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One-Bit Quantizer Design for
Multisensor GLRT Fusion
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Abstract—In this letter, we consider a decentralized detection
problem in which a number of sensor nodes collaborate to detect
the presence of an unknown deterministic signal. Due to stringent
power/bandwidth constraints, each sensor quantizes its local ob-
servation into one bit of information. The binary data are then
sent to the fusion center (FC), where a generalized likelihood ratio
test (GLRT) detector is employed to make a global decision. In this
context, we study one-bit quantizer design and analyze the asymp-
totic performance of the one-bit GLRT detector for cases where the
quantized data are sent to the FC via perfect or imperfect channels.
Simulation results are carried out to corroborate our theoretical
analysis and to illustrate the performance of the proposed scheme.

Index Terms—Decentralized detection, one-bit quantization,
wireless sensor networks (WSNs).

I. INTRODUCTION

HE problem of decentralized detection in wireless sensor

networks (WSNs) has attracted much interest over the
past decade. A large amount of studies in decentralized detec-
tion [1]-[9] assumes that the knowledge of the probability den-
sity function (pdf) under either hypothesis is available. In this
case, a local likelihood ratio test (LRT) can be conducted at each
sensor and the local decision is sent to a fusion center (FC) to
reach a global decision. The LRT has been proved to be the
optimal local sensor decision for a binary hypothesis problem
under both Bayesian and Neyman-Pearson criteria [1], [2]. Nev-
ertheless, the search of optimal local detectors is still exponen-
tially complex because optimal local quantization thresholds are
generally different and need to be jointly determined along with
the global fusion rule [3], [4].

In this letter, we consider the problem of detecting the pres-
ence of an unknown deterministic signal. Due to the lack of
signal knowledge, one cannot compute the local likelihood ratio
at each sensor. A natural strategy in this case is to send sensor’s

Manuscript received November 14, 2012; revised January 14, 2013; accepted
January 17, 2013. Date of publication January 28, 2013; date of current version
February 05, 2013. This work was supported in part by the National Science
Foundation of China under Grant 61172114, the National Science Foundation
under Grant ECCS-0901066, the Program for New Century Excellent Talents in
University (China) under Grant NCET-09-0261, and the Fundamental Research
Funds for the Central Universities (China) under Grant ZYGX2010J011. The
associate editor coordinating the review of this manuscript and approving it for
publication was Prof. Anna Scaglione.

J. Fang, Y. Liu, and S. Li are with the National Key Laboratory of Sci-
ence and Technology on Communications, University of Electronic Science and
Technology of China, Chengdu 611731, China (e-mail: JunFang@uestc.edu.cn;
201121260108@std.uestc.edu.cn; Isq@uestc.edu.cn).

H. Li is with the Department of Electrical and Computer Engineering,
Stevens Institute of Technology, Hoboken, NJ 07030 USA (e-mail:
Hongbin.Li@stevens.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LSP.2013.2243144

original observations to the FC. A generalized likelihood ratio
test (GLRT) is then conducted to make a final decision. Sending
original observations to the FC, however, could be prohibitive
for sensor networks whose bandwidth and energy are severely
constrained. To meet stringent bandwidth/energy constraints,
we consider the strategy where each sensor quantizes its local
observation into one bit of information. A GLRT detector based
on one-bit quantized data can be developed to form a global de-
cision. Multisensor GLRT fusion based on quantized data was
studied in [10], [11] in the context of detecting a source with
unknown locations and fusing dependent decisions. Neverthe-
less, optimal quantizer design and achievable asymptotic perfor-
mance were not addressed. In other studies [12], [13], a simple
yet not optimized fusion rule was proposed to detect an un-
known deterministic signal with quantized data. The problem of
detecting a deterministic spatially-varying signal with unknown
signal strength was considered in [14], where an asymptotically
locally most powerful detector was proposed by exploiting the
fact that the distribution of alarmed sensors satisfies the local
asymptotic normality.

The aim of this letter is to examine the one-bit quantiza-
tion design and analyze the asymptotic performance of the pro-
posed one-bit GLRT detector for both perfect channels and bi-
nary symmetric channels between sensors and the FC. Our anal-
ysis shows that, unlike the LRT fusion rule in which optimal
local quantization thresholds are generally different, the optimal
quantization thresholds for multisensor GLRT fusion are iden-
tical and should be equal to zero, irrespective of sensor obser-
vation disparities. In addition, when the optimal quantization
thresholds are selected, the one-bit GLRT detector that uses only
[ N7 /2] sensors, with each sensor sending one bit of informa-
tion, can attain the same performance as the GLRT detector that
requires original sensor observations of N sensors. Thus con-
siderable bandwidth/energy savings can be achieved.

