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Abstract— We consider the problem of downlink training and
channel estimation in frequency division duplex (FDD) massive
MIMO systems, where the base station (BS) equipped with a large
number of antennas serves a number of single-antenna users
simultaneously. To obtain the channel state information (CSI) at
the BS in FDD systems, the downlink channel has to be estimated
by users via downlink training and then fed back to the BS.
For FDD large-scale MIMO systems, the overhead for downlink
training and CSI uplink feedback could be prohibitively high,
which presents a significant challenge. In this paper, we study the
behavior of the minimum mean-squared error (MMSE) estimator
when the channel covariance matrix has a low rank or an
approximate low-rank structure. Our theoretical analysis reveals
that the amount of training overhead can be substantially reduced
by exploiting the low-rank property of the channel covariance
matrix. In particular, we show that the MMSE estimator is able
to achieve exact channel recovery in the asymptotic low-noise
regime, provided that the number of pilot symbols in time is no
less than the rank of the channel covariance matrix. We also
present an optimal pilot design for the single-user case, and an
asymptotic optimal pilot design for the multi-user scenario. Last,
we develop a simple model-based scheme to estimate the channel
covariance matrix, based on which the MMSE estimator can be
employed to estimate the channel. The proposed scheme does
not need any additional training overhead. Simulation results
are provided to verify our theoretical results and illustrate
the effectiveness of the proposed estimated covariance-assisted
MMSE estimator.

Index Terms— Massive MIMO systems, downlink training
and channel estimation, channel covariance matrix, low rank
structure, MMSE estimator.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO), also
known as large-scale or very-large MIMO, is a promis-

ing technology to meet the ever growing demands for higher
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throughput and better quality-of-service of next-generation
wireless communication systems [1], [2]. Massive MIMO
systems are those that are equipped with a large number of
antennas at the base station (BS) simultaneously serving a
much smaller number of single-antenna users sharing the same
time-frequency slot. By exploiting the asymptotic orthogo-
nality among channel vectors associated with different users,
massive MIMO systems can achieve almost perfect inter-user
interference cancelation with a simple linear precoder and
receive combiner [3], and thus have the potential to enhance
the spectrum efficiency by orders of magnitude. Massive
MIMO systems can also improve the energy efficiency and
enable the use of inexpensive, low-power components [4].
In addition to these benefits, it was recently shown that massive
MIMO can help achieve improved estimation and detection
performance in wireless sensor networks [5], [6].

To reach the full potential of massive MIMO, accurate
downlink channel state information (CSI) is required at the
BS for precoding and other operations. Downlink channel
estimation for massive MIMO systems has been extensively
studied over the past few years. Most of existing studies,
e.g. [1], [3], [7], [8] assume a time division duplex (TDD)
mode in which channel reciprocity between opposite links
(downlink and uplink) can be exploited to facilitate the acqui-
sition of the downlink CSI at the BS. Nevertheless, it was
pointed out that the reciprocity of the wireless channel may not
hold exactly due to calibration errors in the downlink/uplink
RF chains [9]. Also, it is noted that current wireless cellular
systems are still primarily based on the frequency division
duplex (FDD). To make the massive MIMO technique back-
ward compatible with current systems, it is of great neces-
sity to study downlink channel estimation for FDD massive
MIMO systems.

For FDD systems, the reciprocity between downlink and
uplink channels no longer holds. To obtain the CSI at the
transmitter, the BS needs to transmit training signals to users,
and each user, after acquiring the downlink CSI through the
training phase, feeds back the CSI to the BS. This downlink
training and uplink feedback strategy may cause several issues.
First, the feedback process may lead to delayed or even
outdated CSI knowledge [10], i.e. the channel at the time
it is measured differs from the channel at the time when
the information is used at the transmitter. This delayed CSI
knowledge can be addressed by predicting the current channel
from delayed CSI knowledge via exploiting the temporal
correlation of the channel [10]. Recently, it was shown that
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even completely outdated CSI may still be useful by means
of transmission schemes that code across multiple quasistatic
blocks [11]. Another major problem is that the required
amount of overhead for downlink training grows linearly with
the number of transmit antennas at the BS. This may not be
an issue for conventional MIMO scenarios with only a small
number of antennas. However, for massive MIMO systems
where the number of transmit antennas at the BS is large, the
overhead for the downlink training and uplink feedback could
become prohibitively high. Therefore reducing the overhead
for downlink training and uplink CSIT feedback has been a
central issue in FDD massive MIMO systems. A multitude of
efforts has been directed towards this goal over the past few
years, e.g. [12]–[20]. Specifically, in [12]–[14], the sparsity of
the channel on the virtual angular domain has been leveraged
to formulate downlink channel estimation as a compressed
sensing problem, based on which the overhead for downlink
training and uplink feedback can be substantially reduced.
Recent experiments and studies (e.g. [7], [21]) show that for
a typical cellular configuration with a tower-mounted BS, the
angular spread of the incoming/outgoing rays at the BS is
usually small, and as a result, the channel has a sparse or
an approximate sparse representation on the virtual angular
domain.

Besides compressed sensing-based techniques [12], [13],
another line of research approaches the overhead reduction
issue for FDD massive MIMO by implicitly or explicitly
exploiting the low-rank structure of the channel covariance
matrix, e.g. [15]–[20]. Low-rank channel covariance matrix
also arises as a result of a small angular spread of the
incoming/outgoing rays at the BS. Due to the narrow angular
spread, different paths between the BS and the user are
highly correlated, and consequently, the channel covariance
matrix has a low-rank or an approximate low-rank structure
with only a few dominant eigenvectors [7], [22]. In [23],
it was shown that even for conventional MIMO scenarios, the
dimension of the optimal pilot can be reduced if there are
only a few dominant eigenvectors associated with the channel
covariance matrix. Covariance-aided pilot design was also con-
sidered in [17], [18] for FDD massive MIMO systems, where
open-loop and closed-loop training strategies were developed
to reduce the overhead of the downlink training phase by
exploiting the spatial correlation as well as the temporal
correlation of the channel. In [15], [16], the dimensionality
of the effective channels is reduced via a prebeamforming
matrix that depends only on the channel second-order statistics
(i.e. channel covariance matrix), based on which a joint spatial
division and multiplexing (JSDM) scheme [15] and a beam
division multiple access scheme [16] were proposed to achieve
significant savings in both the downlink training and the CSIT
uplink feedback.

In this paper, we continue the direction of covariance-aided
downlink training and channel estimation for FDD massive
MIMO systems. Specifically, we study the asymptotic behav-
ior of the minimum mean-squared error (MMSE) estimator
when the channel covariance matrix has a low-rank structure.
Our theoretical results reveal that with a low-rank channel
covariance matrix, the MMSE estimator employing a random

Fig. 1. Schematic for the one-ring model.

