
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 125 (2016) 145–155
http://d
0165-16

☆ This
of Chin
Science

n Corr
E-m

shenx51
journal homepage: www.elsevier.com/locate/sigpro
Adaptive one-bit quantization for compressed sensing$

Jun Fang a, Yanning Shen b, Linxiao Yang a, Hongbin Li c,n

a National Key Laboratory of Science and Technology on Communications, University of Electronic Science and
Technology of China, Chengdu 611731, China
b Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
c Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
a r t i c l e i n f o

Article history:
Received 25 March 2015
Received in revised form
8 January 2016
Accepted 25 January 2016
Available online 5 February 2016

Keywords:
One-bit compressed sensing
Adaptive quantization
Quantization design
x.doi.org/10.1016/j.sigpro.2016.01.020
84/& 2016 Elsevier B.V. All rights reserved.

work was supported in part by the Nationa
a under Grant 61172114, 61428103, U153015
Foundation under Grant ECCS-1408182.
esponding author. Tel.: +1 201 216 5604; fa
ail addresses: JunFang@uestc.edu.cn (J. Fang)
3@umn.edu (Y. Shen), Hongbin.Li@stevens.e
a b s t r a c t

There have been a number of studies on sparse signal recovery from one-bit quantized
measurements. Nevertheless, less attention has been paid to the choice of the quantization
thresholds and its impact on the signal recovery performance. In this paper, we examine the
problem of quantization in a general framework of one-bit compressed sensing with non-zero
quantization thresholds. Our analysis shows that when the number of one-bit measurements
is sufficiently large, with a high probability the sparse signal can be recovered with an error
decaying linearly with the ℓ2-norm of the difference between the quantization thresholds and
the original unquantized measurements. Specifically, by setting the thresholds sufficiently
close to the original unquantized measurements, sparse signals can be recovered with an
arbitrarily small error. By borrowing an idea from the Delta modulation, we propose an
adaptive quantization scheme where the quantization thresholds are iteratively adjusted
based on previous encoded bits such that they eventually oscillate around the original
unquantized measurements with decreasing granular noise. Numerical results are provided to
collaborate our theoretical results and to illustrate the effectiveness of the proposed scheme.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Compressive sensing is a recently emerged paradigm of
signal sampling and reconstruction, the main purpose of
which is to recover sparse signals from much fewer linear
measurements [1,2]

y¼ Ax ð1Þ

where AARm�n is the sampling matrix with m⪡n, and x
denotes the n-dimensional sparse signal with only K non-
zero coefficients. Such a problem has been extensively
studied and a variety of algorithms that provide consi-
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stent recovery performance guarantee were proposed, e.g.
[1–12]. Conventional compressed sensing assumes infinite
precision of the acquired measurements. In practice, how-
ever, signals need to be quantized before further processing,
that is, the real-valued measurements need to be mapped
to discrete values over some finite range. Besides, in some
sensing systems (e.g. distributed sensor networks), data
acquisition is expensive due to limited bandwidth and
energy constraints [13]. Aggressive quantization strategies
which compress real-valued measurements into one or only
a few bits of data are preferred in such scenarios. Another
benefit brought by low-rate quantization is that it can sig-
nificantly reduce the hardware complexity and cost of the
analog-to-digital converter (ADC).

Inspired by practical necessity and potential benefits,
compressed sensing based on quantized measurements
has attracted considerable attention recently. A common
way to handle quantized measurements is to treat
quantization errors as Gaussian noise, in which case the
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classical basis pursuit denoising (BPDN) method [1,14] can
be used to reconstruct sparse signals. Nevertheless, it has
been theoretically proven [15] and numerically demon-
strated [16,17] that the reconstruction accuracy can be
considerably improved by taking into account the quanti-
zation consistency constraint or choosing a more suitable
data-fidelity constraint. The saturation issue arising in
quantization was studied in [18], where by exploiting the
democracy property, it was shown that approaches that
merely reject saturated measurements or consider the
consistency constraint are capable of providing a stable
signal recovery. The performance of sparse signal recovery
from quantized measurements was also studied in [19,20].

