates as a
function of sensor SNR, γ , in which the error exponents
KRP and KSAP are determined from (34). To compute the
finite exponential rates, for each realization of {cn}, we
compute λ using (9) and then calculate the miss
probabilities of the two precoding schemes according to
the chi-squared distributions. The finite exponential rates
are then obtained by averaging over 104 independent
realizations of {cn}. From Fig. 2, we see that the
theoretical error exponents provide a good approximation
to the finite-sample behavior. For both precoding schemes,
the finite exponential rate has a tendency to approach the
error exponent when the number of sensors increases.

D. Extension to the Inhomogeneous Case

The above results can be readily extended to the
inhomogeneous scenario where the noise variances across
sensors are different, i.e., Rwn

= σ 2
n I. In this case, the ratio

of the noncentrality parameter λ (9) to the number of
sensors N becomes

λ

N
= 1

N

N∑
n=1

θT cT
n cnθ

σ 2
n cncT

n

= 1

N

N∑
n=1

(cT
n θ )2

‖cn‖2‖θ‖2

‖θ‖2

σ 2
n

(a)= p

N

N∑
n=1

βnγn

a.s→ pE

[
1

N

N∑
n=1

βnγn

]

= p

N
E[βn]

N∑
n=1

γn
�= pE[βn]γ̄ (36)

Fig. 2. Error exponents and finite error exponential rates vs. SNR.
(a) Random precoding. (b) Sign-assisted random precoding.

where in (a), γn
�= ‖θ‖2/(pσ 2

n ) denotes nth sensor’s local
observation SNR, the approximation in the second line
comes from the LLN for independent but nonidentically
distributed random variables: the sample average
converges almost surely to the expected value, i.e.,

X̄
�= 1

n
(X1 + . . . + Xn)

a.s→ E[X̄]. Note that {βn} are IID,
hence {γ nβn} are independent but nonidentically
distributed. Therefore our analyses in previous subsections
hold valid except with γ replaced by the average SNR γ̄ .

VI. COMPARISON WITH EXISTING METHODS

In this section, we compare our precoding-based
detection schemes with the energy detector. Energy
detector is an effective approach to detect unknown
deterministic signals in practice. It measures the energy of
the observed signal and then uses a single threshold to
determine the presence or absence of the signal. In [22],
the conventional energy detector for a single sensor
system is extended to the multisensor system where
multiple sensors (cognitive radios) collaborate to detect a
common signal. We briefly review this work [22] before
the comparison.
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A. Review of [22]

In [22], a binary hypothesis testing problem that has
the same problem formulation as ours was examined in the
context of cognitive radio systems, where a number of
secondary users cooperate to detect the presence of a
primary user. An energy detector was developed in such a
decentralized framework. Each sensor computes the
energy of the observed signal xn

un = ‖xn‖2

The test statistics {un} are then sent to the FC for reaching
a global decision. Clearly, un follows a central
(noncentral) chi-squared distribution under hypothesis H0

(H1). To facilitate the analysis, un is approximated by a
Gaussian random variable in [22] (this approximation is
accurate for a moderately large p, say, p ≥ 10). At the FC,
an LRT-based detector is optimal and desirable. However,
as pointed out by [22], the LRT-based fusion rule has a
quadratic form. Finding the probability distribution of the
likelihood ratio is numerically difficult since it involves
many integrals. To overcome this difficulty, [22] linearly
combines the received test statistics {un} to form a global
test statistic

y =
N∑

n=1

wnun = wT u (37)

where w is the weight vector used to represent every
sensor’s contribution to the global decision. The detection
probability of this linear cooperative method is given
as [22]

PD = Q

(
Q−1(PFA)

√
wT �H0 w − Es1T w√
wT �H1 w

)
(38)

where �H0 and �H1 represent the covariance matrices of u
under hypotheses H0 and H1, respectively, and Es denotes
the signal energy. The design of the weight vector w was
examined in [22], aiming at minimizing the miss
probability under a false alarm constraint. Nevertheless, as
indicated in [22], an analytical optimal solution of w is
generally difficult to obtain, which obstructs a subsequent
performance evaluation. For simplicity, we hereby
consider a homogeneous scenario where sensors have
identical noise variances. In this case, sensors are of equal
importance in making the global decision. Thus we should
have w = 1, 1 denotes a column vector with its entries all
equal to one. The detection probability can therefore be
simplified as

PD = Q

(
Q−1(PFA)

√
2p − √

Nγp√
2p + 4γp

)
(39)

where γ = θT θ /(pσ 2).

