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Pattern-Coupled Sparse Bayesian Learning for
Recovery of Block-Sparse Signals
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Abstract—We consider the problem of recovering block-sparse
signals whose cluster patterns are unknown a priori. Block-sparse
signals with nonzero coefficients occurring in clusters arise natu-
rally in many practical scenarios. However, the knowledge of the
block partition is usually unavailable in practice. In this paper,
we develop a new sparse Bayesian learning method for recovery
of block-sparse signals with unknown cluster patterns. A pattern-
coupled hierarchical Gaussian prior is introduced to characterize
the pattern dependencies among neighboring coefficients, where
a set of hyperparameters are employed to control the sparsity of
signal coefficients. The proposed hierarchical model is similar to
that for the conventional sparse Bayesian learning. However, un-
like the conventional sparse Bayesian learning framework in which
each individual hyperparameter is associated independently with
each coefficient, in this paper, the prior for each coefficient not only
involves its own hyperparameter, but also its immediate neighbor
hyperparameters. In doing this way, the sparsity patterns of neigh-
boring coefficients are related to each other and the hierarchical
model has the potential to encourage structured-sparse solutions.
The hyperparameters are learned by maximizing their posterior
probability. We exploit an expectation-maximization (EM) formu-
lation to develop an iterative algorithm that treats the signal as
hidden variables and iteratively maximizes a lower bound on the
posterior probability. In the M-step, a simple suboptimal solution
is employed to replace a gradient-based search to maximize the
lower bound. Numerical results are provided to illustrate the ef-
fectiveness of the proposed algorithm.

Index Terms—Block-sparse signal recovery, pattern-coupled hi-
erarchical model, sparse Bayesian learning.
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I. INTRODUCTION

OMPRESSIVE sensing is a recently emerged technique

of signal sampling and reconstruction, the main purpose
of which is to recover sparse signals from much fewer linear
measurements [1]—[3]

y= Az (1)

where A € R™*™ is the sampling matrix with m < n, and x
denotes the n-dimensional sparse signal with only K nonzero
coefficients. Such a problem has been extensively studied and
a variety of algorithms that provide consistent recovery per-
formance guarantee were proposed, e.g., [1]-[6]. In practice,
sparse signals usually have block-sparse structures that can be
exploited to enhance the recovery performance. For example,
the atomic decomposition of multi-band signals [7] or audio sig-
nals [8] usually results in a block-sparse structure in which the
nonzero coefficients occur in clusters. This clustered sparse pat-
tern is also exploited in applications such as gene expression
analysis [9], and inverse synthetic aperture radar imaging [10].
Besides these, block-sparsity naturally arises in the setup of the
multiple measurement vector problem.

A number of algorithms, e.g., block-OMP [11], mixed £ /41
norm-minimization [12], group LASSO [13], StructOMP [14],
model-based CoSaMP [15], and block-sparse Bayesian learning
[16], [17]! were proposed for recovery of block-sparse signals,
and their recovery behaviors were analyzed in terms of the
model-based restricted isometry property (RIP) [12], [15] and
the mutual coherence [11]. Analyses suggested that exploiting
the inherent structure of sparse signals helps improve the
recovery performance considerably. These algorithms, albeit
effective, require the knowledge of the cluster pattern (block
partition) a priori. In practice, however, the prior information
about the block partition of sparse signals is often unavailable.
For example, we know that audio signals have structured sparse
representations but the exact block pattern is unknown to us. To
address this difficulty, many sophisticated Bayesian methods
which do not need the knowledge of the block partition were de-
veloped. In [18], [19], a hierarchical Bayesian “spike-and-slab”
prior model was introduced to encourage the sparseness and
promote the cluster patterns simultaneously. Nevertheless, for
both works [18], [19], the posterior distribution cannot be de-
rived analytically, and a Markov chain Monte Carlo (MCMC)

I Although the algorithms were developed under the multiple measurement
vector framework, they can be readily adapted to recovery of block-sparse
signals.
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sampling method has to be employed for Bayesian inference.
In [20], [21], a graphical prior, also referred to as the “Boltz-
mann machine”, was used to model the statistical dependencies
between atoms. The Boltzmann machine is employed as a
prior on the support of a sparse representation. However, the
maximum a posterior (MAP) estimator with such a prior in-
volves an exhaustive search over all possible sparsity patterns.
To overcome the intractability of the combinatorial search, a
greedy method [20] and a variational mean-field approximation
method [21] were proposed to approximate the MAP. In [22],
the support correlation across coefficients was modeled by a
Markov chain defined by two transition probabilities, based on
which an approximate message passing algorithm was devel-
oped for recovery of time-varying signals. Recently, Zhang and
Rao generalized the block sparse Bayesian learning method to
address recovery of block-sparse signals with unknown cluster
patterns [23]. In their work, the components of the signal are
partitioned into a number of overlapping blocks. The original
data model is converted into an expanded model by adding
redundant columns to the original measurement matrix and
stacking all blocks to form an augmented vector. Conventional
block sparse Bayesian learning algorithms such as [17] are
then applied to the expended model. This overlapping structure
provides flexibility in defining a block-sparse pattern. Besides
the above Bayesian techniques, we note that a total variation
approach, also referred to as the fused LASSO, was proposed
in [9] to exploit the spatial amplitude smoothness, where the
£1-norm of the successive differences of neighboring coeffi-
cients is used as a penalty term to encourage piecewise constant
solutions.

In this paper, we develop a new sparse Bayesian learning
method for recovery of block-sparse signals with unknown
block partitioning structure. Similar to the conventional sparse
Bayesian learning approach [24], [25], a Bayesian hierar-
chical Gaussian framework is employed to model the sparse
prior, in which a set of hyperparameters are introduced to
characterize the Gaussian prior and control the sparsity of the
signal components. Conventional sparse learning approaches,
however, assume independence between the elements of the
sparse signal. Specifically, each individual hyperparameter is
associated independently with each coefficient of the sparse
signal. To encourage block-sparse patterns, in this paper, we
propose a pattern coupled hierarchical Gaussian framework in
which the sparsity of each coefficient is controlled not only
by its own hyperparameter, but also by its neighbor hyperpa-
rameters. Such a prior has the potential to encourage clustered
patterns and suppress “isolated coefficients” whose pattern is
different from that of its neighboring coefficients. An iterative
algorithm which exploits the expectation-maximization (EM)
formulation is developed to learn the hyperparameters and to
estimate the block-sparse signal. Our proposed algorithm not
only admits a simple iterative procedure for Bayesian inference.
It also demonstrates superiority over other existing methods for
block-sparse signal recovery.