(not necessarily optimal) pilot can obtain a perfect channel
recovery in the limit of vanishing noise, provided that the
length of the pilot (i.e. the number of symbols in time) is
no less than the rank of the covariance matrix. We also
examine asymptotically optimal pilot design for the multi-
user scenario. An overlayed training strategy similar to the
JSDM scheme is proposed and shown to be asymptotically
optimal in terms of estimation errors when users have mutually
non-overlapping angles of arrival (AoAs). The optimal design
suggests that the minimum MSE can be achieved as long as
the length of pilot is no less than the rank of the channel
covariance matrix. In addition, based on the classical one-ring
scattering model (see, e.g. [15]), we develop a simple model-
based scheme to estimate the channel covariance matrix. The
proposed scheme does not require any additional training
overhead. Simulation results show that the proposed estimated
covariance-assisted MMSE estimator achieves a substantial
performance improvement over the compressed sensing-based
methods.

The following notations are adopted throughout this paper,
where (·)T and (·)H represent the transpose and conjugate
transpose, respectively, tr(A) denotes the trace of A, and ‖x‖2
is used to denote the �2 norm of vector x. We let Range(A)
denote the column space spanned by the column vectors of A,
span{} denotes the subspace spanned by the vectors defined in
the set {}, Cn×m and Cn denote the set of n × m matrices and
the set of n-dimensional column vectors with complex entries,
respectively.

The rest of this paper is organized as follows. In Section II,
we introduce the system model and basic assumptions. The
asymptotic behavior of the MMSE estimator in the limit
of vanishing noise is examined in Section III. An optimal
pilot design for the single-user scenario and an asymptotic
optimal pilot design for the multi-user scenario are studied in
Sections IV and V, respectively. In Section VI, we develop a
simple model-based scheme to estimate the channel covari-
ance matrix, and construct a MMSE estimator to estimate
the channel. Simulation results are provided in Section VII,
followed by concluding remarks in Section VIII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the problem of downlink training and channel
estimation in a FDD massive MIMO system, where the BS
equipped with a large number of antennas serves a num-
ber of single-antenna users simultaneously. To simplify our
problem, we consider the single-user scenario. The extension
of our results to the multi-user scenario is straightforward,
and the pilot design for the multi-user case will be discussed
in Section V. We assume the channel h ∈ CM is a flat
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Rayleigh fading channel under a narrowband assumption,
where M denotes the number of transmit antennas at the BS.
The extension to the wideband frequency-selective channel is
straightforward when an orthogonal frequency-division multi-
plexing (OFDM) transmission scheme is adopted. The signal
received by the user can be expressed as

yt = xT
t h + wt ∀t = 1, . . . , T (1)

where xt ∈ CM is the transmitted pilot symbol vector at time t ,
and wt denotes the additive white Gaussian noise with zero
mean and variance σ 2. Define y � [y1 y2 . . . yT ]T , X �
[x1 x2 . . . xT ]T , and w � [w1 w2 . . . wT ]T . The data
model (1) can be rewritten as

y = Xh + w (2)

Note that to simplify our problem, we ignore the inter-cell
interference resulted from frequency reuse from neighboring
cells. Inter-cell interference may pose a problem for channel
estimation, and how to cope with inter-cell interference is an
important issue worthy of future investigation.

In this paper, we consider the classical one-ring model that
has been widely adopted (e.g. [7], [13], [15]) to characterize
the massive MIMO channel, where the BS is assumed to be
located in an elevated position with few scatterers around, and
the propagation between the BS and the user is mainly char-
acterized by rich local scatterers around the user (see Fig. 1).
Assuming the propagation consists of P i.i.d. paths, we have

h = 1√
P

P∑

p=1

αp a(θp) (3)

where αp ∼ CN (0, ξ2) denotes the fading coefficient associ-
ated with the pth path, and a(θp) is the steering vector. For a
uniform linear array, it is given as

a(θp) � [1 e− j (2π/χ)dcos(θp) . . . e− j (M−1)(2π/χ)dcos(θp)]T

(4)

in which χ is the signal wavelength, d denotes the distance
between neighboring antenna elements, and θp ∈ [0, π] is the
azimuth AoA of the pth path. In the one-ring mode, the user
is surrounded by rich local scatterers with a radius r that is
relatively small compared to the distance between the BS and
the user, D. Thus the angular spread at the BS, approximately
given as δ = arctan(r/D), is small.

To estimate the channel from the received signal y
(c.f. (2)), it is usually required that the number of pilot
symbols (in time), T , is no less than the number of trans-
mitted antennas M , i.e. T ≥ M . When M is large, the
overhead for downlink training and uplink CSI feedback
becomes prohibitively high. Hopefully, due to the narrow
angular spread at the BS, the steering vectors {a(θp)} of these
P paths are highly correlated, and thus the channel covariance
matrix R = E[hhH ] has an approximate low-rank structure.
In particular, in the asymptotic regime M → ∞, the rank
of the channel covariance matrix is upper bounded by a
small quantity that is determined by the angular spread
(c.f. (16)). This low-rank structure can be utilized to reduce
the overhead for downlink training for FDD systems, see,
e.g. [15], [17], [18].

In this paper, we study the behavior of the MMSE estimator
when the the channel covariance matrix has a low rank
structure. We conduct a quantitative analysis to investigate how
much training overhead reduction can be achieved by exploit-
ing the low-rank structure of the channel covariance matrix.
Assume h is zero-mean complex Gaussian with covariance
matrix R, the MMSE estimate of the channel h is given as

ĥ = RX H (X RX H + σ 2 I)−1 y (5)

Note that the MMSE estimator, with the aid of the statistical
information of the channel, does not require an invertible pilot
matrix X (i.e. T ≥ M) for channel estimation. The mean-
squared error (MSE) associated with the MMSE estimate is
given by

MSE = E
[‖ĥ − h‖2

2

]

= tr
(
R − RX H (X RX H + σ 2 I)−1 X R

)
(6)

III. ASYMPTOTIC BEHAVIOR OF THE MMSE

A. Main Results

In this section, we first study the behavior of the MMSE
estimator in the asymptotic low-noise regime, i.e. σ 2 → 0.
Our asymptotic analysis shows that a perfect channel recovery
from a small number of symbols is possible when the channel
covariance matrix has a low-rank structure. Our main results
are summarized as follows.