B. Asymptotic Regime N → ∞
When N tends to infinity, the miss probability of the

energy detector asymptotically approaches

PM−ED
N→∞→ Q

(√
N

√
pγ√

2 + 4γ

)
(40)

Using the Chernoff bound of the Q-function, the error
exponent of the energy detector is given by

KED
�= lim

N→∞
− 1

N
log PM−ED = pγ 2

4 + 8γ
(41)

Comparing (34) and (41), it can be derived that the error
exponents associated with the precoding-based schemes
are greater than that of the energy detector when the SNR
of the sensors’ observations γ are less than a certain
threshold. Specifically, we have

KRP >KED if γ <
1

2p−2
�= τ1

KSAP >KED if γ <
π+2(ϕ − 1)

2[π(p − 3) − 2(ϕ − 1)]
�= τ2

(42)

This suggests that precoding-based schemes are more
effective than the energy detector in the low SNR regime.
This theoretical result can be explained as follows. The
accuracy and sensitivity of the energy detector are
critically dependent on the energy of the received signals.
For signals that are completely overwhelmed by the noise,
the energy detector has difficulty in detecting them.
Precoding-based schemes, on the contrary, allow us to
exploit the inherent features of the signal to be detected.
The signal is learned first and the learned signal is then
used for detection. Therefore precoding-based schemes
are potential to achieve better performance than the energy
detector in detecting weak signals.

Recall that ϕ is a value within [1 p]. When ϕ = 1, we
have τ 1 ≈ τ 2. On the other hand, if the signal has a
uniform energy distribution among its components, ϕ

achieves its upper bound p, and τ 2 is simplified as

τ2 = π + 2(p − 1)

2[π(p − 3) − 2(p − 1)]
>

2(p − 1)

(2π − 4)(p − 1)

= 1

π − 2
(43)

In this case we have

KSAP > KED if γ <
1

π − 2
(44)

which means that the sign-assisted random precoding
scheme is more powerful than the energy detector when
the SNR is less than 1/(π – 2).

VII. NUMERICAL RESULTS

We now carry out experiments to corroborate our
previous analysis and to illustrate the performance of the
proposed precoding-based GLRT detectors.

We first examine the efficiency of the proposed
schemes in detecting a weak sinusoidal signal in the
presence of noise. The signal is assumed to be a sample
cosine signal α cos(2π fk), where k = 1, . . . , p, f = 1/(2π),
and α is the amplitude of the cosine signal. Also, we
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Fig. 3. Error exponents of respective schemes vs. SNR. (a) Error
exponents of respective schemes. (b) Enlarged segment of Fig. 3(a).

assume a homogeneous case where all sensors have
identical noise variances σ 2

n = 1, ∀n. Fig. 3 depicts the
error exponents of respective detection schemes as a
function of the sensor observation SNR, where we set
p = 20, and PFA = 0.05. Note that Fig. 3(b) is an enlarged
segment of Fig. 3(a) in order to allow a comparison
between the energy detector and the random precoding
scheme. From Fig. 3(a), we see that the energy detector
outperforms precoding schemes when the signal is
dominant or comparable to the noise level. Nevertheless,
when it comes to the low SNR regime where the signal is
overwhelmed by noise, precoding-based detectors are
more effective and achieve higher error decaying rates.
Specifically, the sign-assisted random precoding scheme is
superior to the energy detector when γ < 0.7 [see
Fig. 3(a)]. Note that for sinusoidal signals, the parameter
ϕ is approximately equal to 0.8p, which is close but not
exactly equal to its upper bound p. Hence the point
γ = 0.7 at which the sign-assisted precoding surpasses the
energy detector is slightly lower than the threshold
1/(π – 2) calculated in (43) which is obtained by assuming
ϕ achieves its upper bound. Also, from Fig. 3(b), we

(b)

Fig. 4. Miss probabilities vs. false alarm probability for different α.
(a) α = 0.15. (b) α = 0.3.

observe that the random precoding scheme attains a higher
error exponent than the energy detector for γ < 1/(2p – 2)
≈ 0.025, which coincides with the result (42).

To further corroborate our analysis, we conduct Monte
Carlo experiments to evaluate the detection performance
of the three schemes. For each Monte Carlo run, we
generate observations according to the data model (1)
(supposing that the signal is present), and the precoding
vectors for our proposed precoding schemes according to
(10) and (11). We then calculate the test statistic and
compare it with a specified threshold (the threshold is
determined by the specified false alarm probability) to
check whether the detector succeeds or fails in detecting
the signal. The miss probability can be computed as the
ratio of the number of failures to the total number of
independent runs. Fig. 4 depicts the miss probability vs.
the false alarm probability of the three schemes, where we
set p = 20, N = 80, and the value of α is set to be 0.15 and
0.3, respectively. The performance of a “clairvoyant”
detector, which assumes the knowledge of the signal to be
detected, is also included for the comparison. For the
clairvoyant detector, since the knowledge of the signal is
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Fig. 5. Miss probabilities of respective schemes vs. false alarm
probability for chemical concentration detection.

available, optimal precoding vectors for sensors can be
computed (details can be referred to [21]) and an LRT can
be employed at the FC to make a global decision. Results
are averaged over 105 independent runs. We see that for
both choices of α whose corresponding SNRs γ are less
than 1/(π – 2), the sign-assisted random precoding scheme
presents a clear performance advantage over the energy
detector. In particular, when α = 0.3, the signal to be
detected is completely buried in the noise. In this situation,
the energy detector yields barely satisfactory performance.
This is not surprising since the energy detector detects the
signal based on the energy of the observations. If the
signal is relatively small, the energy detector has difficulty
in accurately distinguishing the signal from the noise. In
contrast, the sign-assisted random precoding still achieves
superior detection performance. Also, as expected, the
clairvoyant detector, which exploits the knowledge of the
signal, outperforms both the precoding-based schemes and
the energy detector.