II. PROBLEM FORMULATION

We consider a binary hypothesis testing problem in which
a number of sensors collaborate to detect the presence of an
unknown scalar deterministic signal #. The binary hypothesis
testing problem is formulated as follows:

H()Z
Hll

Tn = Wn,

:1;11:hfne+wn-, n:L...,N (1)

where r,, denotes the nth sensor’s observation, 4, € R is the
known observation coefficient defining the input/output relation
of the nth sensor, w,, denotes the additive Gaussian noise with
zero mean and variance o2, and the noise is assumed indepen-
dent across sensors. To meet stringent bandwidth/power bud-
gets in wireless sensor networks (WSNs), each sensor quan-
tizes its real-valued observation into one bit of information. We

1070-9908/$31.00 © 2013 IEEE



258

first assume an ideal channel between sensors and the fusion
center (FC) through which the date can be received without dis-
tortion. An imperfect link scenario where the binary data are
sent through binary symmetric channels will be considered in
Section V. For each sensor, given a quantization threshold 7,,,
the binary data b,, is given by

by, = sgu(xr, — ), ... N )
where sgn(z) = 1 if z > 0, otherwise sgn(z) = 0. Upon
receiving binary data {f,,}2_,, the FC forms a final decision
about the absence or presence of #. The problem of interest is to
determine the one-bit quantizer for each sensor, and to develop
a detector to detect # given {b,,}2_, for the FC.

III. GLRT DETECTOR

Suppose the quantization threshold 7,, is predetermined for
each sensor. A generalized likelihood ratio test (GLRT), which
replaces the unknown parameter with the maximum likelihood
estimate (MLE), can be used to detect #. For our case where
there is no unknown parameter under Hy, the GLRT decides
Hy if

» P(bl6; Hy)
7o) = "By

3)
where the subscript ‘Q’ stands for the one-bit quantization
scheme, b £ [b1by...by]T, § is the MLE of 6, P(b|6; H;)
and P(b|H,) denote the conditional probability distribution
(mass) function under f; and Hj, respectively, and 7 is a
threshold determined by the specified false alarm probability.
The MLE of § can be computed by maximizing the log-likeli-
hood function of #

f = arg max L{#) (€))]

where the log-likelihood function Z(#) can be written as

L(h) 2 Iog P(by,....bx:6)

= Z{bn log[F, (Tn — hin8)]
n=1

+ (1= bn)log[l = F, (Ta = hat)]}  (5)
by noting that {h,,} are independent and the probability mass
function (PMF) of b,, is given by

P(bn30) = [Fu, (Ta = ha)]" [1 = Fup, (70 = Bt (6)
in which F,, denotes the complementary cumulative density
function (CCDF) of w,,. The MLE of # usually does not admit
a closed-form analytic solution. Nevertheless, it can be readily
verified that L(f) is a concave function for Gaussian noise
[15]. Thus the ML estimation of # is a well-behaved numer-
ical problem. Substituting # back to (3), we can compute the

generalized likelihood ratio and make a final decision.
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IV. OPTIMAL QUANTIZER DESIGN AND ASYMPTOTIC
PERFORMANCE ANALYSIS

In this section, we study the optimal one-bit quantization de-
sign for each sensor and analyze the asymptotic performance of
the GLRT detector. From [16], we know that the modified test
statistic 21n Ty (b) asymptotically follows

2
) e X1 under H()
2InTo(b) { xZ(Aq) under H; )

where X,Q, denotes a central chi-squared distribution with v de-
grees of freedom, and x/?(\) denotes a non-central chi-squared
distribution with © degrees of freedom and noncentrality param-
eter A. The noncentrality parameter Ay can be computed as
Ao = (61 — 80)TI(80)(61 — o) ®)
where 68y = 0 and #; = # denote the value of # under Hy and

H respectively, and I(#) denotes the Fisher information (FI)
which is given by

npu (Tn - h"ne)
hn6’)[1 — Fy (mn —

©)

0-Li

and p.,., () denotes the probability density function (pdf) of
w,. We see that the noncentrality parameter is a function of
the quantization thresholds {7,,}_;. Clearly, given a speci-
fied false alarm probability, a larger noncentrality parameter A
results in better detection performance. Therefore the optimal
quantization thresholds are those that maximize the noncen-
trality parameter Ag:

hn8)]