Theorem 1: Consider the channel estimation problem
described in (2), where h ∼ N (0, R) and the rank of
the channel covariance matrix R is r = rank(R). Define
� � R

1
2 X H X R

1
2 . Let � = V�V H denote the eigen-

value decomposition (EVD) of �, where V � [v1 . . . vM ]
is a unitary matrix consisting of eigenvectors of �, and
� = diag(γ1, . . . , γr , 0, . . . , 0) is a diagonal matrix with
γ1 ≥ γ2 ≥ . . . ≥ γr > 0. Suppose the pilot signal X is
randomly generated, and the number of symbols, T , is no less
than r , i.e. T ≥ r , then the MSE of the MMSE estimate of
h is given by

E
[
‖ĥ − h‖2

2

]
=

r∑

i=1

(
1 + γi/σ

2
)−1

vH
i Rvi (7)

and the MSE approaches zero in the limit of vanishing noise,
that is,

lim
σ 2→0

E
[
‖ĥ − h‖2

2

]
= 0

Proof: Using the Woodbury identity, the MSE (6) can be
rewritten as

E
[
‖ĥ − h‖2

2

]

= tr
(

R1/2(I − R1/2 X H (X RX H + σ 2 I)−1 X R1/2)R1/2
)

= tr
(

R1/2(I + σ−2 R1/2 X H X R1/2)−1 R1/2
)

= tr
(

RV (σ−2� + I)−1V H
)

=
r∑

i=1

(
1 + γi/σ

2
)−1

vH
i Rvi +

M∑

i=r+1

vH
i Rvi (8)

We can see that the first term in (8) vanishes as σ 2 → 0.
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We now examine under what conditions the second term
in (8) reduces to zero. Let

R = U�U H (9)

denote the reduced EVD of R, where U ∈ CM×r and
� ∈ Cr×r . We can write

R
1
2 X H = U�

1
2 U H X H = UC (10)

where C � �
1
2 U H X H ∈ Cr×T . When T ≥ r and the

pilot symbols of X are randomly generated according to some
distribution, the matrix C has a full row rank with probability
one, i.e. rank(C) = r . Thus we have

Range(R
1
2 X H ) = Range(�) = Range(U) (11)

From (11), we can immediately arrive at

uH
i R = vH

i U = vH
i � = 0 ∀i = r + 1, . . . , M (12)

Hence the second term in (8) disappears provided that the
length of the pilot in time is no less than the rank of the
channel covariance matrix, i.e. T ≥ r , and eventually we
reach the conclusion that the MSE of the MMSE estimate
of h approaches zero in the limit of vanishing noise, that is,

lim
σ 2→0

E
[
‖ĥ − h‖2

2

]
= 0

The proof is completed here.

B. Discussions

The significance of Theorem 1 lies in that, in the limit
of vanishing noise, it establishes sufficient conditions for the
MMSE estimator to achieve exact channel recovery from only
a small number of pilot symbols. If we write h = R1/2d
and treat d (i.e. h) as a deterministic vector, a least squares
estimator can be used to estimate the channel. It can be
easily shown that for the deterministic case, the exact channel
recovery result also holds valid in the asymptotic low-noise
regime, provided that T ≥ r is satisfied. The proof of the exact
recovery result for the deterministic case, however, is very
different from the proof for Theorem 1 due to the difference
in modeling and estimation. After the completion of this
work, we noticed similar results were reported in [24] under a
different framework for signal reconstruction with compressive
measurements.

Another line of research [12], [13] for FDD downlink
training and channel estimation exploits the sparsity of the
channel on the virtual angular domain and formulates the
channel estimation as a compressed sensing problem:

y = Xh + w = X Ah̃ + w (13)

where A is a basis for the virtual angular domain. For the
uniform linear array case, the basis A is a discrete Fourier
transform (DFT) matrix. h̃ is a sparse vector to be estimated.
This class of approaches are justified by compressed sensing
theories, which assert that a sparse signal can be perfectly
recovered from compressive measurements, provided that the
measurement matrix satisfies a certain restricted isometry
property (RIP) condition [25]. Our theorem here can be

regarded as a counterpart result for the MMSE estimator, and
provides a justification for using the MMSE estimator for
channel estimation from a small number of pilot symbols.

It is also interesting to compare conditions required by the
MMSE estimator and those by compressed sensing techniques
to achieve perfect channel recovery. First recall the following
lemma that characterizes the number of dimensions of a
subspace spanned by a number of steering vectors with a
bounded support of AoAs:

Lemma 1: Define

α(x) � [1 e− jπx . . . e− jπ(M−1)x]T (14)

and A � span{α(x), x ∈ [−1, 1)}. Given b1, b2 ∈ [−1, 1] and
b1 < b2, define B � span{α(x), x ∈ [b1, b2]}, then

dim(A) = M

dim(B) ∼ (b2 − b1)M/2 when M grows large (15)

Proof: See [7, Lemma 1].
Consider the one-ring model (3) with the multipath angle of

arrival θ distributed on a bounded support, i.e. θ ∈ [θmin, θmax].
From Lemma 1, the rank of the channel covariance matrix R
is upper bounded by

rank(R) ≤ ηM as M → ∞ (16)

where η is defined as

η � | cos(θmin) − cos(θmax)|d/χ (17)

in which d denotes the distance between neighboring antennas
and χ is the signal wavelength. Another important property
from Lemma 1 is that, when M → ∞, the channel h
has a sparse representation on a virtual angular domain with
r = rank(R) nonzero coefficients.

With the above results, we are now ready to make a fair
comparison between conditions required by the MMSE esti-
mator and, respectively, by the compressed sensing methods
for exact recovery of the channel. For the MMSE estimator,
from Theorem 1, we know that as few as T = r symbols are
needed to perfectly recover the channel. On the other hand,
for compressed sensing-based methods, it has been shown that
the number of required measurements for exact recovery is of
order T = O(r log(M/r)) using polynomial-time optimization
solvers or greedy algorithms [25]. If the computational com-
plexity is not a concern, then at least T = 2r measurements
are required for exact recovery via the �0-minimization. From
the above discussion, we can see that the MMSE estimator
requires fewer symbols than compressed sensing techniques
for exact channel recovery. This result puts the covariance-
aided methods into a favorable position for FDD downlink
training and channel estimation.

IV. OPTIMAL PILOT SEQUENCE DESIGN

Our analysis in the previous section reveals that as few as
T = r symbols in time are required to guarantee perfect chan-
nel recovery in the asymptotic low-noise regime, i.e. σ 2 → 0.
Nevertheless, assuming a noiseless scenario is unrealistic in
practical systems. Therefore it is meaningful to study the
behavior of the MMSE estimator for a non-vanishing σ 2.