Besides the above studies, a large body of quantized
compressed sensing work has focused on the extreme
case, i.e. one-bit compressed sensing which was originally
introduced in [21] and aims at recovering a sparse or
compressible signal from one-bit measurements

b¼ signðyÞ ¼ signðAxÞ ð2Þ
where “sign” denotes an operator that performs the sign
function element-wise on the vector, the sign function
returns 1 for positive numbers and �1 otherwise. The
reconstruction performance from one-bit measurements
was later studied in [22,23]. Specifically, in [22], a lower
bound on the reconstruction error was provided along
with a binary iterative hard thresholding (BIHT) algorithm
for recovery of sparse signals. The lower bound holds
regardless of the reconstruction method used, and it was
shown that the reconstruction error decays at best linearly
with the number of measurements. In [23], a first com-
putationally tractable method with provable error guar-
antees for one-bit compressed sensing was proposed.
Inspired by the theoretical advancement [22–24], a variety
of efficient one-bit compressed sensing algorithms such as
adaptive outlier pursuit method [25], noise-adaptive
renormalized fixed point iteration method [26], robust
one-bit Bayesian compressed sensing [27], and many
others (e.g. [28,29]) were developed. Most of the above
works, however, assume a zero quantization threshold, in
which case only the sign of the measurement is retained
while the information about the magnitude of the signal is
lost. The aforementioned bound on the reconstruction
error therefore is only concerned about the direction of x,
i.e. x=JxJ2.

In [30], a more general measurement model with a
non-zero threshold vector τ was considered:

b¼ signðy�τÞ ¼ signðAx�τÞ ð3Þ
It was shown [30] that with appropriately chosen thresh-
olds, both the magnitude and the direction of x can be
estimated from one-bit measurements. In addition, in
recent work [28,31,32], it was numerically demonstrated
[28] and theoretically proved [31,32] that adaptively
choosing the quantization thresholds (in a manner similar
to the Sigma-Delta quantization [33]) is able to achieve an
exponential decay of the reconstruction error as a function
of the number of measurements. To achieve this expo-
nential error decay, the quantization threshold τi of the ith
entry needs to be adaptively adjusted based on the
estimate of x obtained from previous quantized
measurements. This iterative process therefore requires a
feedback from the decoder to the encoder and the decoder
involves a computationally intensive task of calculation of
the quantization threshold.

In this paper, we investigate the problem of one-bit
quantization design for sparse signal recovery. We provide
a quantitative analysis which examines the choice of the
quantization thresholds and quantifies its impact on the
reconstruction performance. Our analysis shows that when
the number of one-bit measurements is sufficiently large,
with a high probability the sparse signal can be recovered
with an error decaying linearly with the ℓ2-norm of the
difference between the quantization thresholds and the
original unquantized measurements. Thus the reconstruction
error can be made arbitrarily small by setting the quantiza-
tion thresholds sufficiently close to the original unquantized
measurements y. Since the original unquantized data sam-
ples y are inaccessible to the decoder, we propose an adap-
tive quantization approach which iteratively adjusts the
quantization thresholds such that the thresholds eventually
come close and oscillate around the original data samples.
Note that our adaptive quantization approach is very differ-
ent from the adaptive scheme developed in [28,31]. The
quantization thresholds τ are updated in parallel for our
approach, while for [28,31], the thresholds are adjusted in a
sequential manner, with its ith quantization threshold τi
depending on the previous ði�1Þ quantized measurements.
In contrast to [28,31], our adaptive quantization approach
does not require a feedback from the decoder to the encoder.
Besides, the computation of the thresholds at both the
encoder and the decoder involves very simple algebraic
operations that can be easily implemented.

There have been some other interesting work [34–36]
on quantizer design for compressed sensing. Specifically,
the work [34] utilizes the high-resolution distributed
functional scalar quantization theory for quantizer design,
where the quantization error is modeled as random noise
following a certain distribution. Nevertheless, such mod-
eling holds valid only for high-resolution quantization, and
may bring limited benefits when a low-rate quantization
strategy is adopted. In [35], authors proposed a general-
ized approximate message passing (GAMP) algorithm for
quantized compressed sensing, and studied the quantizer
design under the GAMP reconstruction. The problem of
reconstructing image from one-bit quantized data was
considered in [36], where the quantization thresholds are
set such that the plus and minus binary measurements are
acquired with equal probabilities. Albeit empirically
effective, no rigorous theoretical guarantee was available
to justify the proposed scheme.

