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ABSTRACT

This paper considers the problem of reconstructing sparse signals from one-bit quantized
measurements. We employ a log-sum penalty function, also referred to as the Gaussian
entropy, to encourage sparsity in the algorithm development. In addition, in the proposed
method, the logistic function is introduced to quantify the consistency between
the measured one-bit quantized data and the reconstructed signal. Since the logistic
function has the tendency to increase the magnitudes of the solution, an explicit unit-
norm constraint is no longer necessary to be included in our optimization formulation. An
algorithm is developed by iteratively minimizing a convex surrogate function that bounds
the original objective function. This leads to an iterative reweighted process that
alternates between estimating the sparse signal and refining the weights of the surrogate
function. Numerical results are provided to illustrate the effectiveness of the proposed

algorithm.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Conventional compressed sensing framework recovers a
sparse signal x e R" from only a few linear measurements:

y=Ax (1)

where y e R™ denotes the acquired measurements, A € R™*"
is the sampling matrix, and m < n. Such a problem has been
extensively studied and a variety of algorithms that provide
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consistent recovery performance guarantee were proposed,
e.g. [1,2]. In practice, however, measurements have to be
quantized before being further processed. Moreover, in
distributed systems where data acquisition is limited by
bandwidth and energy constraints, aggressive quantization
strategies which compress real-valued measurements into
one or only a few bits of information are preferred. This has
inspired recent interest in studying compressed sensing
based on quantized measurements. Specifically, in this
paper, we are interested in an extreme case where each
measurement is quantized into one bit of information

b = sign(y) = sign(Ax) (2

where “sign” denotes an operator that performs the sign
function element-wise on the vector, the sign function
returns 1 for positive numbers and —1 otherwise. Clearly,
in this case, only the sign of the measurement is retained
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while the information about the magnitude of the signal is
lost. This makes an exact reconstruction of the sparse signal
x impossible. Nevertheless, if we impose a unit-norm on the
sparse signal, it has been shown [3,4] that signals can be
recovered with a bounded error from one bit quantized
data. Besides, in many practical applications such as
source localization, direction-of-arrival estimation, and
chemical agent detection, it is the locations of the
nonzero components of the sparse signal, other than
the amplitudes of the signal components, that have
significant physical meanings and are of our ultimate
concern. Recent results [5] show that asymptotic reliable
recovery of the support of sparse signals is possible even
with only one-bit quantized data.

The problem of recovering a sparse or compressible
signal from one-bit measurements was first introduced by
Boufounos and Baraniuk in their work [6]. Following that,
the reconstruction performance from one-bit measure-
ments was more thoroughly studied [3-5,7,8] and a
variety of one-bit compressed sensing algorithms such as
binary iterative hard thresholding (BIHT) [3,9], matching
sign pursuit (MSP) [10], [; minimization-based linear
programming (LP) [4], and restricted-step shrinkage
(RSS) [11] were proposed. Although achieving good recon-
struction performance, these algorithms either require the
knowledge of the sparsity level [3,10] or are [-type
methods that often yield solutions that are not necessarily
the sparsest [4,11]. In this paper, we study a new method
that uses the log-sum penalty function for sparse signal
recovery. The log-sum penalty function has the potential
to be much more sparsity-encouraging than the [; norm.
By resorting to a bound optimization approach, we
develop an iterative reweighted algorithm that succes-
sively minimizes a sequence of convex surrogate functions.
The proposed algorithm has the advantage that it does not
need the cardinality of the support set, K, of the sparse
signal. Moreover, numerical results show that the pro-
posed algorithm outperforms existing methods in terms of
both the mean squared error and the support recovery
accuracy metrics.

2. Problem formulation

Since the only information we have about the original
signal is the sign of the measurements, we hope that the
reconstructed signal % yields estimated measurements
that are consistent with our knowledge, that is

sign(@’x)=b; Vi 3)
or in other words
b,‘a;r?} >0 Vi 4)

where a; denotes the transpose of the ith row of the
sampling matrix A, b; is the ith element of the sign vector
b. This consistency can be enforced by hard constraints
[4,11] or can be quantified by a well-defined metric which
is meant to be maximized/minimized [3,10,12]. In this
paper, we introduce the logistic function to quantify the
consistency between the measurements and the estimates.