FANG et al.: LOW-RANK COVARIANCE-ASSISTED DOWNLINK TRAINING AND CHANNEL ESTIMATION 1939

For the case σ 2 �= 0, we would like to examine whether a
larger value of T leads to a better estimation accuracy, or if
T = r is sufficient to attain a minimum MSE. To answer
this question, we first need to impose a power constraint
on the pilot signal, i.e. tr(X X H ) ≤ P; otherwise a fair
comparison between pilots of different lengths is impossible.
Note that different pilots of the same length also result in
different MSEs. Hence simply comparing the MSEs attained
by two arbitrary pilots of different lengths does not provide
any meaningful answers. To make sense, we have to compare
the MSEs attained by optimally devised pilots for different
values of T , and see if increasing T will result in a lower
MSE. This requires us to examine the following optimization
problem

min
X

MSE = tr
(

R − RX H (X RX H + σ 2 I)−1 X R
)

s.t. tr(X X H ) ≤ P (18)

The solution of the above optimization problem is summarized
as follows.

Theorem 2: Let R = U0�0U H
0 denote the EVD1 of

R, where �0 = diag(λ1, . . . , λM ) is a diagonal matrix
with its diagonal entries arranged in a decreasing order and
U0 ∈ CM×M is a unitary matrix. The optimal solution to (18)
is then given by

X = [� 0]U H
0 (19)

where � = diag(δ1, . . . , δT ) with δi given as

δi =
{√

μ − σ 2λ−1
i if μ ≥ σ 2λ−1

i and λi �= 0

0 otherwise
(20)

in which μ is determined by the constraint
∑T

i=1 δ2
i = P .

Proof: According to [26, Theorem 1], the optimal X has
a form of

X H = U0[:, 1 : T ]� (21)

where U0[:, 1 : T ] consists of T eigenvectors of R associated
with the first T largest eigenvalues, and � = diag(δ1, . . . , δT )
is a diagonal matrix with its diagonal elements to be deter-
mined as follows. Substituting (21) into (18), the optimiza-
tion (18) can be simplified as

min{δi }

T∑

i=1

σ 2λi

δ2
i λi + σ 2

s.t.
T∑

i=1

δ2
i ≤ P

δ2
i ≥ 0 ∀i = 1, . . . , T (22)

The above optimization can be solved analytically by resorting
to the Lagrangian function and Karush-Kuhn-Tucker (KKT)
conditions, which leads to a water-filling type power allocation
scheme described by

δi =
{√

μ − σ 2λ−1
i if μ ≥ σ 2λ−1

i and λi �= 0

0 otherwise
(23)

1Here R = U0�0U H
0 is used to distinguish itself from the truncated EVD

R = U�U H .

where μ is determined to ensure that the KKT condition∑T
i=1 δ2

i = P is satisfied. The proof is completed here.
We now discuss whether a larger value of T would result in

a lower MSE. Note that the MSE achieved by the optimal X
is given by

MSE(T ) =
r∑

i=1

λi −
T∑

i=1

δ2
i (T )λ2

i

δ2
i (T )λi + σ 2

(24)

where we use δi (T ) to denote the dependence of δi on T . The
r -rank channel covariance matrix R implies λi = 0,∀i > r .
Considering the case T > r , from (20), it is easy to verify
that for any T > r , we have

δi (T ) =
{

δi (r) ∀i = 1, . . . , r

0 ∀i = r + 1, . . . , T
(25)

Therefore we can arrive at

MSE(T ) = MSE(r) ∀T > r (26)

On the other hand, from the optimality of the solution (20), it
is clear that

MSE(T ) ≤ MSE(r) ∀T < r (27)

Based on the above results, we know that the minimum MSE
can be attained by simply choosing T = r , and a larger T
beyond the value of r does not lead to a smaller MSE. This
result provides an affirmative answer to the question discussed
at the beginning of this section, that is, given a transmit power
constraint tr(X X H ) = P , a minimum MSE can be achieved
by setting the number of symbols equal to the rank of the
channel covariance matrix, i.e. T = r .

Remark 1: Note that the pilot constraint considered here is
different from that of [17], where unitary training with equal
power allocation per pilot symbol is assumed, i.e. X X H = ρ I .
Clearly, for the pilot constraint adopted in [17], the total
amount of transmit power increases unbounded as T becomes
large, more precisely, we have tr(X X H ) = ρT . Hence a larger
T always leads to an improved channel estimation accuracy.
Overall, the pilot constraint considered in our paper exploits
the channel structure more thoroughly, and hence makes
use of the power more efficiently, while the pilot constraint
in [17] leads to simpler implementation and is free from the
peak-power problem.

Remark 2: Our results in Theorem 2 are closely related
to the results in [23], [27]. In fact, the optimization prob-
lem (18) in our paper can be deemed as a special case of
the optimization problem (9) in [23], with a single antenna at
the receiver and i.i.d. Gaussian noise. Nevertheless, [23], [27]
assume a general channel covariance matrix in considering the
problem of optimal pilot design. The authors did not explicitly
address the case where the channel covariance matrix has a
low-rank structure. As indicated in [23], for a general full-
rank covariance matrix, training overhead reduction may also
be achieved due to the fact that a water-filling solution could
assign all power to a few strong eigendirections and no power
to other weak eigendirections. But, as pointed out in [23],
the minimum length of the optimal pilot required to achieve
the minimum MSE cannot be determined analytically for the



1940 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 3, MARCH 2017

general covariance case. Therefore it is unclear exactly how
much training overhead reduction can be achieved. Different
from [23], [27], our work explicitly assumes a low-rank
channel covariance matrix. Our analysis shows that the optimal
pilot under this low-rank assumption has a more concise form
and the required number of the pilot symbols to attain the
minimum MSE is no less than the rank of the covariance
matrix. This result, although easy to be deduced, has not been
explicitly reported in previous works.

V. ASYMPTOTICALLY OPTIMAL PILOT

FOR MULTI-USER SCENARIOS

In the previous section, we derived the optimal pilot
sequence for the single-user case. For massive MIMO sys-
tems where the BS aims to simultaneously serve a number
of users, the pilot sequence has to be shared by multiple
users. Unfortunately, the channels associated with these users
may not have the same channel covariance matrix. In this
case, it is impossible to find an optimal pilot sequence X
to simultaneously minimize the MSEs associated with all
users. To address this difficulty, in [19], the pilot sequence
is designed to maximize a summation of the conditional
mutual information associated with all users, and an iterative
algorithm was developed to solve the maximization problem.
In this section, a different criterion is considered, where the
objective is to minimize the sum of MSEs associated with all
users, i.e.

min
X

K∑

k=1

MSEk

=
K∑

k=1

tr
(

Rk − Rk X H (X Rk X H + σ 2 I)−1 X Rk

)

s.t. tr(X X H ) ≤ P (28)

where Rk and MSEk denote the channel covariance matrix
and the MSE associated with the kth user, respectively. Also,
to simplify the problem, we assume the noise variances across
different users are identical, i.e. σ 2

1 = . . . = σ 2
K = σ 2.