The rest of the paper is organized as follows. In Section II, we
introduce a new pattern coupled hierarchical Gaussian frame-
work to model the sparse prior and the pattern dependencies
among the signal components. An iterative algorithm which re-

sorts to the expectation-maximization (EM) formulation is de-
veloped in Section III to learn the hyperparameters and to esti-
mate the block-sparse signal. Section IV extends the proposed
Bayesian inference method to the scenario where the observa-
tion noise variance is unknown. Inspired by the new Bayesian
method, an iterative reweighted #; algorithm is also proposed
in Section V for the recovery of block-sparse signals. Simula-
tion results are provided in Section VI, followed by concluding
remarks in Section VII.

II. HIERARCHICAL PRIOR MODEL

We consider the problem of recovering a block-sparse signal
x € R™ from noise-corrupted measurements

y=Az+w 2)

where A € R™*™ (m < n) is the measurement matrix, and
w is the additive multivariate Gaussian noise with zero mean
and covariance matrix o>1. The signal £ has a block-sparse
structure but the knowledge of the block partition is unavailable
to us. This is usually the situation for many practical applica-
tions. In this case, the only information we can utilize is that the
sparsity patterns of neighboring coefficients are statistically de-
pendent. We, in the following, will propose a new hierarchical
sparse Bayesian learning (SBL) model to capture the pattern de-
pendencies among neighboring coefficients. Before we proceed,
we first provide a brief review of the hierarchical models for
the conventional SBL method [24] and the block-SBL methods
[16], [17].

A. Review of Hierarchical Models for SBL and B-SBL

Sparse Bayesian learning was firstly introduced by Tipping
in his pioneering work [24], where the regression and classifi-
cation problem was considered. Later on in [25], [26], sparse
Bayesian learning was introduced to solve the sparse recovery
problem, and demonstrated superior performance for sparse
signal recovery in a series of experiments [25], [26]. The suc-
cess of sparse Bayesian learning has inspired a growing interest
in Bayesian techniques for sparse signal recovery. In some
recent works, e.g., [27], [28], Bayesian techniques using the
approximate message passing (AMP) were proposed for com-
pressed sensing, which achieves even improved performance
over the sparse Bayesian learning method for some sparse
signal recovery problems. In the conventional sparse Bayesian
learning framework, x is assigned a Gaussian prior distribution

plala) = [ pleilas) 3)
i=1

where p(i|c;) = N(2:]0,; 1), and @ £ {;} are non-neg-
ative hyperparameters controlling the sparsity of the signal .
Clearly, when «; approaches infinity, the corresponding coeffi-
cient z; becomes zero. By placing hyperpriors over {r;}, the
hyperparameters {c; } can be learned by maximizing their pos-
terior probability. We see that in the above hierarchical Bayesian
model, each hyperparameter is associated independently with
each coefficient. The prior model assumes independence among
coefficients and has no potential to encourage clustered sparse
solutions.
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In [16], the above hierarchical model was generalized to
deal with block-sparse signals, in which a group of coefficients
sharing the same sparsity pattern are assigned a multivariate
Gaussian prior parameterized by a common hyperparameter,
ie.,

plxs|a;) = N(O, (1;1]) 4

where x; denotes the ¢th block of x, «; is the hyperparameter
controlling the sparsity of x;. The model (4) was further im-
proved in [17] to accommodate temporally correlated sources

plziles) = N(0, 0" B;) ®)

in which I3; is a positive definite matrix that captures the corre-
lation structure of ;. Nevertheless, as can be seen, both models
(4) and (5) require the block partition knowledge in order to as-
sign a common hyperparameter to a group of coefficients that
share the same sparsity pattern.

B. Proposed Pattern-Coupled Hierarchical Model

In the following, we propose a pattern-coupled hierarchical
model to cope with block-sparse signals with unknown block-
sparse structures. The new model utilizes the fact that the spar-
sity patterns of neighboring coefficients are statistically depen-
dent. Specifically, in our model, the Gaussian prior for each co-
efficient not only involves its own hyperparameter, but also its
immediate neighbor hyperparameters. More precisely, a prior
over x is given by

plzle) = [ [ plailai, air, aiy) (6)

=1

where

p(xi|o, a1, 1) = N (3]0, (0 + Bt + Bay_1) ™)

(M
and we assume ag = 0 and «,, 1 = 0 for the end points
and z,,, 0 < < 1 is a parameter indicating the pattern rele-
vance between the coefficient z; and its neighboring coefficients
{#iy1,2;—1}. When 3 = 0, the prior distribution (6) reduces to
the prior for the conventional sparse Bayesian learning. When
# > 0, we see that the sparsity of z; is not only controlled
by the hyperparameter «;, but also by the neighboring hyper-
parameters {cv; 1, «; 1 }. Suppose «; approaches infinity, then
its corresponding coefficient zz; will become zero. Meanwhile,
since «; is involved in the prior for the neighboring coefficients
{#iy1,2;-1}, these two coefficients will decrease to zero as
well. We see that the sparsity patterns of neighboring coeffi-
cients are coupled through their shared hyperparameters. On the
other hand, the hyperparameters, during the learning process,
are also related to each other through their commonly connected
coefficients. Such a coupled hierarchical model has the poten-
tial to encourage structured-sparse solutions, while without im-
posing any pre-defined structures on the recovered signals. This
property enables to learn the block-sparse structure in an auto-
matic manner.