The rest of the paper is organized as follows. In Section
2, we introduce the one-bit compressed sensing problem.
The main results of this paper are presented in Section 3,
where we show that, by properly selecting the quantiza-
tion thresholds, sparse signals can be recovered from one-
bit measurements with an arbitrarily small error. A rigor-
ous proof of our main result is provided in Section 4.
An adaptive quantization method is developed in 5 to
iteratively refine the thresholds based on previous enco-
ded bits. In Section 6, numerical results are presented
to corroborate our theoretical analysis and illustrate the
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effectiveness of the proposed algorithm, followed by
concluding remarks in Section 7.
2. Problem formulation

We consider a coarse quantization-based signal acqui-
sition model in which each real-valued sample is encoded
into one-bit of information

b¼ signðy�τÞ ¼ signðAx�τÞ ð4Þ

where y¼ ½y1 y2 … ym�T denotes the unquantized origi-
nal measurements, b¼ ½b1 b2 … bm�T are the binary
observations, and τ ¼ ½τ1 τ2 … τm�T denotes the quanti-
zation threshold vector. The problem of interest is to
recover the sparse signal x from the one-bit quantized data
b and examine the choice of the quantization threshold τ.
Specifically, we consider the following canonical form for
sparse signal reconstruction

min
z

JzJ0 s:t: signðAz�τÞ ¼ b ð5Þ

Such an optimization problem, albeit non-convex, is more
amenable for theoretical analysis than its convex coun-
terpart (42).

As mentioned earlier, in most previous one-bit com-
pressed sensing studies, the quantization thresholds are
set equal to zero, i.e. τ ¼ 0. In this case, we have to con-
strain the sparse signal on the unit-sphere, otherwise
solving the optimization Eq. (5) yields a trivial all-zero
solution because multiplying x by an arbitrarily small
positive scaling factor will result in the same quantized
data b. To circumvent the above issue, a unit-norm con-
straint is included in Eq. (5) to restrict the sparse signal on
the unit-sphere, i.e.

min
z

JzJ0 s:t: signðAzÞ ¼ b; JzJ2 ¼ 1 ð6Þ

The recovery performance, under this circumstance, is
evaluated by Jx=JxJ2� x̂ J2, where x is the sparse signal
and x̂ denotes the estimated signal obtained via solving
the optimization (6). It was shown in [22] that the above
defined reconstruction error can be bounded with an error
order decaying linearly with the number of measurements.

In this paper, we consider the optimization Eq. (5)
where a general non-zero threshold vector is employed for
sparse signal recovery. Note that for a non-zero threshold
vector, the unit-norm constraint is no longer necessary
since the trivial all-zero solution can usually be avoided.
Moreover, imposing the unit-norm constraint results in
recovery failure as the magnitude of the sparse signal,
JxJ2, is now one of the factors that determine the signs of
the quantized data. That is, even if the thresholds τ remain
unchanged, multiplying x by different scaling factors leads
to different quantized data b. For notational convenience,
we allow a slight abuse of notation and let x̂ denote a
solution of the optimization Eq. (5). In the following, we
examine the choice of τ and its impact on the recon-
struction error Jx� x̂ J2.
3. One-bit quantization design: analysis

To facilitate our analysis, we decompose the quantiza-
tion threshold vector τ into a sum of two terms:

τ ¼ y�δ ð7Þ
where δ¼ ½δ1 δ2 … δm�T is the difference vector between
the quantization thresholds τ and the original unquantized
measurements y. Substituting Eq. (7) into Eq. (4), we get

b¼ signðAx�τÞ ¼ signðδÞ ð8Þ
Suppose x̂ is the solution of Eq. (5). Let h9 x̂�x be the
residual (reconstruction error) vector. Clearly, h is a 2 K-
sparse vector which has at most 2 K non-zero entries since
x̂ has at most K non-zero coefficients. Also, the solution x̂
yields estimated measurements that are consistent with
the observed binary data, i.e.

b¼ signðAx̂�τÞ ¼ signðAhþδÞ ð9Þ
Combining Eqs. (8) and (9), the residual vector h has to
satisfy the following constraint:

signðAhþδÞ ¼ signðδÞ ð10Þ
In the following, we will show that the residual vector h
can be bounded by the difference vector δ if the number of
measurements are sufficiently large and A satisfies a cer-
tain condition. Thus the reconstruction error h can be
made arbitrarily small by setting δ close to zero. Our main
results are summarized as follows.