Finding an analytical solution to the above optimization is
difficult. Nevertheless, we will show that an asymptotically
optimal training sequence can be devised given that users
have mutually non-overlapping AoAs. Here the asymptotic
optimality means that the solution approaches the optimal one
as the number of antennas at the BS goes to infinity. Note that
non-overlapping AoAs among users imply spatial separation
in the bearing space. As a result, subspaces spanned by
different users’ channel covariance matrices are approximately
orthogonal to each other. We will show that this approximate
orthogonality property plays a vital role in decoupling and
solving the optimization (28).

Before proceeding, we first introduce the following proper-
ties which were proved in [7], [28] and reveal the eigenstruc-
ture properties of the channel covariance matrices. Consider
the channel h generated by the one ring model with a bounded
support of angle of arrival θ ∈ [θmin, θmax]. Let R denote the
channel covariance matrix. We have the following properties
regarding the channel covariance matrix.

Property 1 [7, Lemma 3]: In the asymptotic regime
of large number of antennas, steering vectors a(ϑ) with
ϑ /∈ [θmin, θmax] fall in the null space of the covariance
matrix R, i.e.

null(R) ⊃ span{a(ϑ)/
√

M,∀ϑ /∈ [θmin, θmax]}, as M → ∞
(29)

Property 2 [28, Lemma 1]: For a uniform linear array, when
M → ∞, the eigenvector matrix of the channel covariance
matrix R can be well approximated by a unitary DFT matrix.

Property 3: From the above two properties, we naturally
arrive at the following property: The column vectors in the
DFT matrix whose angular coordinates are located outside
the support of angle of arrival form an orthonormal basis for
the null space of R. Meanwhile, those column vectors in the
DFT matrix whose angular coordinates lie within the support
of angle of arrival form an orthonormal basis for R. More
precisely, let

F � 1√
M

[α(ω1) α(ω2) . . . α(ωM )] (30)

denote the DFT matrix, in which ωm = −1+2(m−1)/M,∀m,
and α(ωm) is defined in (14). Let R = U�U H denote the
truncated eigenvalue decomposition, where U ∈ CM×r , and
� ∈ Cr×r . Then as M → ∞, U is composed of column
vectors of F whose angular coordinates {ωi } lie within the
support of AoA, i.e.

U = [α(ωi1 ) . . . α(ωir )] (31)

where ωi ∈ [2d cos(θmin)/χ , 2d cos(θmax)/χ] for
i = i1, . . . , ir .

We now discuss how to devise an asymptotically optimal
pilot sequence for (28). Let

Rk = Uk�kU H
k (32)

denote the truncated eigenvalue decomposition, where
Uk ∈ CM×rk , and �k ∈ Crk×rk . rk denotes the rank of Rk .
For simplicity, we assume rk = r,∀k. Inspired by the above
properties, we propose an overlayed pilot sequence that is a
superposition of a set of pilot sequences {Xk}

X =
K∑

k=1

Xk (33)

where Xk denotes the pilot sequence optimally designed for
user k, i.e. given a power constraint tr(Xk X H

k ) = P∗
k , Xk is

given by Theorem 2, i.e.

Xk = �H
k U H

k (34)

in which �k is a diagonal matrix with its diagonal elements
optimized according to a water-filling power allocation scheme
as described in Theorem 2. As to be shown in the following,
the overlayed solution (33) arises as a result of the fact that
non-overlapping bearing space enables the objective function
(28) to be decoupled into K independent sub-problems.

We now show that the asymptotically optimal solution
to (28) has a form of (33). Note that any pilot sequence X
can be expressed in terms of the DFT matrix as follows

X = ZFH (35)
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where Z ∈ CT ×M is a matrix to be optimized. Recalling
Properties 2 and 3, we have

X Rk = ZF H Rk
(a)= (ZkU H

k + Z̄kŪ
H
k )Rk

= ZkU H
k Rk (36)

where (a) comes from the fact that we can partition the DFT
matrix into two parts F = [Uk Ūk], in which Uk is an
orthonormal basis of Rk and Ūk is an orthonormal basis for
the null space of Rk . Accordingly, Z can be partitioned into
two parts: Z = [Zk Z̄k], where Zk ∈ CT ×r is a submatrix of
Z consisting of r column vectors. Substituting (36) into the
objective function (28), we have

K∑

k=1

tr
(

Rk − Rk X H (X Rk X H + σ 2 I)−1 X Rk

)

=
K∑

k=1

tr
(

Rk − RkUk ZH
k (ZkU H

k RkUk ZH
k + σ 2 I)−1

ZkU H
k Rk

)
(37)

Since users have mutually non-overlapping AoAs, each matrix
Zk is constructed by r unique columns of Z that are not shared
by other matrices Zk̄,∀k̄ �= k. Therefore the optimization (28)
can be decomposed into K independent problems, with Zk

optimized in each individual problem

min
Zk

tr
(

Rk − RkUk ZH
k (ZkU H

k RkUk ZH
k + σ 2 I)−1

ZkU H
k Rk

)

s.t. tr(Zk ZH
k ) = P∗

k (38)

where P∗
k is the optimal power allocated to the kth user. From

Theorem 2, we know that setting T = r is sufficient to achieve
a minimum MSE and the optimal Zk is a diagonal matrix

Zk = �H
k (39)

with its diagonal elements determined according to a water-
filling power allocation scheme (see Theorem 2) such that the
constraint tr(Zk ZH

k ) = P∗
k is satisfied. For those columns of Z

that are not included in {Zk}K
k=1, since they make no difference

to the objective function value, they should be set to zero in
order to save the transmit power. Therefore the asymptotically
optimal pilot signal X can be written as

X =
K∑

k=1

ZkU H
k =

K∑

k=1

�H
k U H

k

=
K∑

k=1

Xk (40)

which is a superposition of a set of pilot sequences, with each
pilot sequence optimally designed for each individual user.