UJ T'IL

N h2p2 (1,)
max Ao = 62 oty 10
{Tn} @ nz::l Fwn (Tn)[l - Fu,vn (Tn)] ( )

The above optimization can be decoupled into a set of indepen-
dent quantization threshold design problems

A p%un (Tn)

Vn
qu,,,, (Tn)[l - Eu,, (Tn)]

max  g(r,) (11)
For the Gaussian random variable w.,,, the function g(7,) is a
unimodal, positive and symmetric function attaining its max-
imum when 7,, = 0 [15]. Therefore the optimal quantization
threshold for each sensor is given by

Th=0 Vn (12)
Substituting the optimal quantization thresholds back into (10),
the largest achievable noncentrality parameter of one-bit GLRT

detector is given by

(13)

N 2
= 2
T ol

Note that the optimal quantization thresholds given in (12) holds
valid irrespective of observation disparities across sensors. This
is different from the likelihood ratio test (LRT)-based fusion
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rule in which optimal local quantization thresholds are generally
different and functions of observation and channel parameters.

A. Comparison With the Clairvoyant GLRT Detector

It is interesting to examine the performance of the one-bit
GLRT detector as compared with a GLRT detector that has full
access to sensors’ original observations (also referred to as the
clairvoyant GLRT detector). Apparently, the latter detector pro-
vides a bound on the achievable performance of all rate-con-
strained methods. It can be easily derived that the clairvoyant
GLRT detector decides H; if

2
= N By,
n=1 o2

Tng(x) = exp ~ " > (14)
The modified test statistic asymptotically follows
2
a der H
21n 7T; LN uneer o 1
nTng(x) { xZ(Ang) under Hy (s)

where the subscript ‘NQ’ represents no quantization, and Ang
can be easily computed and given as

N h2
Ing =62y = 16
NQ ; e (16)
Comparing (13) with (16), we quickly reach that
Ao = 2 A (17)
Q= T NQ

When h,, = h and 02> = o2 for all n, the above relation-
ship implies that the performance loss of the one-bit scheme
due to quantization can be compensated by slightly increasing
the number of sensors by a factor of 7/2. In other words, to
meet the same detection performance, the number of sensors
required by the one-bit GLRT detector is 7 /2 times the number
of sensors used by the clairvoyant GLRT detector. The one-bit
scheme, however, may still be considered more efficient than
the clairvoyant detector in a rate distortion sense since it only
needs to transmit a total number of [ N7r/2] bits, in which [z]
denotes the ceiling operator that gives the smallest integer no
smaller than 2z, while the clairvoyant detector requires sending
N real-valued messages to the FC.

For the general case where sensors’ local signal-to-noise ra-
tios (SNRs) {h2/o2} are different, we cannot guarantee that
the one-bit GLRT scheme with [N7/2] sensors achieves the
same performance as the clairvoyant GLRT detector using N
sensors. Nevertheless, if sensors in the network are uniformly
distributed and the number of sensors is sufficiently large, then
we can expect that the percentage of sensors corresponding to
a certain SNR remains fixed. Therefore increasing the number
of sensors by a scaling factor would result in an increase in the
noncentrality parameter by approximately a same factor. In this
case, our argument made in the last paragraph remains valid.

V. EXTENSION TO THE IMPERFECT CHANNEL CASE

The previous section assumes that the one-bit binary data can
be transmitted to the FC without any distortion. In this section,
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we consider an imperfect link scenario where the one-bit quan-
tized data are sent to the FC over binary symmetric channels
(BSC), i.e.,

_J b
Yn = 1 - bn,

where y,, denotes the received data and p is the crossover prob-
ability of the BSC channel. Our objective is to detect § based
on received data {y,, }. Again, the modified test statistic for the
GLRT detector asymptotically follows the same distributions
as that of (7), except with a different noncentrality parameter
under the alternative hypothesis. To evaluate the detection per-
formance in the presence of transmission errors, we need to
compute the FI and the corresponding noncentrality parameter.
For the channel model being considered here, the PMF of the
received data y,, is given by

P(yn; 0)
=Pyn=bn) (L —p)+ Plyn=1-0b,)-p
= (1=p) - [Fu,(tn = haO)P"[1 = Fyy (70 — haf)]
+p-[Fu, (0 = b)) ¥ [1 = Fy, (75, — hnu0)]Y" (18)

n

with probability 1 — p
with probability p

The likelihood function is a product of the PMFs associated
with {y,, }. The FI can be computed by taking the second-order
derivative of the likelihood function