The metric is defined as
m
s L 3 log(a(b;a] %)) (5)
i=

where a(x) £ 1/(1+exp(—x)) is the logistic function. The
logistic function, with an ‘S’ shape, approaches one for
positive x and zero for negative x. Hence it is a useful tool
to measure the consistency between b; and a’x. Also, the
logistic function, differentiable and log-concave, is more
amiable for algorithm development than the indicator
function adopted in [3,10,12]. Note that the logistic func-
tion, also referred to as the logistic regression model, has
been widely used in statistics and machine learning to
represent the posterior class probability [13].

Naturally our objective is to find x to maximize the
consistency between the acquired data and the recon-
structed measurements, i.e.

max ¢(x)= E log(a(b;al x)) (6)
X i=1

This optimization, however, does not necessarily lead to
a sparse solution. To obtain sparse solutions, a sparsity-
encouraging term needs to be incorporated to encourage
sparsity of the signal coefficients. The most commonly
used sparsity-encouraging penalty function is [; norm. An
attractive property of the [; norm is its convexity, which
makes the [;-based minimization a well-behaved numer-
ical problem. Despite its popularity, [; type methods suffer
from the drawback that the global minimum does not
necessarily coincide with the sparsest solution, particu-
larly when only a few measurements are available for
signal reconstruction [14,15]. In this paper, we consider
the use of an alternative sparsity-encouraging penalty
function for sparse signal recovery. This penalty function,
referred to as the Gaussian entropy, is defined as

ho@®) = i] log(x? +e¢) 7

where x; denotes the ith component of the vector x, and
¢ >0 is a small parameter to ensure that the function is
well-defined. Such a log-sum penalty function was first
introduced in [16] for basis selection and later more
extensively investigated in [15,17-20]. This penalty func-
tion behaves more like the Iy norm than the [; norm
[15,21]. It can be readily shown that each individual log
term log(x? +¢), when ¢— 0, has infinite slope at x; =0, Vi,
which implies that a relatively large penalty is placed on
small nonzero coefficients to drive them to zero. Using this
penalty function, the problem of finding a sparse solution
to maximize the consistency can be formulated as follows:

X = arg min L(x)

=arg mxin - El log(a(bix"a;))+ 2 il log(x? +e¢) 8)
1= 1=
where 1 is a parameter controlling the trade-off between
the quality of consistency and the degree of sparsity. Note
that for most state-of-the-art one-bit compressed sensing
algorithms (e.g. [4,10,11]), a unit-norm constraint has to be
imposed on the solution, otherwise the algorithms yield a
trivial all-zero solution. Nevertheless, such a unit-norm
constraint is non-convex [4,11]. To deal with the unit-
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norm constraint, sophisticated optimization techniques
[11] or alternative constraints [4] need to be used. For
our formulation, such a unit-norm constraint is no longer
necessary. This is because the logistic function that is
used to measure the sign consistency has a tendency to
increase the magnitudes of the solution: note that the logistic
function o(b;alx) achieves its maximum value when b;alx
goes to infinity. Hence all-zero is not a minimizer of the
new cost function, and the all-zero trivial solution can be
prevented without imposing the unit-norm constraint.

3. One-bit compressed sensing
3.1. Proposed algorithm

We develop our algorithm based on the bound optimi-
zation approach [22]. The idea is to construct a surrogate
function Q(x1%“) such that

QIx")—Lx) =0 )

and the minimum is attained when x = 2, ie. Q&%) =
L&™). In the following, we show that optimizing L(x) can be
replaced by minimizing the surrogate function Q(x|%")

iteratively. Suppose that

2D — me(x|x([))

We have

(t+1)) L(X(Hl)) Q(x(H])lx(t))—l—Q(?A{(H]) (f))
<L(x(“) Q(x(f)lA(t))_._Q(x(t-%—l) (t))
<L(A(t)) Q(X(t)lA([))—ﬁ—Q(X(t)IA(t))
=L&"Y) (10)

where the first inequality follows from the fact that
Qx1%")—L(x) attains its minimum when x =&"; the sec-
ond inequality comes by noting that Q(x/%") is minimized at
x=x""D. We see that, through minimizing the surrogate
function iteratively, the objective function L(x) is guaranteed
to be non-increasing at each iteration.