Following the conventional sparse Bayesian learning, we use
Gamma distributions as hyperpriors over the hyperparameters

{(M}, i.e.,
pla) = H Gamma(w;|a,b) = Hf(a)flb“(z‘i"efbm (8)
i=1 i=1

where [(a) = [~ t* e~ tdt is the Gamma function. As dis-
cussed in [24], this two-layer Gaussian-inverse Gamma hierar-
chical prior results in a learning process which tends to switch
off most of the coefficients that are deemed to be irrelevant,
and only keep very few relevant coefficients to explain the data.
This mechanism is also called as “automatic relevance determi-
nation”. In the conventional sparse Bayesian framework, very
small values, e.g., 107, are assigned to the two parameters «
and b. In this paper, similar to the conventional sparse Bayesian
learning, we assign a very small value, say 10~%, to the param-
eter b. Nevertheless, the choice of « is different: we use a more
favorable prior which sets a larger a (say, ¢ = 1) in order to
achieve the desired “pruning” effect for our proposed hierar-
chical Bayesian model. Clearly, the Gamma prior with a larger
o encourages large values of the hyperparameters, and there-
fore promotes the sparseness of the solution since the larger the
hyperparameter, the smaller the variance of the corresponding
coefficient. We will elaborate on the choice of the parameter ¢
and its impact on the recovery performance later in our paper.

C. Discussions

Below we provide some discussions to gain insight into our
proposed hierarchical model. As stated earlier, when a hyper-
parameter «; approaches infinity, both its corresponding coeffi-
cient z; and its neighboring coefficients {x:;}1,2;_1} will be-
come zero. This zero coupling effect enables to recover block-
sparse signals in a more reliable way. Note that due to the zero
coupling, sporadic recovery errors which misidentify an active
(nonzero) coefficient (located in a nonzero block) as an iso-
lated zero component are almost impossible to happen since a
nonzero-to-zero misidentification usually means that one of the
hyperparameters associated with this misidentified coefficient
becomes infinity. In other words, nonzero-to-zero flip-over er-
rors should occur in clusters. Since it is much less likely to
make a sequence of consecutive errors than making a single
error during the reconstruction, the zero coupling can help im-
prove the reliability of block-sparse signal recovery. Also, the
likelihood of misidentifying a zero component (in a zero block)
as an active coefficient is considerably reduced as either one of
its neighboring hyperparameters goes to infinity, this coefficient
will be driven to zero.

Although our proposed hierarchical model tends to en-
courage structured-sparse solutions, it is also flexible to
accommodate conventional sparse signals with isolated active
coefficients. Suppose x; is an isolated nonzero coefficient and
its neighboring coefficients {x;11, %12, %;13} are all zeros.
Exact recovery of the isolated coefficient along with its zero
neighboring coefficients is still possible, in which case the
estimated hyperparameters {o;, «; 11} will have finite values,
while {o; 12} will become infinity such that the estimated
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Fig. 1. Schematic diagrams to show the flexibility of the proposed hierarchical model in accommodating block-sparse patterns (left figure) as well as conventional
sparse patterns (right figure), where ‘F’ indicates that the corresponding hyperparameter «v; has a finite value, ‘I’ indicates an infinite value, shadow and blank

square-blocks represent nonzero and zero coefficients, respectively.

coefficients {x;t1, %12, ;13} are zeros (See Fig. 1). This is
exactly the case in our simulations. Experimental results also
corroborate our claim: our proposed algorithm provides decent
performance in exactly recovering conventional sparse signals.

In our model, each coefficient (say z;) only has connections
with its immediate (forward and backward) neighbor hyperpa-
rameters (besides its own), i.e., {41, ;—1 }. This connection
pattern can be readily generalized to include multiple neighbor
hyperparameters. Nevertheless, associating each coefficient
with multiple neighbor hyperparameters could lead to an ex-
cessive coupling effect. Suppose each coefficient is connected
to two (forward and backward) neighbor hyperparameters.
In this case, the hyperparameter «v; has connections with the
following five coefficients {z;, ;41,12 |. As a consequence,
if a coefficient is misidentified, then this recovery error will
affect the recovery of its neighboring four coefficients. In this
sense, considering immediate neighbors seems render the most
flexible framework to characterize block-sparse signals.

If the block partition is known a priori, the knowledge of the
block partition (e.g., number of blocks and block sizes) can be
utilized to facilitate the algorithm design [16], [17]. In this case,
the number of hyperparameters that are used to control the spar-
sity of the coefficients can be significantly reduced because the
coefficients in the same block share the same sparsity pattern.
Nevertheless, for our work, the knowledge of block partition is
unknown and therefore we still need to introduce n hyperpa-
rameters to control the sparsity of n coefficients.

III. PROPOSED BAYESIAN INFERENCE ALGORITHM: KNOWN
NOISE VARIANCE

We now proceed to develop a sparse Bayesian learning
method for block-sparse signal recovery. For ease of expo-
sition, we first assume that the noise variance o2 is known
a priori. Extension of the Bayesian inference to the case of
unknown noise variance will be discussed in the next section.
Based on the above hierarchical model, the posterior distribu-
tion of £ can be computed as

plzla,y) < p(z|a)p(y|r) ©

where @ £ {;}, p(z|a) is given by (6), and

2
o A

202

1
plylz) = m exp (

It can be readily verified that the posterior p(z|a, y) follows a
Gaussian distribution with its mean and covariance given re-
spectively by

p=0c2®ATy
®=(02A"A+D)? (11
where D is a diagonal matrix with its :th diagonal element equal
to ((Jél‘ + fay1 + [7’(1.5_1), i.e.,
D2 diag(ey + Bag + Bag, . . ., an + Ban—1+ Pany1) (12)
Given a set of estimated hyperparameters {c; }, the maximum
a posterior (MAP) estimate of x is the mean of its posterior
distribution, i.e.,
gnvap = p = (ATA+02D) 1A Ty (13)

Our problem therefore reduces to estimating the set of hy-
perparameters {«; }. With hyperpriors placed over «;, learning
the hyperparameters becomes a search for their posterior mode,
i.e., maximization of the posterior probability p(a|y). A strategy
to maximize the posterior probability is to exploit the expecta-
tion-maximization (EM) formulation [24], treating the signal x
as hidden variables and iteratively maximizing a lower bound
of the posterior probability p(e|y), i.e., Fgjy o [log p(alz)], the
expected value of the complete log-posterior of &, where the
operator Fzy o[-] denotes the expectation with respect to the
distribution p(z|y, e). Specifically, the algorithm produces a se-
quence of estimates a'*, # = 1,2, 3, .. ., by applying two alter-
nating steps, namely, the E-step and the M-step [29].