(1 —2p)°h3p,, (7o — hnf)

N
IQ-BSC = Z{ [p _|_ (1 — 2P)Fwn (Tn — hne)]

n=1

1
X 19)
[L—p—(1—-2p)F,, (7n — hp8)] }
where the subscript ‘Q-BSC’ stands for the one-bit quantization

scheme with its quantized data transmitted through BSC chan-
nels. From (8), the noncentrality parameter can be computed as

N
: : h2pi, (Tn
Ag-Bsc = 0%(1 — 2p)? Z{ P, (T0)

[p+ (1= 2p)Fu, (70)]

n=1

1
X [1 —-p— (1 — 2p)Fwn, (Tﬂ)] } (20)

As expected, the noncentrality parameter Ag.psc not only
depends on the quantization thresholds {7, }, but also on the
crossover probability p. Given a specified p, the optimal quan-
tization threshold for each sensor can be obtained by solving

max pi (70)
™+ =2p)Fy, ()]l —p— (1 —2p)F,, (Tn)](Zl)
The above optimization can be re-expressed as
A L 12 \Tn 1 - Fw n
min 23 Fun (70 (7)) (22)

Tn P ;211,7 (TTL )

where A £ (p — p?)/(1 — 2p)? is a positive value. Since both
A/pl (ma) and Fy, (12)(1 — Fy, (1)) /P2, (o) attain their
minima when 7,, = 0, the optimal quantization threshold is
independent of the probability p and equal to zero, i.e.,

=0 VYn

(23)
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Fig. 1. Detection probability vs. number of sensors for one-bit GLRT detector
and the clairvoyant detector, Py = 0.1.

When the optimal quantization thresholds are adopted, the non-
centrality parameter Aq-psc achieves its maximum:

N

202(1 — 2p)? h2
Ag-psc =~ 2 o (24)
Observing (13) and (24), we have
)\Q-BSC = (1 — 2p)2)\Q (25)

This relationship quantifies the performance loss due to im-
perfect links. Additionally, it tells us how many sensors are
needed in order to achieve the same performance as the error-
free one-bit GLRT detector and the clairvoyant detector.

VI. SIMULATION RESULTS

We provide simulation results to corroborate our analysis
and to illustrate the performance of the proposed one-bit GLRT
scheme. We compare the one-bit GLRT scheme with the
clairvoyant detector that has full access to sensors’ original
observations. In our simulations, we assume a homogeneous
scenario where all sensors have identical observation qualities
with A,, = 1 and (T?L = 1 for all n. Optimal quantization thresh-
olds are selected for the proposed schemes in our experiments,
ie., 7, = (,V n. Fig. 1 plots the detection probabilities of the
clairvoyant GLRT detector and the one-bit GLRT detector (with
perfect/imperfect links between sensors and the FC) versus the
number of sensors. The crossover probability for the BSCs is
set to be 0.2, i.e., p = 0.2. In the figure, solid lines represent
the theoretical asymptotic performance, while the plus marks,
+, represent the performance of the Monte Carlo experiments
obtained by averaging over 10° independent runs. From Fig. 1,
we see that the theoretical asymptotic analysis provides a good
approximation of the experimental performance, even when
the number of sensors is small. In addition, it can be observed
that to achieve the same detection probability, say, Pp = 0.8,
the one-bit GLRT detector (with perfect links) requires about
40 sensors, which is approximately 7/2 times the number of
sensors needed by the clairvoyant detector (the clairvoyant
detector requires about 25 sensors to achieve Pp = 0.8). The
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one-bit GLRT detector incurs considerable performance degra-
dation due to imperfect transmissions. From (25), we know that
to attain a same detection rate, the number of sensors required
in the presence of transmission errors is 1/(1 — 2p)? times that
for the error-free case. Hence to attain a detection probability of
0.8, the required number of sensors is 40/(1 — 2p)? =~ 111. As
observed from the figure, this theoretical prediction coincides
with our simulation result very well.

VII. CONCLUSIONS

We studied multisensor GLRT detection fusion based on
one-bit quantized data. The optimal quantization thresholds
for sensors are shown independent of the unknown signal to
be detected, and are equal to zero for both perfect links and
imperfect binary symmetric channels between sensors and the
FC. Our analysis indicates that the proposed one-bit GLRT
scheme can achieve the same detection performance as a clair-
voyant detector by slightly increasing the number of sensors by
a factor of 7 /2.
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