Theorem 1. Let xARn be a K-sparse vector. AARm�n is the
sampling matrix. Suppose there exist an integer κZ2K and a
positive parameter μ such that any κ � n submatrix A con-
structed by selecting certain rows of A satisfies

JAuJ22ZμJuJ22 ð11Þ
for any 2 K -sparse vector u. Also, assume that each entry of δ
is independently generated from a certain distribution with
equal probabilities being positive or negative. Let x̂ denote
the solution of the optimization problem Eq. (5). For any
arbitrarily small value η40, we can ensure that the follow-
ing statement is true with probability exceeding 1�η: if the
number of measurements, m, is sufficiently large and satisfies

m42Klogðmn=K2Þþκlogmþ logð1=ηÞþc ð12Þ
then the sparse signal can be recovered from Eq. (5) with
the reconstruction error bounded by

J x̂�xJ2r
ϵffiffiffi
μ

p 9λϵ ð13Þ

where ϵ9 JδJ2, λ91= ffiffiffi
μ

p , and c in (12) is defined as

c9 ðκ�1Þðlogðe=ðκ�1ÞÞþ1Þþ4Klogðe=2Þþ2K ð14Þ
which is a constant only dependent on κ and K, where e
represents the base of the natural logarithm.

From Eq. (13), we see that the sparse signal can be
recovered with an error decaying linearly with the ℓ2-
norm of the difference between the quantization thresh-
olds and the original unquantized measurements. This
result suggests that the quantization thresholds should be
set as close to the original data samples y as possible.
In particular, sparse signals can be reconstructed with
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negligible errors even from one-bit measurements if
we set the threshold vector τ sufficiently close to the
unquantized data y (Setting thresholds arbitrarily close to
unquantized measurements, of course, is impossible in
practice).

Note that for a randomly generated measurement
matrix A whose entries are independently drawn from a
normal distribution, since any κ � 2K sub-matrix of A is
full rank with probability one for κZ2K , we can always
find an integer κ and a sufficiently small positive μ to
satisfy Eq. (11). The problem is that μ that satisfies Eq. (11)
could be very small1, which makes the error bound Eq.
(13) loose or even meaningless. Nevertheless, note that the
bound Eq. (13) is given by ϵ=

ffiffiffi
μ

p . Hence even for a very
small μ, if the quantization threshold is sufficiently close to
the unquantized measurement such that ϵ is as small as μ,
a meaningful bound can still be obtained. Of course,
assuming a quantization threshold arbitrarily close to the
unquantized measurement may be impractical. In practice,
we may obtain a meaningful bound by increasing the value
of κ. It has been proved [37] that for any p� q matrix A
with independent and identically distributed sub-Gaussian
entries, the smallest singular value of A is at least of order
ð ffiffiffi

p
p �

ffiffiffiffiffiffiffiffiffiffiffi
q�1

p
Þ with high probability, that is, with prob-

ability exponentially (in dimension) close to one. This
result implies that the smallest singular value improves as
the number of rows grows. Therefore as κ grows, μ may be
large enough to provide a meaningful bound for the
reconstruction error. It is, however, very difficult to ana-
lyze the behavior of the smallest singular value of all
possible sub-matrices because we have to take a union
bound over all sub-matrices and the sub-matrices are not
mutually independent due to overlapping. Therefore we
cannot answer how large κ needs to be in order to avoid a
too small μ and provide a meaningful bound for the
reconstruction error. On the other hand, the key point of
our theorem is to show that the reconstruction error can
be reduced by setting the quantization thresholds close to
the original unquantized measurements. The exact value
of κ is not our concern as long as there exists such a rea-
sonable value of κ to provide a meaningful μ.

We also noticed that random Gaussian matrices possess
a “democratic” property [38] which allows a meaningful μ
to satisfy the condition (11). The democratic property
means that after removing a certain number of rows from
a random Gaussian matrix, the resulting sub-matrix still
preserves some restricted isometry property (RIP).
Although the required number of rows (i.e., κ) to satisfy the
democratic property is very large, considering the fact that
a RIP condition is more restrictive than the condition (11),
we believe a moderately large κ should be able to avoid a
too small μ and ensure a meaningful error bound.
1 To meet Eq. (11), ffiffiffi
μ

p has to be equal to or smaller than the mini-
mum singular value of all possible κ � 2K sub-matrices of A.
4. Proof of Theorem 1

Let aT
i denote the ith row of the sampling matrix A.

Clearly, to ensure the sign consistency (10) for each com-
ponent, we should either have

signðaT
i hÞ ¼ signðδiÞ ð15Þ

or

jaT
i hjo jδij ð16Þ

Note that in the latter case the sign of ðaT
i hþδiÞ does not

flip regardless of the sign of aT
i h. Therefore if there exists a

2 K-sparse residual vector h such that each component of
Ah satisfies either Eqs. (15) or (16), then x̂ ¼ xþh is the
solution of Eq. (5). Our objective in the following is to
show that such a residual vector h is bounded by the
deviation vector δ with an arbitrarily high probability.