1) E-Step: Given the current estimates of the hyperparame-
ters a(*) and the observed data y, the E-step requires computing
the expected value (with respect to the missing variables x) of
the complete log-posterior of e, which is also referred to as the
Q-function; we have

Qala?) = By, o [log plalz)]

- / plzly, &) log plajz)ds
- / plzly, ) loglp(@)p(z|a)]dz + ¢

= log p(a) + / p(zly, a®) log p(z|a)dz + ¢
(14)
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where ¢ is a constant independent of . Substituting (6) into
(14), and ignoring the term independent of ¢, the Q-function
can be re-expressed as

n

Q(a|a(t)) = logp(a) + % Z (bg(az + ﬂOéi+]_ + ﬂ()[i,]_)

=1

—(a; + By + o 1) /P(xy;a(t))l‘?dx) (15)

Since the posterior p(z|y, @) is a multivariate Gaussian dis-
tribution with its mean and covariance matrix given by (11), we
have

/P(E\%a(t))w?dﬂ" = Epyaw 7] =2 + s (16)

where fi; denotes the ith entry of ji, qASH denotes the ith diag-
onal element of the covariance matrix @, frand @ are computed
according to (11), with e replaced by the current estimate ().
With the specified prior (8), the Q-function can eventually be
written as

Q(ala')

" 1
= Z ((L log a; — bay; + 5 log(a; + Baiy1 + Pai—1)
i=1

: (a7

- l(Oéqi + Baiy1 + Bai—1)(fiF + 17371)>
2) M-Step: Inthe M-step, a new estimate of « is obtained by
maximizing the Q-function, i.e.,
a b = arg max Qala) (18)
For the conventional sparse Bayesian learning, maximization
of the Q-function can be decoupled into a number of separate
optimizations in which each hyperparameter «; is updated inde-
pendently. This, however, is not the case for the problem being
considered here. We see that the hyperparameters in the ()-func-
tion (17) are entangled with each other due to the logarithm term
log{c; + Beir1 + B —1). In this case, an analytical solution
to the optimization (18) is difficult to obtain. Gradient descent
methods can certainly be used to search for the optimal solu-
tion. Nevertheless, for gradient descent methods, there is no ex-
plicit formula for the hyperparameter update. Also, such a gra-
dient-based search, albeit effective, does not provide any insight
into the learning process. Moreover, gradient-based methods in-
volve higher computational complexity as compared with an an-
alytical update rule. To overcome the drawbacks of gradient-
based methods, we consider an alternative strategy which aims
at finding a simple, analytical sub-optimal solution of (18). Such
an analytical sub-optimal solution can be obtained by examining
the optimality condition of (18). Suppose a* is the optimal so-
lution of (18), then the first derivative of the Q-function with
respect to & equals to zero at the optimal point, i.e.,

9Q(ala™)

=0
da

(19)

=0k

To examine this optimality condition more thoroughly, we com-
pute the first derivative of the Q-function with respect to each
individual hyperparameter:

d ® , 1 1

%ﬁl) = (:—l — b — §w7; ‘|— 5(1/,; + ,8]/7j+1 —|— 6’/1',71)
Vi=1,....,n (20)

where v = 0, 7,41 = 0,and fori = 1,...,n, we have

wi E (02 + i) + BUEy + divric))TB(AL, + dim1io1)
21

! (22)

a; + Boyy + P

(1>

Vi

Note that for notational convenience, we allow the subscript
indices of the notations f; and qAS“ in (21) equal to 0 and n +
1. Although these notations {/ig, (/;0707 finats (/A),LH,,LH} do not
have any meaning, they can be used to simplify our expression.
Clearly, they should all be set equal to zero, i.e., fto = finy1 =
$0,0 = ¢nr1.n+1 = 0. Recalling the optimality condition, we
therefore have

a 1, " " 1
;r‘f'i(’/i +Bvi B ) = bt QWi
where v§ = 0,v;., = 0, and
é 1

ai + fajy + foi

*
(3

Since all hyperparameters {«; } and J are non-negative, we have
1

— > >0 Vi=1,...,n

o

1 N .

— > >0 Vi=1,...,n—-1
Baiy

1

— > >0 Yi=2,...,n
Boi_y

Hence the term on the left-hand side of (23) is lower and upper
bounded respectively by

a4+ co

*
o

a

24

*

a 1 * * *
> E + E(ui + Bri + i) > o

N

wherecg = 1.5 fori = 2,..., n—1,andcy = 1 fori = {1,n}.

s s

Combining (23)—(24), we arrive at

s a a+ o
¢ 0.5w; + b 0.5w; + b

Vi=1,...,n (25)
A sub-optimal solution to (18) can therefore be simply chosen
as

N a .
G = ——— Vi=1,...,n

= 2
0.5w; +b (26)

where @ > 0 and b = 10~*. We see that the solution (26) pro-
vides a simple rule for the hyperparameter update. Also, no-
tice that the update rule (26) resembles that of the conventional
sparse Bayesian learning work [24], [25] except that the param-
eter w; is equal to /i + (/A),L-,i for the conventional sparse Bayesian
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learning method, while for our case, w; is a weighted summa-
tion of 12 + ¢ forj =i — 1, i,i+ 1.

For clarity, we now summarize the proposed iterative algo-
rithm as follows.

1) Atiterationt (f = 0,1,...): Given a set of hyperparam-
eters af) = {agt)}, compute the mean fi and covari-
ance matrix & of the posterior distribution p(z|a(®, y) ac-
cording to (11), and compute the MAP estimate & ac-
cording to (13).