To determine the optimal power allocation {P∗
k }, we substi-

tute (40) back into the original optimization (28). After some
simplifications, we arrive at

min{�k}

K∑

k=1

tr
(
�k − �k�k(�

H
k �k�k + σ 2 I)−1�H

k �k

)

s.t.
K∑

k=1

tr(�k�
H
k ) ≤ P (41)

Let �k = diag(δk,1, . . . , δk,r ). The above optimization can be
further simplified as

min
δk,i

K∑

k=1

r∑

i=1

σ 2λk,i

δ2
k,iλk,i + σ 2

s.t.
K∑

k=1

r∑

i=1

δ2
k,i ≤ P

δ2
k,i ≥ 0 ∀k = 1, . . . , K ∀i = 1, . . . , r (42)

where λk,i denotes the i th eigenvalue of Rk . Similar
to (22), (42) can be analytically solved by resorting to KKT
conditions, based on which the optimal power allocation can
be obtained.

Remark 1: The above overlayed pilot design has an intuitive
explanation. Given that the AoAs of all users are distinct, from
Property 1, we know that the channel of each user is asymptot-
ically orthogonal to the channel covariance matrices associated
with other users as M → ∞, i.e. hH

k Rk′ = 0,∀k �= k ′.
As a result, we have Xk′ hk = 0,∀k �= k ′ for the pilot sequence
{Xk′ } devised in (34). Hence from the user’s perspective, only
the optimal pilot signal will be received, while other non-
optimal pilot signals are filtered when propagating through
the channel.

Remark 2: The proposed overlayed downlink training
scheme bears a resemblance to the JSDM strategy [15], where
a prebeamforming matrix is employed to reduce the dimension
of the channel to be estimated. In particular, the prebeamform-
ing matrix suggested by [15] is a concatenation of {Uk}K

k=1.
Although both the proposed overlayed training scheme and the
JSDM scheme use the eigenvectors of the channel covariance
matrices for downlink training, the rationale behind these two
schemes are different. The JSDM scheme is shown to be
asymptotically optimal in terms of the achievable capacity,
whereas the asymptotic optimality of the proposed overlayed
training scheme is established from the channel estimation
perspective. Finally, we remark that a coordination strategy
can be used to make sure that users to be served in the same
time-frequency slot are well separated in the AoA domain,
similarly as discussed in [7], [15].

VI. ESTIMATED COVARIANCE-ASSISTED MMSE

The MMSE estimator assumes perfect knowledge of
the downlink channel covariance matrix. This knowledge,
however, is unavailable and needs to be estimated in practice.
If the covariance matrix is estimated by the user, it needs
to be fed back to the BS through some control channel,
which involves a significant amount of overhead. One way
to overcome this difficulty is to estimate the downlink chan-
nel covariance matrix from the uplink covariance matrix,
e.g. [29], [30]. This approach, however, still requires a certain
amount of specific uplink training. In this section, we develop
a simple scheme to estimate the channel covariance matrix
based on the one ring model. A MMSE estimator is then con-
structed based on the estimated covariance matrix. Our sim-
ulation results indicate that the covariance estimation scheme
is effective and can obtain notable improvement in estimation
performance.
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According to the one-ring model (3), the covariance matrix
of h can be written as

R = ξ2

P

P∑

i=1

E[a(θp)a(θp)
H ] = ξ2 E[a(θ)a(θ)H ] (43)

To calculate E[a(θ)a(θ)H ], we need to know the distribution
of θ . Here we assume θ is uniformly distributed with mean
angle θ̄ and angular spread ν. Thus the (m, n)th entry of R
can be expressed as

Rmn = ξ2

2ν

∫ θ̄+ν

θ̄−ν
e− j2π (m−n)d

χ cos(θ)dθ (44)

The above integration, however, is difficult to calculate. Not-
ing that the angular spread ν is usually small, we can use
the Taylor expansion of cos(θ) to approximate the integral.
We have

cos(θ) ≈ cos(θ̄ ) − sin(θ̄ )(θ − θ̄ ) (45)

Substituting (45) into (44), we arrive at

Rmn ≈ ξ2

2ν
e j Amn cos(θ̄)

∫ ν

−ν
e− j Amn sin(θ̄)θdθ

= ξ2e j Amn cos(θ̄)sinc(Amn sin(θ̄ )ν) (46)

where Amn � 2π(m − n)d/χ , and sinc(x) � sin(x)/x is
the sinc function. Therefore, the covariance matrix R can be
approximated as a parametric matrix with parameters θ̄ and ν.
Note that the parameter ξ2 in (46) can be ignored since as a
scaling factor, it is independent of the signal subspace of R.
Thus the channel covariance estimation problem is simplified
to find the mean angle θ̄ and the angular spread ν. There
are several ways to estimate these two parameters. Here we
introduce a compressed sensing-based method. Recalling that
the channel with a narrow angular spread has an approximate
sparse representation on the angular domain, i.e.

h = Ah̃ (47)

where A is an M × M unitary matrix determined by the array
geometry at the base station. For the uniform linear array, A
becomes the DFT matrix consisting of columns characterized
by different angular coordinates. h̃ is an approximately sparse
vector, of which the mth element is contributed by the paths
around the mth angular coordinate. Due to the narrow angular
spread, a majority of the channel energy is concentrated on
a few consecutive angular coordinates. Hence the mean angle
and angular spread can be coarsely estimated from the sparse
signal h̃. More precisely, the angular coordinate which has the
largest magnitude can be estimated as the mean angle, i.e.

ˆ̄θ =

⎧
⎪⎨

⎪⎩

arccos
[χ

d

( s−1
M

)]
if s ≤ M

2
+ 1

arccos
[χ

d

( s−1
M − 1

)]
otherwise

(48)

where s is the index of the angular coordinate which has
the largest magnitude, i.e. the sth element of h̃ has the
largest magnitude. The angular spread can be estimated as a
symmetric interval around the mean angle, say, [ ˆ̄θ − ν̂, ˆ̄θ + ν̂],
with a majority of the channel energy (say, 90%) included in
this interval. Now it remains to estimate the sparse vector h̃.

Algorithm 1 Estimated Covariance-Assisted MMSE
(EC-MMSE)

Given the received signal y ∈ CT and the pilot signal
X ∈ CT ×M .

1 Recover h̃ from y = X Ah̃ + w via compressed
sensing techniques, where A is a DFT matrix for
the uniform linear array case.

2 Estimate the mean angle ˆ̄θ and angular spread ν̂
based on h̃, then obtain an estimate of the channel
covariance matrix, R̂, via (46).

3 Construct a MMSE estimator ĥ = R̂X H (X R̂X H +
σ 2 I)−1 y to estimate the channel ĥ.

As indicated earlier in this paper, the estimation of h̃ can be
formulated into a sparse signal recovery problem:

y = X h + w = X Ah̃ + w (49)

and can be efficiently solved via greedy or convex optimiza-
tion methods. After h̃ is recovered, the mean angle and the
angular spread can be obtained by using the aforementioned
procedure, and an estimate of the channel covariance matrix
can be computed by substituting the estimated mean angle and
angular spread into (46). Finally, a MMSE estimate of h can
be obtained.