Without loss of generality, we decompose A and δ into
two parts: A¼ ½AT

1 AT
2�T , δ¼ ½δT1 δT2�T , according to the two

possible relationships between aT
i h and δi:

signðA1hÞ ¼ signðδ1Þ
jA2hjo jδ2j ð17Þ

where A1ARm1�n, A2ARm2�n, m1þm2 ¼m, and in the
second equation, both the absolute value operation j � j and
the inequality symbol “o” applies entrywise to vectors.

We now analyze the probability of the residual vector h
being greater than λϵ, given that the condition (17) is
satisfied. This conditional probability can be denoted as
PðJhJ24λϵjEÞ, where we use “E” to denote the event (17).
Clearly, PðJhJ24λϵjEÞ can also be explained as the prob-
ability that the event JhJ24λϵ will occur, when the event
E has occurred. To facilitate our analysis, we divide the
event (17) into two disjoint sub-events which are defined
as

E1: The event ð17Þ holds true for m2Zκ

E2: The event ð17Þ holds true for m2oκ

Clearly, the union of these two sub-events is equal to the
event (17). Utilizing Bayes' Theorem, the probability
PðJhJ24λϵjEÞ can be expressed as

PðJhJ24λϵjEÞ ¼ðaÞ PðJhJ24λϵ;EÞ
¼ PðJhJ24λϵ;E1 [ E2Þ
¼ðbÞ PðJhJ24λϵ;E1ÞþPðJhJ24λϵ;E2Þ ð18Þ

where (a) holds because the events (17) is a prerequisite
condition that is always met to ensure the sign con-
sistency, i.e. PðEÞ ¼ 1, and (b) follows from the fact that the
probability of the union of two disjoint events is equal to
the sum of their respective probabilities.

Let us first examine the probability PðJhJ24λϵ;E1Þ. We
show that the events JhJ24λϵ and E1 are two mutually
exclusive events which cannot occur at the same time. To
see this, note that when the event E1 occurs, we should
have

jA2hjo jδ2j ) JA2hJ22oϵ2 ð19Þ
in which A2ARm2�n and m2Zκ. On the other hand,
recalling that any κ � n sub-matrix formed by selecting
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certain rows of A satisfies the condition (11), we have

JA2hJ22ZμJhJ22 ð20Þ
Combining Eqs. (19) and (20), we arrive at

JhJ2o
ϵffiffiffi
μ

p 9λϵ ð21Þ

which is contradictory to the event JhJ24λϵ. Hence the
events E1 and JhJ24λϵ cannot occur simultaneously,
which implies

PðJhJ24λϵ;E1Þ ¼ 0 ð22Þ
Substituting Eq. (22) into (18), the probability

PðJhJ24λϵjEÞ is simplified as

PðJhJ24λϵjEÞ ¼ PðJhJ24λϵ;E2Þ ð23Þ
The probability PðJhJ24λϵ;E2Þ, however, is still difficult
to analyze. To circumvent this difficulty, we, instead, derive
an upper bound on PðJhJ24λϵ;E2Þ:

PðJhJ24λϵ;E2Þ
¼ PðJhJ24λϵjE2ÞPðE2ÞrPðE2Þ
¼ðaÞ PðsignðA1hÞ ¼ signðδ1Þ; jA2hjo jδ2j;m2oκÞ
rPðsignðA1hÞ ¼ signðδ1Þ;m2oκÞ
¼ PðsignðA1hÞ ¼ signðδ1Þ;m14m�κÞ

¼ðbÞ P ⋃
κ�1

i ¼ 0
Ωi

 !
ð24Þ

where (a) comes from the definition of the event E2, and
in (b), the event Ωi is defined as

Ωi: signðA1hÞ ¼ signðδ1Þ
where A1ARm1�n; and m1 ¼m� i ð25Þ

which means that there exist at least m� i components in
Ah whose signs are consistent with the corresponding
entries in δ. Note that since the rest i components are not
explicitly specified in Ωi, the event Ωi include all possibi-
lities for the rest i components. Based on the definition of
Ωi, we can infer the following relationship: Ωi1⊃ Ωi2 for
i14 i2. This is because Ωi2 can be regarded as a special case
of the event Ωi1 with some of the unspecified i1 compo-
nents also meeting the sign consistency requirement. With
this relation, the upper bound derived in Eq. (24) can be
simplified as