2) Update the hyperparameters a‘‘*!) according to (26),
where w; is given by (21).

3) Continue the above iteration until Hﬁ;(t"’l) - A(t)||2 <e,
where € is a prescribed tolerance value.

Remark 1: Although the above algorithm employs a sub-op-
timal solution (26) to update the hyperparameters in the M-step,
numerical results show that the sub-optimal update rule is quite
effective and presents recovery performance similar to using a
gradient-based search method. This is because the sub-optimal
solution (26) provides a reasonable estimate of the optimal so-
lution when the parameter a is set away from zero. In addition,
although a theoretical analysis of the convergence behavior is
unavailable, the proposed algorithm demonstrates a fast conver-
gence rate and is guaranteed to converge to the true solution (in
the noiseless case) with overwhelming probability given a de-
cent number of measurements. Numerical results also suggest
that the choice of a is not very critical to the recovery perfor-
mance: the proposed algorithm provides stable recovery perfor-
mance as long as « is set in a reasonable region a € [0.5, 2].

Remark 2: The update rule (26) not only admits a simple an-
alytical form which is computationally efficient, it also provides
an insight into the proposed algorithm. The Bayesian Occam’s
razor which contributes to the success of the conventional sparse
Bayesian learning method also works here to automatically se-
lect an appropriate simple model. To see this, note that in the
E-step, when computing the posterior mean and covariance ma-
trix, a large hyperparameter o; tends to suppress the values of
the corresponding components {115, ¢, } forj =i —1, i, +1
(cf. (11)). As a result, the value of w; becomes small, which in
turn leads to a larger hyperparameter «; (cf. (26)). This negative
feedback mechanism keeps decreasing most of the entries in &
until they become negligible, while leaving only a few promi-
nent nonzero entries survived to explain the data. The process
eventually leads to a block-sparse solution. Nevertheless, when
the noise variance is relatively large, due to the coupling effect,
recovery errors (e.g., zeros misidentified as nonzero values) tend
to spread across coefficients instead of occurring in a sporadic
manner. In this case, some coefficients are reduced to small
values (of order 10~%) but will not keep decreasing and reach
machine precision. To deal with this issue, in the hyperparam-
eter update stage, we can simply set the hyperparameters which
are greater than a certain value (e.g., 10®) equal to a sufficiently
large value (e.g., 10%). Specifically, the update rule (26) for the
hyperparameters is replaced by

“ oA (1)
G _ ) 05wt ifé; " <r Vi=1,...,n (27)
" 10 el > 1 |

where 7 is a tuning parameter introduced to our proposed algo-
rithm. It is generally not difficult to set 7. Our simulation result

shows that stable recovery performance can always be achieved
when 7 is set in the range [0.5 x 10%, 5 x 103]. The above update
rule in fact amounts to pruning those coefficients that are small
during iterations. In our simulations, unless otherwise specified,
the original update rule (26) is used for the hyperparameter up-
date.

Remark 3: The parameter [ is introduced to quantify the pat-
tern relevance among neighboring coefficients. Its choice seems
not very critical to the recovery performance, as demonstrated
by our simulation results. There are indeed scenarios? where
the choice 8 makes a difference to the recovery performance.
Nevertheless, our experiments suggest that for signals which
have a block-sparse structure, choosing a nonzero 3 € (0, 1]
can always result in a performance improvement as compared
with setting 3 = 0. For the case where the block-sparse pat-
tern is not very clear, a safe choice for 3 could be § = 0.1,
which imposes a very mild coupling effect among neighboring
coefficients. Also, we conjecture that by placing an appropriate
prior over 3, the parameter § may be learned from the data
as well, and hopefully, the algorithm will eventually have the
ability to automatically learn whether or not a sparse signal has
a block-sparse structure. This will be an interesting direction
worthy of our future study.

Remark 4: For our proposed algorithm, the main computa-
tional task at each iteration is to calculate the covariance matrix
®, which involves computing the inverse of an n X 7 matrix.
By using the Woodbury identity, this n X n matrix inversion
can be converted to an 7 X m matrix inversion. Hence the total
number of floating-point operations required at each iteration
are of order O(m?), and of order O(Lmn?) for the proposed al-
gorithm, where /. denotes the number of required iterations for
convergence.

IV. PROPOSED BAYESIAN INFERENCE ALGORITHM: UNKNOWN
NOISE VARIANCE

In the previous section, for simplicity of exposition, we as-
sume that the noise variance o2 is known a priori. This assump-
tion, however, may not hold valid in practice. In this section,
we discuss how to extend our previously developed Bayesian
inference method to the scenario where the noise variance o is
unknown.

For notational convenience, define

Following the conventional sparse Bayesian learning frame-
work [24], we place a Gamma hyperprior over -y:

c, d) — I‘(C)fldcrycef{]ﬁ

p(v) = Gamma(~y (28)
where the parameters ¢ and d are set to small values, e.g., ¢ =
d = 10~*. As we already derived in the previous section, given
the hyperparameters e and the noise variance o2, the poste-
rior p(x|e, v,y) follows a Gaussian distribution with its mean
and covariance matrix given by (11). The MAP estimate of =

20ur algorithm can be adapted to recover the time-varying sparse signals. In
such a scenario our experimental results suggest that the choice of 3 makes a
difference. The result, however, is not included because it is beyond the scope
of this paper.
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is equivalent to the posterior mean. Our problem therefore be-
comes jointly estimating the hyperparameters ¢ and the noise
variance o2 (or equivalently 7). Again, these parameters can
be learned via maximizing their posterior probability p(e, v|y).
The alternating EM steps are briefly discussed below.