For clarity, we summarize our proposed estimated
covariance-assisted MMSE scheme in Algorithm 1.

Remark 1: Although h can be directly estimated from (49)
via compressed sensing techniques, the MMSE estimator with
the help of the estimated channel covariance matrix can
provide a better estimation accuracy, as demonstrated by our
simulation results. Our proposed MMSE estimator can be
employed either at the mobile station (i.e. user) or at the BS to
estimate the channel. If the channel is estimated by the mobile
station, the full CSI needs to be fed back to the BS, which
causes a large amount of uplink overhead when M is large.
An alternative approach is to let the mobile station simply feed
back the received signal y to the BS, and let the BS form an
estimate of the channel based on y. This approach requires less
uplink overhead since the dimension of y is usually smaller
than the dimension of the channel h. It should be noted for
our proposed method, the received pilot signal y is used for
both the channel covariance matrix and the channel estimation.
Thus no additional overhead is required.

Remark 2: Our scheme assumes a uniform AoA distribution
when estimating the channel covariance matrix. In practice,
the AoA may not strictly follow a uniform distribution.
Nevertheless, note that the eigenvectors of the channel covari-
ance matrix are more closely related to the location of the
interval over which the AoA is distributed, but less dependent
on the specific distribution of the AoA. Hence our estimation
scheme which assumes a uniform AoA distribution can still
reliably estimate the true dominant eigenvectors when there is
a mismatch between the presumed AoA distribution and the
true distribution. As a result, the proposed MMSE estimator
still deliver superior performance, as verified by our simulation
results.
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Fig. 2. NMSE versus 1/σ 2 for different choices of T .

Remark 3: The estimation of the channel covariance matrix
based on the one-ring model was also considered in [18].
Specifically, the work [18] suggested to estimate the channel
covariance matrix as R̂ = F D FH , where F is a DFT matrix
and D is a diagonal matrix that contains the angular power
spectral values. Our simulation results, however, show that, for
a finite number of antennas, this covariance estimation approx-
imation is not accurate enough and a MMSE estimator based
on this covariance approximation even leads to deteriorated
estimation performance. In addition, as indicated in [18], the
estimation of the angular power spectrum requires additional
training overhead and computational cost.

VII. SIMULATION RESULTS

We now carry out experiments to validate our theo-
retical results and to illustrate the performance of the
estimated covariance-assisted MMSE estimator (referred to
as EC-MMSE) proposed in Section VI. Throughout our sim-
ulations, unless otherwise explicitly specified, we assume a
uniform linear array with M = 64 antennas, and the distance
between neighboring antenna elements is set to a half of the
wavelength of the signal.

We first examine the behavior of the MMSE estimator in
the asymptotic low-noise regime when the channel covariance
matrix has a low-rank or an approximate low-rank structure.
The channel covariance matrix is assumed perfectly known
by the MMSE estimator. Fig. 2 depicts the normalized mean-
squared errors (NMSEs) of the MMSE estimator vs. the
reciprocal of the noise variance, where we consider both the
optimal pilot sequence devised according to Theorem 2 and a
random pilot sequence whose entries are i.i.d. normal random
variables. Note that the random pilot sequence has to be
multiplied by a scaling factor to satisfy a power constraint
tr(X X H ) ≤ P that is also imposed on the optimal pilot.
In Fig. 2(a), we randomly generate an exact low-rank channel
covariance matrix R whose rank is set equal to 15. While for
Fig. 2(b), the channel covariance matrix is generated according

to the one-ring model, where the AoAs are assumed to be
uniformly distributed over an interval [θ̄ − ν, θ̄ + ν], with
the mean angle and the angular spread given respectively by
θ̄ = π/6 and ν = π/10, the total number of i.i.d. paths
is set to P = 100, and αp follows a complex Gaussian
distribution with zero mean and variance ξ2 = 1. A numerical
average is utilized to compute (43) and obtain the channel
covariance matrix for the one-ring model. Numerical results
show that the covariance matrix has an approximate low-rank
structure with about 12 dominant eigenvalues. To examine
the impact of the number of pilot symbols on the estimation
performance, we consider three different choices of T in our
simulations, namely, T = 20 > rank(R), T = rank(R), and
T = 10 < rank(R). From Fig. 2, we observe that when
the number of symbols T is no less than the rank of the
channel covariance matrix, the NMSE of the MMSE estimator
approaches zero in the limit of vanishing noise, i.e. σ 2 → 0,
whatever an optimal pilot sequence or a random pilot sequence
is employed. On the other hand, when T < rank(R), there
exists an error floor for both the optimal and random pilots,
that is, once the error floor is reached, a decrease in the noise
power does not bring any additional estimation performance
improvement. This result corroborates our theoretical analysis
in Section III. Given a power constraint, the optimal pilot
sequences for T > rank(R) and T = rank(R) are identical.
Thus the NMSEs achieved by optimal pilot sequences remain
unaltered for these two cases. We also observe that for the
approximate low-rank case, it seems that an error floor exists
even for an optimal pilot design with T ≥ rank(R). This
is because we only retain the largest 12 eigenvalues of the
approximate low-rank channel covariance matrix and ignore
the rest small eigenvalues when devising the optimal pilot
design.

Next, we evaluate the performance of the EC-MMSE esti-
mator proposed in Section VI. In our simulations, channels are
randomly generated according to the one-ring model described
above, where we set θ̄ = π/6 and ν = 5°. Fig. 3(a) depicts
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Fig. 3. NMSEs of respective schemes vs. SNR and number of symbols T .

Fig. 4. Histogram of the NMSE associated with the EC-MMSE estimator and the compressed sensing method.

the NMSEs of respective methods as a function of the signal-
to-noise ratio (SNR), where we set T = 20 and the SNR
is defined as 10 log(‖Xh‖2

2/T σ 2). Results are averaged over
1000 independent runs, with the pilot sequence X and the
channel h randomly generated for each run. In each run,
the noise variance σ 2 is adjusted to meet a pre-specified
SNR. A compressed sensing method and a MMSE estimator
which has access to the true covariance matrix2 are also
included for comparison. For the compressed sensing method,
a fast iterative shrinkage-thresholding algorithm (FISTA) [31]
is employed to estimate the channel based on (49). The EC-
MMSE estimator is built on the compressed sensing method:
after the virtual channel h̃ is estimated via the FISTA, we
estimate the mean angle and the angular spread, then obtain an
estimate of the channel covariance matrix, and finally construct
the MMSE estimator. In our simulations, the angular spread
is estimated as a symmetric interval around the estimated