PðJhJ24λϵ;E2ÞrP ⋃
κ�1

i ¼ 0
Ωi

 !
¼ PðΩκ�1Þ ð26Þ

We note that for the event Ωκ�1, A1 is not specified and
can be any sub-matrix of A. Considering selection of
m�κþ1 rows (out of m rows of A) to construct A1, the
event Ωκ�1 can be expressed as a union of a set of sub-
events

Ωκ�1 ¼ ⋃
J

j ¼ 1
Ωj

κ�1 ð27Þ

where J9Cðm;m�κþ1Þ, Cðm; kÞ denotes the number of k
combinations from a given set of m-elements, and each
sub-event Ωj

κ�1 is defined as

Ωj
κ�1: signðA1hÞ ¼ signðδ1Þ where A1 ¼ A½Ij; : � ð28Þ

in which Ij is an unique index set which consists of
m�κþ1 non-identical indices selected from f1;2;…;mg,
A½Ij; : � denotes a sub-matrix of A constructed by certain
rows from A, and the indices of the selected rows are
specified by Ij. From Eq. (27), we have

PðΩκ�1Þ ¼ P ⋃
J

j ¼ 1
Ωj

κ�1

 !
r
ðaÞ XJ

j ¼ 1

PðΩj
κ�1Þ ð29Þ

where the inequality (a) follows from the fact that the
probability of a union of events is no greater than the sum
of probabilities of respective events. The inequality
becomes an equality if the events are disjoint. Never-
theless, the sub-events fΩj

κ�1g are not necessarily disjoint
and may have overlappings due to the κ�1 unspecified
components.

We now analyze the probability PðΩj
κ�1Þ. To begin with

our analysis, we introduce the concept of orthant origin-
ally proposed in [22] for analysis of one-bit compressed
sensing. An orthant in Rm is a set of vectors that share the
same sign pattern, i.e.

O ~u ¼ fuARmjsignðuÞ ¼ ~ug ð30Þ
A useful result concerning intersections of orthants by
subspaces is summarized as follows.

Lemma 1. Let S be an arbitrary k-dimensional subspace in
an m-dimensional space. Then the number of orthants
intersected by S can be upper bounded by

Iðm; kÞr2kCðm; kÞ ð31Þ
where Cðm; kÞ denotes the number of k-combinations from a
set of n-elements.

Proof. See [22, Lemma 1].
The probability PðΩj

κ�1Þ of our interest can be inter-
preted as, the probability of the vector A1h lying in the
same orthant as δ1 for a given A1. We first examine the
number of sign patterns the vector A1h could possibly
have. Let S denote the set of all possible sign patterns for
A1h, i.e.

S¼ fu¼ signðA1hÞjhARn is a 2K�sparse vector;
A1 ¼ A½Ij; : �g ð32Þ

Also, let T denote the support of the sparse residual vector
h, we can write

g9A1h¼ A1½: ; T�hT ð33Þ
where gARm� κþ1, and A1½: ; T � denotes a submatrix of A1

obtained by concatenating columns whose indices are
specified by T. We see that g is a linear combination of 2 K
columns of A1, and thus g lies in an 2 K-dimensional
subspace spanned by the columns of A1½: ; T �. Re-
calling Lemma 1, we know that the number of orthants
intersected by this subspace is upper bounded by
22KCðm�κþ1;2KÞ. Therefore the vector g which lies in this
subspace has at most 22KCðm�κþ1;2KÞ possible sign pat-
terns. Note that this result is for a specific choice of the
index set T. The selection of the support T from n entries has
at most Cðn;2KÞ combinations. Therefore, in summary, the
number of sign patterns in the set S is upper bounded by

NSPr22KCðm�κþ1;2KÞCðn;2KÞ ð34Þ
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The probability PðΩj
κ�1Þ can be calculated as

P Ωj
κ�1

� �
¼ P sign δ1ð ÞASð Þ ¼ðaÞ NSP

2ðm� κþ1Þ

r22KCðm�κþ1;2KÞCðn;2KÞ
2ðm� κþ1Þ ð35Þ

where (a) comes from the fact that δ is a vector whose
entries are independently generated from a certain dis-
tribution with equal probabilities being positive and nega-
tive, and δ1 has 2ðm� κþ1Þ possible sign patterns.