1) E-Step: In the E-step, given the current estimates of
the parameters {a® ()} and the observed data y, we
compute the expected value (with respect to the missing
variables ) of the complete log-posterior of {e, 7},
that is, Fyjyat 4[logp(e,v|z,y)], where the operator
Ex‘yva(,,%ﬁ,(/)[-] denotes the expectation with respect to the
distribution p(z|y, a®,v®). Since

Jp(z|a)p(y)p(y

the Q-function can be expressed as a summation of two terms

(o, 7|z, y) x ple z,7) (29)

(t>7 ’y(t)) = E:r\y,a(f),ﬁ/(*) [logp(a)p(:ﬂa)}

+Ey )y at) o [log p(v)p(ylz, 7)]

Q(a,v|a
(30)

where the first term has exactly the same form as the Q-function
(14) obtained in the previous section, except with the known
noise variance o replaced by the current estimate (V)2 =
1/ ~®) and the second term is a function of the variable ~.

2) M-Step: We observe that in the Q-function (30), the pa-
rameters & and v to be learned are separated from each other.
This allows the estimation of & and v to be decoupled into the
following two independent problems:

(31)
AU = arg max By oo 50 [0 p()p(yle, )] (32)

oY = argmax By g0 o [log pla)p(ze)]

The first optimization problem (31) has been thoroughly studied
in the previous section, where we provided a simple analytical
form (26) for the hyperparameter update. We now discuss the
estimation of the parameter . Recalling (28), we have

E

zly,a),
m
= =3 logfy

(@ [log p(v)p(ylz. v)]
I%WaMWU)Wy—AE%]+CbgW—dW (33)

Computing the first derivative of (33) with respect to -y and set-
ting it equal to zero, we get

1 x+2d

v m+ 2

(34)

where

X - :z:\y alt) (1) “Iy AJ,'” ]

Note that the posterior p(z|y, @', y(*) follows a Gaussian dis-
tribution with mean fi and covariance matrix &, where i p and @
are computed via (11) with v (i.e., ¢2) and & replaced by the
current estimates {*), @*)}. Hence y can be computed as

x =y y — 2E[zT ATy] + E[zT A” Ax]
=yTy — 20" ATy + pT AT Aj + tr (AATA)

) Z 0

a) X
@y — A2 + (35)

where the last equality (a) follows from
tr (@ATA) =tr (ésATA +(v0) e — (7“))—1&513)
= () g (sii(y(t)ATA +D)— ésb)

o e (1 #0)

(v®)~ Z

=1

(36)

in which D is given by (12) with & replaced by the current
estimate @(®), and

21— ¢ (0l + 80D, + o)) Vi

(37
Note that a( ) and (szfil are set to zero when computing p; and
On.- Subsntutlng (35) back into (34), a new estimate of v, i.c.,
the optimal solution to (32), is given by
) ly — ABlls + ()1 pi + 2d
~(t+1) - m 4+ 2¢

(3%)

The above update formula has a similar form as that for the con-
ventional sparse Bayesian learning (cf. [24, Equation (50)]]).
The only difference lies in that {p;} are computed differently:
for the conventional sparse Bayesian learning method, p; is
computed as p; = 1 — gBi,,-,a,E”, while p; is given by (37) for
our algorithm.

The sparse Bayesian learning algorithm with unknown noise

variance is now summarized as follows.

1) At iteration ¢ (f = 0,1,...): given the current estimates
of a® and ~{*), compute the mean ji and the covariance
matrix @ of the posterior distribution p(z|a®,~®, y) via
(11), and calculate the MAP estimate ™ according to
(13).

2) Compute a new estimate of &, denoted as a(*+1) according
to (26), where w; is given by (21); update v via (38), which
yields a new estimate of -y, denoted as v(*+1).

3) Continue the above iteration until [|#* —
where € is a prescribed tolerance value.

Remark 1: When the noise variance is unknown, both the

choice of a and the initial estimate of the noise variance have
an impact on the recovery performance. In this case, our ex-
periments suggest that & = 0.5 is a safe and robust choice
which ensures that the proposed algorithm delivers a stable re-
covery performance irrespective of the initial estimate of the
noise variance.

(t)HQ S €,

V. A MODIFIED ITERATIVE REWEIGHTED ALGORITHM

Sparse Bayesian learning algorithms have a close connection
with the reweighted #; or /5 methods. In fact, a dual-form anal-
ysis [30] reveals that sparse Bayesian learning can be consid-
ered as a non-separable reweighted strategy solving a non-sepa-
rable penalty function. Inspired by this insight, we here propose
areweighted £; method for the recovery of block-sparse signals
when the block structure of the sparse signal is unknown.
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Conventional reweighted ¢; methods iteratively minimize the
following weighted ¢; function (for simplicity, we consider the
noise-free case):

n
min Z w,gt) |2
x
i=1

st. Az =y (39)

where the weighting parameters are given by wz@ =
1/(|:1:§t71)| + €),Vi, and e is a pre-specified positive pa-
rameter. In a series of experiments [31], the above iterative
reweighted algorithm outperforms the conventional ¢;-min-
imization method by a considerable margin. For the above
weighted #;-minimization problem, the weight can in fact be
interpreted as a sparse-encouraging hyperparameter associated
with each coefficient, and a larger weight has the potential to be
more sparsity-encouraging. The fascinating idea of the iterative
reweighted algorithm is that the weights are updated based on
the previous estimate of the solution. Specifically, previous
estimate serves as prior knowledge of the sparse signal. If the
estimate of a coefficient is small, then we expect that the coef-
ficient is more likely being sparse, thus a large weight which
is more sparse-encouraging is assigned, and vice versa. As a
result, the value of the coefficient whose estimate is small tends
to be smaller (until become negligible) in the next estimate.
This explains why iterative reweighted algorithms usually
yield sparser solutions than the conventional ¢;-minimization
method.

As discussed in our previous section, the basic idea of our
proposed sparse Bayesian learning method is to establish a cou-
pling mechanism such that the sparsity patterns of neighboring
coefficients are somehow related to each other. Inspired by this,
we modify the weight update rule of the reweighted #; algo-
rithm as follows

1
w® = Vi

LT Bl Y e

(40)

We see that, in the above update rule, each weight is not only
a function of its corresponding coefficient, but also a function
of its neighboring coefficients. Since the amplitude of the
weight reflects how much we want to encourage a coefficient
to become a sparse component, it means that the neighboring
coefficients will also have an impact on the sparsity pattern
of each coefficient. In this way, a coupling mechanism among
neighboring coefficients is established, and the modified
reweighted #;-minimization algorithm has the potential to
encourage block-sparse solutions. Experiments show that the
proposed modified reweighted #; method yields considerably
improved results over the conventional reweighted #; method
in recovering block-sparse signals. It also serves as a good
reference method for comparison with the proposed Bayesian
sparse learning approach.