We now discuss how to find a surrogate function for
(8). Ideally, we hope that the surrogate function is differ-
entiable and convex so that the minimization of the
surrogate function is a well-behaved numerical problem.
Since the consistency evaluation term is convex, our
objective is to find a convex surrogate function for the
log-sum function defined in (7). An appropriate choice of
such a surrogate function has a quadratic form (see Fig. 1)
and is given by

n 2
fmﬁ52<x+ +md®%+@4> (11)

&Py
We have

n 2
f®")~hox)= ¥ <( }(‘t);— —+log (" +e)
-1 IOg(xi2+€)> & 3 gon) (12)
i=1

Note that g(x;) is a symmetric function with respect to the
origin. Examining the first derivative of g(x;) for x; > 0, we

5 N T T T T T T T T
\ —— Gaussian Entropy

- - - Surrogate Function ||

-2 1
-5 -4 -3 -2

Fig. 1. The log-sum penalty function and its surrogate function, n=1,
e=0.01.

find that the first derivative is a monotonically increasing
function of x; (for x; > 0) and equal to zero at x; = \xm,
which suggests that g(x;) for x; >0 is non-negative
and attains its minimum 0 when x; = [8\"|. Since g(x) is
symmetric, g(x;) also achieves its minimum when x; _xf )

Therefore we have
f@RY)~he@) =0 (13)

with the minimum O attained when x = 2. The convex
function f(x%"”) is thus a desired surrogate function
for the Gaussian entropy hg(x). As a consequence,
the surrogate function for the objective function L(x) is
given by

Qx(2")
=_ E log(a(bixTai))+/1 Z

=4 (x(”)

2
+ constant

= E log(a(bix"a;) +x"D&")x+constant  (14)

i=1
where
(@Yo

Optimizing L(x) now reduces to minimizing the surro-
gate function Qx|x"™) iteratively. For clarity, the iterative
algorithm is briefly summarized as follows.

D) 2 diag(()’ +o) ..

. e ee qs . ~(0
1. Given an initialization &©.

2. At iteration t >0, minimize Q(x|x()) which vyields a
new estimate ‘", Based on this new estimate,
construct a new surrogate function Q(x|X A(”U)

3. Go to Step 2 if &0 - %915 > @, where o is a pre-
scribed tolerance value; otherwise stop.

3.2. Discussions

The second step in our algorithm involves optimization
of the surrogate function Q(x|ftm) Since the surrogate
function is differentiable and convex, minimizing Q(x|x(t))
is a well-behaved numerical problem. Also, the gradient
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Fig. 2. False alarm and miss rates of respective algorithms, m=100, n=>50. (a) False alarm rates of respective algorithms, (b) Miss rates of respective

algorithms.

and the Hessien matrix of the surrogate function Q(x\fc(t))

have analytical expressions which are respectively given as

g=— 3 (1-obxayba;+22DE")x
i=1

H= E o(bx"a;)(1— o(bix" a)a;al +2,DE")
i<

Hence Newton's method which has a fast convergence rate
can be used and is guaranteed to converge to the global
minimum.

As mentioned earlier, the proposed algorithm results in
a non-increasing objective function value and eventually
converges to a stationary point of L(x). It should be
emphasized that the cost function L(x) is non-convex.
Hence convergence to the global minimum is not guaran-
teed by any gradient-based search methods. Nevertheless,
numerical results demonstrate that the proposed algo-
rithm usually converges to a stationary point that is close
to the true solution. Note that the proposed algorithm does
not require the knowledge of the sparsity level K. For a
pre-specified 1 and ¢, the iterative process determines
the sparsity level of the signal in an automatic manner.
Although the choice of 1 and e has an influence on the
sparsity level of the estimated signal, our experiments
suggest that the proposed algorithm delivers robust and
consistent signal recovery performance as long as 4 and e
are set in a reasonable range.

The proposed iterative algorithm can be considered as
consisting of two alternating steps. First, we estimate
x through minimizing the current surrogate function
Q(x|x™). Second, based on the estimate of x, we update
the weights of the weighted I, norm penalty of the
surrogate function. This alternating process finally results
in a sparse solution. To see this, note that the weighted I,
norm of x has their weights specified as {(X{")?+¢)~}.
When ¢ is small, say ¢=10"3, the weighted [, norm
penalty term, i.e. ¥’ D(”)x has the tendency to decrease
these entries in ¥ whose corresponding weights are large,
i.e. whose current estimates {)?I(“} are already small. This
negative feedback mechanism keeps suppressing these
entries until they become negligible, while leaving only
a few prominent nonzero entries survived to meet the

consistency requirement. We notice that the proposed
method is similar to the iterative reweighted least squares
algorithm discussed in [19,23]. Nevertheless, our proposed
method is developed in the framework of one-bit compressed
sensing, while the other two works deal with the conven-
tional compressed sensing problem. In addition, through
using the surrogate function, a connection between the log-
sum penalty function and the iterative reweighted algorithm
is established. This provides a new perspective on the iterative
reweighted algorithm.