Combining Eqs. (23), (26), (29), (35), we arrive at

P JhJ24λϵ Ej Þ ¼ P JhJ24λϵ E2j ÞrP Ωκ�1ð Þðð

r22KCðm�κþ1;2KÞCðn;2KÞCðm; κ�1Þ
2ðm� κþ1Þ

ð36Þ
where the last inequality comes from J ¼ Cðm;m�κþ1Þ ¼
Cðm; κ�1Þ. Utilizing the following inequality [22]

C a; bð Þr ae
b

� �b
ð37Þ

in which e� 2:718 denotes the base of the natural loga-
rithm, the probability PðJhJ24λϵjEÞ can be further
bounded by

PðJhJ24λϵjEÞra
b

ð38Þ

where

a9
nðm�κþ1Þe2

ð2KÞ2

 !2K
me
κ�1

� �ðκ�1Þ

b92ðm� κþ1�2KÞ

Examine the condition which ensures that a=b is less than
a specified value η, where 0oηo1. Taking the base-2
logarithm on both sides of ða=bÞrη and slightly relaxing
the inequality, we obtain

m42Klogðmn=K2Þþκlogmþ logð1=ηÞþc ð39Þ
where

c9 ðκ�1Þðlogðe=ðκ�1ÞÞþ1Þþ4Klogðe=2Þþ2K

is a constant only dependent on κ and K. In summary, for a
specified η, if the condition (39) is satisfied, then we can
ensure that the probability of the residual vector h being
greater than λϵ is smaller than η, i.e.

PðJhJ24λϵjEÞrη ð40Þ
or

PðJhJ2rλϵjEÞZ1�η ð41Þ
The proof is completed here.
5. Quantization design: adaptive methods

Previous analyses show that a reliable and accurate
recovery of sparse signals is possible even from one-bit
measurements. This is a very encouraging result. In this
section, we aim to develop a practical algorithm for one-
bit compressed sensing based on the above theoretical
analysis. Firstly, we note that the optimization (5) is a non-
convex and NP hard problem that has computational
complexity growing exponentially with the signal dimen-
sion n. To circumvent this issue, we replace the ℓ0-norm
with the ℓ1-norm, the most popular alternative sparsity-
promoting functional, which leads to the following opti-
mization

min
z

JzJ1 s:t: signðAz�τÞ ¼ b ð42Þ

which is convex and can be recast as a linear programming
problem that can be solved efficiently. Although a rigorous
theoretical justification for Eq. (42) is still unavailable, our
simulation results indeed suggest that Eq. (42) is an
effective alternative to ℓ0-minimization and is able to yield
a reliable and accurate reconstruction of sparse signals.

The other difficulty we face in developing a practical
algorithm is that the suggested quantization thresholds
are dependent on the original unquantized data samples y
which are inaccessible to the decoder where the recon-
struction of the signal is conducted. This makes the choice
of the quantization thresholds a tricky issue. On one hand,
a pre-specified threshold vector can be used at the encoder
and the decoder, but there is no guarantee that this com-
mon threshold will be close to the original unquantized
measurements. On the other hand, if the encoder chooses
thresholds close to the original measurements, it has to
share the knowledge of the quantization thresholds with
the decoder, in which case one-bit quantization becomes
meaningless since the encoder still requires a high-
resolution analog-to-digital converter (ADC) to quantize
and transmit the threshold information to the decoder. To
deal with this issue, we, in the following, propose a one-bit
adaptive quantization (AQ) scheme where the decoder can
compute the thresholds based on one-bit quantized data
received from the encoder. The adaptive scheme is remi-
niscent of the Delta modulation with variable step-size.

5.1. Adaptive quantization

Specifically, the proposed AQ scheme involves an
encoding and decoding process. At the encoder side, each
measurement, say yi, is encoded into a sequence of one-bit
quantized data fbðtÞi gqt ¼ 1 that are sequentially transmitted
to the decoder. We, firstly, use two pre-specified para-
meters: a randomly generated initial threshold vector
τð1Þ ¼ ½τð1Þ1 τð1Þ2 … τð1Þm �T , and an initial quantization step-
size Δ, to generate the first two one-bit encoded data:

bð1Þi ¼ sgnðyi�τð1Þi Þ
bð2Þi ¼ sgnðyi�τð2Þi Þ ð43Þ

where sgnfxg ¼ �1 if xr0, otherwise sgnfxg ¼ 1,
τð2Þi ¼ τð1Þi þbð1Þi Δ, bðtÞi denotes the encoded data associated
with the ith element at iteration t, and τðtÞi denotes the
quantization threshold used to yield bðtÞi . At iteration tZ2,
the encoder computes its threshold by performing accu-
mulation of the previous bits, weighted by a variable step-
size ΔðtÞ

i :