VI. SIMULATION RESULTS

We now carry out experiments to illustrate the performance of
our proposed algorithm, also referred to as the pattern-coupled

1 T T
0.8}
2
Sosl
?
g 04k ——PC-SBL (8=0) ||
3 —=—PC-SBL (3=0.2)
—A—PC-SBL (3=0.5)
0.2+ —»—PC-SBL (B=1) {
—e—SBL
BP
O - i T T
0.2 03 0.4 05 0.6 07

m/n

Fig. 2. Success rates of the proposed algorithm vs. the ratio rr/n for different
choices of 3.

sparse Bayesian learning (PC-SBL) algorithm, and its compar-
ison with other existing methods. The performance of the pro-
posed algorithm?3 will be examined using both synthetic and real
data. The parameters o and b for our proposed algorithm are set
equal to @ = 0.5 and b = 10~ * throughout our experiments.

A. Synthetic Data

Let us first consider the synthetic data case. In our simu-
lations, we generate the block-sparse signal in a similar way
to [23]. Suppose the n-dimensional sparse signal contains K
nonzero coefficients (K is also denoted as the sparsity level)
which are partitioned into L blocks with random sizes and
random locations. Specifically, the block sizes {B;}; can
be determined as follows: we randomly generate L positive
random variables {r;}}, with their sum equal to one, then
we can simply set B; = [Kr] for the first . — 1 blocks and
B, = K — ZZL;II By for the last block, where [2] denotes
the ceiling operator that gives the smallest integer no smaller
than z. Similarly, we can partition the n-dimensional vector
into L super-blocks using the same set of values {r;}£ ,, and
place each of the I nonzero blocks into each super-block with
a randomly generated starting position (the starting position,
however, is selected such that the nonzero block will not go
beyond the super-block). Also, in our experiments, the nonzero
coefficients of the sparse signal £ and the measurement matrix
A € R™*" are randomly generated with each entry indepen-
dently drawn from a normal distribution, and then the sparse
signal # and columns of A are normalized to unit norm.

We introduce the following metrics to evaluate the recovery
performance of respective algorithms, namely, the normal-
ized mean squared error (NMSE) and the success rate. The
NMSE is calculated by averaging normalized squared errors
||z — £||3/||=||3 of 10® independent runs, where # denotes the
estimate of the true signal . The success rate is computed as
the ratio of the number of successful trials to the total number
of independent runs. A trial is considered successful if the nor-
malized squared error is no greater than 10~%. Also, to examine
the ability to identify the true support of sparse signals, a new

3Matlab codes for our algorithm are available at http://www.junfang-uestc.
net/codes/PC-SBL.rar
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Fig. 4. Pattern recovery success rates of respective algorithms. (a) Pattern recovery success rates vs. m/n, n = 100, K = 25, and L = 4. (b) Pattern recovery

success rates vs. ', m = 40, n = 100, and L = 3.

metric named as “pattern recovery success rate” is introduced.
The pattern recovery success rate, again, is defined as the ratio
of the number of successful trials to the total number of inde-
pendent runs. A trial, however, is considered successful only
if the support of the block-sparse signal is exactly recovered.
Note that for all algorithms, inactive coefficients will not be
exact zeros due to machine precision and the precision specified
by the stopping criterion. A coefficient whose magnitude is
less than 1077 is deemed as a zero coefficient (this assumption
is only adopted here to calculate the pattern recovery success
rates). In our simulations, both the success rate and the pattern
recovery success rate are used to measure the recovery perfor-
mance for the noiseless case.

We first examine the recovery performance of our proposed
algorithm (PC-SBL) under different choices of /3. As indicated
earlier in our paper, 5 (0 < 3 < 1) is a parameter quantifying
the dependencies among neighboring coefficients. Fig. 2 depicts
the success rates vs. the ratio m/n for different choices of 3,
where we set n = 100, K = 25, and L = 4. Results (in Fig. 2
and the following figures) are averaged over 1000 independent
runs, with the measurement matrix and the sparse signal ran-
domly generated for each run. The performance of the conven-
tional sparse Bayesian learning method (denoted as “SBL”) [24]
and the basis pursuit method (denoted as “BP”) [1], [2] is also

included for our comparison. We see that when 3 = 0, our pro-
posed algorithm performs the same as the SBL. This is an ex-
pected result since in the case of § = 0, our proposed algorithm
is simplified as the SBL. Nevertheless, when 5 > 0, our pro-
posed algorithm achieves a significant performance improve-
ment (as compared with the SBL and BP) through exploiting
the underlying block-sparse structure, even without knowing the
exact locations and sizes of zero and nonzero blocks. We also
observe that our proposed algorithm is not very sensitive to the
choice of 3 as long as 5 > 0: it achieves similar success rates
for different positive values of 3. For simplicity, we set 3 = 1
throughout our following experiments.