4. Numerical results

We now carry out experiments to illustrate the perfor-
mance of our proposed one-bit compressed sensing algo-
rithm.! In our simulations, the K-sparse signal is randomly
generated with the support set of the sparse signal randomly
chosen according to a uniform distribution. The signals on
the support set are independent and identically distributed
(ii.d.) Gaussian random variables with zero mean and unit
variance. The measurement matrix Ae R™" is randomly
generated with each entry independently drawn from
Gaussian distribution with zero mean and unit variance, and
then each column of A is normalized to unit norm for
algorithm stability. We compare our proposed algorithm with
the other two algorithms, namely, the [; minimization-based
linear programming (LP) algorithm [4] (referred to as “one-bit
LP”) and the binary iterative hard thresholding algorithm [3]
(referred to as “BIHT”).

Two metrics are used to evaluate the recovery perfor-
mance, namely, mean squared error (MSE) and support
recovery accuracy. Support recovery accuracy is measured
by the false alarm (misidentified) rate and the miss rate. A
false alarm event represents the case where coefficients
that are zero in the original signal are misidentified as
nonzero after reconstruction, while a miss event stands
for the case where the nonzero coefficients are missed
and determined to be zero. Throughout our experiments,
we set 1=0.2, and ¢ = 0.002 for our proposed algorithm.

1 Matlab codes are available at http://www.junfang-uestc.net/codes/
OnebitCS.rar.
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As mentioned earlier in the paper, 1 controls the trade-
off between the consistency and the degree of sparsity.
Empirical results suggest that a moderate A in the range
(0.1 1) usually renders a reliable estimate. For our
proposed algorithm, some of the estimated coefficients
of x keep decreasing each iteration, but will not exactly
equal to zero. We regard those coefficients in & whose
values are less than 10’7/||.Q||2 as zero, where X denotes
the final estimate of the sparse signal. Fig. 2 depicts the
false alarm and miss rates of respective algorithms as a
function of the sparsity level K, where we set m=100,
and n=50 in our simulations. Results are averaged over
10* independent runs. We see that the proposed algo-
rithm is more effective in identifying the true support
set: as compared with the other two algorithms, it
presents a higher detection rate (lower miss rate) at a
lower false alarm rate. Fig. 3 depicts the MSEs of the
three algorithms. Since the information about the
magnitude of the signal is lost due to quantization, the
norm of the original signal and the estimated signal is
normalized to unity in computing the MSEs. The pro-
posed algorithm achieves the smallest MSE among all
three algorithms. We also provide results for an under-
determined system, where we set m=100 and n=150.
Figs. 4 and 5 show the support recovery accuracy

—+— Proposed algorithm )
0.12 H~ * - One-bit LP .
~o BIHT ‘ :

0.08 |-

MSE

0.06 |-

Sparsity level (K)

Fig. 3. Mean squared error versus sparsity level K, m=100, n=>50.
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and MSEs of the three algorithms. Results again validate
the superiority of the proposed algorithm: it outper-
forms the other two algorithms in terms of both metrics.
In Fig. 6, we plot one realization of the original
signal and the reconstructed signals by respective algo-
rithms. It can be seen that the proposed algorithm
provides reconstructed coefficients that are closest to
the groundtruth.
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Fig. 5. Mean squared error versus sparsity level K, m=100, n=150.
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Fig. 6. The original signal and the reconstructed signals by respective
algorithms, m=100, n=150.
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algorithms.



206 J. Fang et al. / Signal Processing 102 (2014) 201-206

5. Conclusions

We studied the problem of recovering sparse signals
from one-bit measurements. The proposed method intro-
duced the logistic function to quantify the sign consistency
between the measurements and the estimates. By resort-
ing to the bound optimization technique, we developed an
iterative reweighted algorithm which consists of solving a
sequence of convex differentiable minimization problems.
Numerical results show that the proposed algorithm out-
performs existing methods in terms of the mean squared
error and the support recovery accuracy metrics.
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