Chemical Concentration Detection: Suppose a
number of sensors collaborate to detect a chemical
substance of interest. Each sensor measures the
atmospheric concentration of the substance in its vicinity.
The atmospheric concentration is assumed to have a
uniform distribution in space. This assumption holds valid
in open environments where the effects of wind or air
turbulence help the concentration reach spatial equilibrium
in a finite area very quickly. In our simulations, the
concentration measurement at each sensor is given by

xn(k) = α exp(−ck) + wn(k)

where the chemical concentration is assumed to decay
exponentially over time; wn(k) denotes the additive
Gaussian noise with zero mean and variance σ 2 = 1. In
practice, the concentration decaying model may not be
known to us. Hence we treat θ = [α exp(–ck1) α

exp(–ck2) . . . α exp(–ckp)]T as an unknown deterministic
signal. Note that since the concentration always has a
quantity greater than zero, the sign-assisted random

precoding scheme can be readily adopted here. We set a =
0.5 and c = 0.2 in our simulations. Fig. 5 plots the miss
probability as a function of the false alarm probability for
our proposed schemes, the energy detector, and the
clairvoyant detector that assumes the knowledge of the
signal. Results are averaged over 105 Monte Carlo runs. In
the figure, we can see that the sign-assisted random
precoding scheme achieves a significant performance
improvement as compared with the energy detector in
detecting the chemical concentration, which is consistent
with our theoretical analysis.

VIII. CONCLUSIONS

We considered a decentralized detection problem in
which a number of sensors collaborate to detect the
presence of an unknown deterministic vector signal. Due
to inherent power/bandwidth constraints, the observations
of each sensor are encoded into a real-valued message
using a linear precoder. The compressed messages are
then transmitted to the FC, where a GLRT detector is
employed to reach a final decision. We introduced two
precoding strategies in this paper, namely, a random
precoding strategy and a sign-assisted random precoding
strategy. The detection error exponents associated with
these two precoding schemes were analyzed in an
asymptotic regime where the number of sensors tends to
infinity. Theoretical analysis found that the detection
performance of the precoding-based schemes can be
radically enhanced by exploiting the knowledge of the
plus/minus signs of the signal components. Also, the
sign-assisted random precoding scheme provides a
substantial performance advantage over the energy
detector in the low SNR regime, specifically, when the
observation SNR is less than 1/(π – 2). Numerical results
were provided to corroborate our theoretical analysis, and
to show the effectiveness of the sign-assisted precoding
scheme in detecting weak signals buried in noise.

APPENDIX A. PROOF OF MONOTONICITY
OF (15) WRT λ

To prove the monotonicity of (15) with respect to λ,
we only need to show that the term inside the Q-function
is a monotonically decreasing function of λ. We consider
two different cases:

0 < λ ≤ √
2pQ−1(PFA): In this case, the numerator

and the denominator are both positive. It is easy to verify
that the term inside the Q-function decreases with an
increasing λ.

λ >
√

2pQ−1(PFA): Let f(λ) denote the term inside the
Q-function (15). The first derivative of f(λ) with respect to
λ is given by

∂f (λ)

∂λ
= − 1√

2p + 4λ

[
1 −

√
2pQ−1(PFA) − λ

2p + 4λ

]
(45)
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Since λ >
√

2pQ−1(PFA), it is easy to see that the first
derivative is negative. Therefore f(λ) is a monotonically
decreasing function of λ.

The proof is completed here.

APPENDIX B. CORRELATION COEFFICIENT
BETWEEN rni

AND ‖rn‖2

The correlation coefficient between the two random
variables x

�= rni
and y

�= ‖rn‖2 can be easily computed
as follows

ρ = E
[
rn,i

∑p

i=1 r2
n,i

] − E[rn,i]E
[∑p

i=1 r2
n,i

]
σxσy

(a)= E
[
rn,i

∑p

i=1 r2
n,i

]
σxσy

= E
[
r3
n,i + rn,i

∑p

j=1,j �=i r
2
n,j

]
σxσy

(b)= 0 (46)

where (a) comes from the fact that {rn,i} are IID Gaussian
random variables with zero mean and unit variance; (b)
follows from the fact that the odd-order moments of a
standard normal random variable are zero.
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