Next, we compare our proposed algorithm with some other
recently developed algorithms for block-sparse signal recovery,
namely, the expanded block sparse Bayesian learning method
(EBSBL) [23], the Boltzman machine-based greedy pursuit al-
gorithm (BM-MAP-OMP) [20], the cluster-structured MCMC
algorithm (CluSS-MCMC) [19], and the fused LASSO method
(also referred to as the total-variation approach) [9]. The mod-
ified iterative reweighted £; method (denoted as MRL1) pro-
posed in Section V is also examined in our simulations. Note
that all these algorithms were developed without the knowl-
edge of the block-sparse structure. The block sparse Bayesian
learning method (denoted as BSBL) developed in [17], [23] is
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Fig. 6. The original synthetic signal and the signals reconstructed by respective algorithms.

included for comparison as well. Although the BSBL algorithm
need to know the block partition, it still provides quite decent
performance if the presumed block size, denoted by £, is prop-
erly selected. In our simulations, model parameters used by the
competing algorithms are adjusted to achieve the best perfor-
mance. For the EBSBL and the BSBL algorithms, the param-
eter h is set equal to 4. The fused LASSO method requires to
set two values to constrain the #1-norm of the estimated coef-
ficients and the total variation. These two values are selected
using the knowledge of the true solution. For the CluSS-MCMC
and the BM-MAP-OMP, we follow the suggestions and rules
provided in [19], [20] to choose the parameters for their respec-
tive priors. Fig. 3 plots the success rates of respective algorithms
as a function of the ratio m/n and the sparsity level K, re-
spectively. Simulation results show that our proposed algorithm
achieves highest success rates among all algorithms and outper-
forms other methods by a considerable margin. We also noticed
that the modified reweighted £; method (MRL1), although not
as good as the proposed PC-SBL, still delivers acceptable per-
formance which is comparable to the BSBL and better than the
BM-MAP-OMP and the CluSS-MCMC. This is not surprising

since the main ideas behind the MRL1 and the PC-SBL are quite
similar. Next, we examine the ability of respective algorithms
to identify the true support of sparse signals. Fig. 4 depicts the
pattern recovery success rates as a function of the ratio /. /n and
the sparsity level K respectively. It can be observed that the be-
havior of respective algorithms in Fig. 4 resembles that in Fig. 3,
where each algorithm achieves a pattern recovery success rate
that is close to the previously obtained success rate. This is not
surprising since if a trial is deemed successful according to the
NMSE criterion, then with a high probability it will also meet
the successful pattern recovery condition.

We now consider the noisy case where the measurements are
contaminated by additive noise. The observation noise is as-
sumed multivariate Gaussian with zero mean and covariance
matrix o21. Also, in our simulations, the noise variance is as-
sumed unknown (except for the BM-MAP-OMP). For the noisy
case, our algorithm uses (27) to update the hyperparameters in
order to remove the small coefficients and yield a sparser solu-
tion, where 7 in (27) is set to 10®. Nevertheless, experimental
results suggest both update rules (26) and (27) render similar
performance in terms of NMSE. The NMSEs of respective al-
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Fig. 8. The true DCT coefficients of a segment of audio

gorithms as a function of the ratio m/n and the sparsity level K
are plotted in Fig. 5, where the white Gaussian noise is added
such that the signal-to-noise ratio (SNR), which is defined as
SNR(dAB) £ 201log,o(||Az||2/||w||2)[32], [33], is equal to 20
dB for each iteration. We see that our proposed algorithm yields
a lower estimation error than other methods in the presence of
additive Gaussian noise. Fig. 6 shows one realization of the ran-
domly generated sparse signal and the signals reconstructed by
respective algorithms. It can be observed that our proposed algo-
rithm provides the most accurate estimate of the original signal,
particularly those significant coefficients.

B. Audio Data

In this subsection, we carry out experiments on real world
audio signals. Audio signals have cluster-sparse structures in
certain basis, such as discrete cosine transform (DCT) basis.
Hence audio signals are suitable data sets for evaluating the ef-
fectiveness of a variety of block-sparse signal recovery algo-
rithms. We consider a clean piano signal* in our simulations.

4Available at http://homepage.univie.ac.at/monika.doerfler/Struc Audio.html.
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and the coefficients reconstructed by respective algorithms.

The audio signal is divided into a number of short-time seg-
ments, with each consisting of n = 600 data samples. Fig. 7
depicts the NMSEs and the average run times of respective al-
gorithms as a function of the ratio m/n. Results are averaged
over 300 independent trials. For each trial, we randomly select
a short-time segment and compress the segmented signal using
a randomly generated measurement matrix Q@ € R™*%00, The
sensing matrix A can therefore be expressed as A = QW¥, where
¥ ¢ R"*™ represents the DCT basis in which audio signals
have sparse representations. The short-time segment is then re-
constructed by respective algorithms. We see that our proposed
algorithm offers the best performance among all algorithms and
presents a significant performance advantage over other algo-
rithms (except the B-SBL) for a small ratio m /n, where data
acquisition is more beneficial due to high compression rates.
Meanwhile, it can be observed that our algorithm is one of the
most computationally efficient algorithms which consumes sim-
ilar run times as the B-SBL and the fused-LASSO methods.
The reconstruction accuracy of respective algorithms can also
be observed from the reconstructed DCT coefficients. We pro-
vide the true DCT coefficients of one randomly selected seg-
ment of audio, and the coefficients reconstructed by respective
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algorithms. Results are depicted in Fig. 8. It can be seen that our
proposed algorithm provides reconstructed coefficients that are
closest to the groundtruth.

VII. CONCLUSIONS

We developed a new Bayesian method for recovery of
block-sparse signals whose block-sparse structures are entirely
unknown. A pattern-coupled hierarchical Gaussian prior model
was introduced to characterize both the sparseness of the coef-
ficients and the statistical dependencies between neighboring
coefficients of the signal. The prior model, similar to the
conventional sparse Bayesian learning model, employs a set
of hyperparameters to control the sparsity of the signal coef-
ficients. Nevertheless, in our framework, the sparsity of each
coefficient not only depends on its corresponding hyperparam-
eter, but also depends on its neighbor hyperparameters. Such
a prior has the potential to encourage clustered patterns and
suppress isolated coefficients whose patterns are different from
their respective neighbors. The hyperparameters, along with the
sparse signal, can be estimated by maximizing their posterior
probability, where an iterative algorithm was developed by
exploiting the expectation-maximization (EM) formulation.
Numerical results show that our proposed algorithm achieves
a significant performance improvement as compared with
the conventional sparse Bayesian learning method through
exploiting the underlying block-sparse structure, even without
requiring the exact location and size of each block. It also
demonstrates superiority over other existing methods and
provides state-of-the-art performance for block-sparse signal
recovery.
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