2The true covariance matrix is calculated according to (43) via numerical
average.

mean angle, with 95% of the channel energy concentrated
on the interval. From Fig. 3(a), we see that our proposed
scheme achieves a notably higher accuracy compared to the
compressed sensing method. This result shows that the esti-
mated covariance matrix, although imperfect, can still provide
a substantial performance improvement. Fig. 3(b) plots the
NMSEs of respective schemes vs. the number of symbols T ,
where we set SNR = 20dB. This result again demonstrates the
advantage of the proposed EC-MMSE estimator over the com-
pressed sensing method. To better illustrate the performance,
we plot the histogram in Fig. 4 to show the distribution of the
NMSE for the EC-MMSE and the compressed sensing method,
respectively. From Fig. 4, we see that the proposed EC-MMSE
yields an accurate channel estimate (with an NMSE within the
range [0, 0.02]) with a high probability, whereas the NMSEs
associated with the compressed sensing method spread across
the range [0.04, 0.4] with a high probability.

Also, to examine the robustness of the proposed
EC-MMSE estimator against the model mismatch, in our
simulations, we assume that the angle of arrival follows
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Fig. 5. Gaussian AoA: NMSEs of respective schemes vs. SNR and number of symbols T .

a Gaussian distribution, with the mean and the standard
deviation set to be θ̄ = π/6 and σθ = π/30, respectively. Note
that in the proposed EC-MMSE estimator, a uniform AoA
distribution is assumed to estimate the channel covariance
matrix. In Fig. 5(a) and Fig. 5(b), we plot the NMSEs
of respective schemes as a function of the SNR and the
number of symbols, respectively, where we set T = 20 for
Fig. 5(a) and SNR = 20dB for Fig. 5(b). Results are averaged
over 1000 independent runs, with the pilot sequence and the
channel randomly generated for each run. In each run, the
noise variance is adjusted to meet a pre-defined SNR. From
Fig. 5, we see that the proposed EC-MMSE estimator achieves
superior performance even the presumed AoA distribution is
different from the true one. The reason, as already explained
in the previous section, is that the eigenvectors of the channel
covariance matrix are less dependent on the AoA distribution.
Therefore our scheme which assumes a uniform AoA distri-
bution can still reliably estimate the signal subspace spanned
by dominant eigenvectors, and as a result, the EC-MMSE
estimator still outperforms the compressed sensing method by
a big margin.

Next, we examine the robustness of our proposed scheme
against the one-ring model mismatch. It is known that the
one-ring model is characterized by a small angular spread
(typically around 5°–10°). Thus a wider angular spread implies
that the channel deviates more from the one-ring model. Fig. 6
plots the NMSEs of respective schemes as a function of the
angular spread ν, where we set T = 30 and SNR = 20dB.
Channels are randomly generated according to the one-ring
model, with θ̄ = π/6 and the angular spread ν varying from
5° to 25°. From Fig. 6, we can see that the performance
gain achieved by the EC-MMSE estimator shrinks as the
angular spread becomes wider and wider. When the angular
spread ν increases up to 20°–25°, our proposed scheme
achieves performance similar to that of the compressed sensing
technique. This is due to the fact that for our scheme, the
covariance matrix approximation based on the Taylor expan-
sion is no longer accurate when the angular spread is large,
and as a consequence, the use of inaccurate channel statistical

Fig. 6. NMSEs of respective algorithms vs. the angular spread ν (in angular
degrees).

information leads to no performance improvement. Neverthe-
less, our proposed EC-MMSE scheme achieves a performance
improvement over the compressed sensing technique for a
moderately large angular spread, say, ν ∈ [10°, 20°]. Thus
our proposed estimator exhibits some robustness against the
one-ring model mismatch.

Lastly, to more thoroughly evaluate the performance of
the proposed EC-MMSE estimator, we examine its robust-
ness against estimation errors of the mean angle and the
angular spread. Since in the EC-MMSE scheme, the channel
covariance matrix is obtained based on the estimated mean
angle and angular spread, estimation errors of the mean angle
and the angular spread will impair the estimation quality of
the covariance matrix, which, in turn, affects the estimation
accuracy of the EC-MMSE estimator. In Fig. 7(a), we plot
the NMSE of the EC-MMSE estimator as the estimated mean
angle deviates from the true one, where we set T = 15,
SNR = 20dB, and the angular spread is assumed perfectly
known. Results are averaged over 103 independent runs, and
for each run, the pilot sequence is randomly generated to meet
a pre-specified power constraint, and the channel is randomly
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Fig. 7. NMSE of EC-MMSE estimator vs. estimation errors of the mean angle and the angular spread.

generated according to the one-ring model, with θ̄ = π/6 and
ν = 10°. We see that the EC-MMSE estimator exhibits some
robustness against the mean angle mismatch: the EC-MMSE
estimator incurs mild performance degradation if the deviation
of the estimated mean angle from the true one is small, say,
|θ̄ − ˆ̄θ | < 3°. Nevertheless, a large deviation would result
in a significant performance degradation. Fig. 7(b) depicts
the behavior of the proposed EC-MMSE estimator when the
estimated angular spread deviates from the true angular spread,
where the mean angle is assumed perfectly estimated. From
Fig. 7(b), it can be observed that the EC-MMSE estimator
is robust to an overestimation of the angular spread, but
is sensitive to the underestimation errors: it suffers from
a substantial performance loss when the estimated angular
spread is smaller than the true one. Hence it is safer to
overestimate than to underestimate the angular spread.

VIII. CONCLUSIONS

We considered the problem of downlink training and chan-
nel estimation for FDD massive MIMO systems. Since the
required amount of overhead for downlink training grows
linearly with the number of transmit antennas at the BS, reduc-
ing the overhead for downlink training and uplink feedback
has been a central issue in FDD massive MIMO systems.
In this paper, we exploited the low-rank structure of the
channel covariance matrix to reduce the overhead for downlink
training. We studied the asymptotic behavior of the MMSE
estimator when the channel covariance matrix has a low-rank
structure. Our analysis shows that the MMSE estimator can
achieve an exact channel recovery in the asymptotic low-noise
regime, provided that the number of pilot symbols in time is
no smaller than the rank of the channel covariance matrix.
We also examined the optimal pilot sequence design for the
single-user case, and an asymptotic optimal pilot sequence
design for the multi-user scenario. We also develop a training-
free scheme to estimate the channel covariance matrix.
Simulation results show that a MMSE estimator based on
the estimated covariance matrix achieves a substantial perfor-

mance improvement as compared with the compressed sensing
method, and is robust against the AoA distribution mismatch
and the angular spread estimation error.
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