τðtþ1Þ
i ¼ τðtÞi þbðtÞi ΔðtÞ

i ð44Þ
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where ΔðtÞ
i evolves using the following dynamic model

ΔðtÞ
i ¼

Δðt�1Þ
i K1 if bðtÞi bðt�1Þ

i ¼ 1

Δðt�1Þ
i =K2 if bðtÞi bðt�1Þ

i ¼ �1

8<
: ð45Þ

where K141 and K241 are constants, and Δð1Þ
i ¼ Δ. The

encoder then uses τðtþ1Þ
i as a threshold to generate its

encoded data at iteration tþ1:

bðtþ1Þ
i ¼ sgnðyi�τðtþ1Þ

i Þ ð46Þ
We can immediately recognize that the above process is
reminiscent of the Delta modulation with variable step-
size. The key idea is to adjust the step-size based on two
successive encoded bits. When successive encoded bits
have identical signs, it means that we are still in the catch-
up phase and the step-size is increased to speed up the
process (c.f. Eq. (45)). On the other hand, alternating signs
between successive bits indicate that the quantized data
are oscillating around the waveform, in which case the
step-size is decreased to provide a finer quantization. As
shown in Fig. 1, the threshold sequence fτðtÞi g converges fast
and eventually oscillates around the true measurement yi
with decreasing granular noise, which is exactly the
property we desire.

Based on the one-bit quantized data fbðtÞi gqt ¼ 1 received
from the encoder, the decoder can recover the quantiza-
tion thresholds fτðtÞi gqt ¼ 1 that are used at the encoder. The
reconstruction of τðtÞi can be easily inferred from the
received encoded data in a recursive manner by using Eq.
0 2 4 6 8 10
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Number of bits
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τ

Fig. 1. An example of the adaptive quantization process.

Fig. 2. Schematic of one-bit adaptive qua
(44)–(45). Finally, using the current and all previous
thresholds and binary data fτðtÞ;bðtÞg; 8t ¼ 1;…; q, we
compute an estimate of the sparse signal via solving the
optimization Eq. (42) at the decoder. Note that multiple
sets of thresholds and binary observations can be readily
casted into the form Eq. (42) by replacing A with a stacked
measurement matrix ~A9 ½AT … AT �T . A schematic of the
proposed adaptive quantization scheme is shown in Fig. 2.
Note that throughout this iterative process, the unquan-
tized measurements y remain unchanged. For clarity, the
one-bit adaptive quantization scheme is summarized as
follows.

One-bit adaptive quantization scheme:

1. Input to the encoder and the decoder: An initial
threshold vector τð1Þ, an initial quantization step-size Δ,
and the parameters K1, K2 that are used in the step-size
update Eq. (45).

2. Encoding: Generate the one-bit encoded data fbðtÞi g and
the quantization thresholds fτðtÞi g according to Eqs. (43)–
(46).

3. Decoding: Given the received one-bit quantized data
fbiðtÞg, recover the quantization thresholds fτiðtÞg in a
recursive manner by using Eqs. (43)–(45). Based on the
received binary data and the reconstructed thresholds
fτðtÞ;bðtÞg; 8 t ¼ 1;…; q, compute an estimate of the sparse
signal via solving the optimization Eq. (42).

We note that a similar AQ approach has been proposed
and studied in the framework of distributed estimation for
sensor networks [39], where sensors collaborate to esti-
mate a common parameter or a random field through
exchanging quantized data with their respective neigh-
bors. Nevertheless, this paper presents the first attempt to
apply AQ to the one-bit compressed sensing framework.

5.2. Discussions

We see that for the AQ scheme, the encoder only
requires a simple comparator to quantize the real-valued
measurement, and the computation of the thresholds at
both the encoder and the decoder involves very simple
algebraic operations (addition, multiplication, division)
that can be easily implemented using analog addition/
multiplier circuits. One-bit quantization enables significant
reduction of the hardware complexity. As indicated in [36],
one-bit quantizer which takes the form of a simple com-
parator is particularly appealing in hardware imple-
mentations, and can operate at a much higher sampling
ntization for compressed sensing.
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rate than the high-resolution quantizer. Besides, one-bit
measurements are more amiable for large-scale parallel
processing than high-resolution data. With these merits,
the proposed adaptive architecture allows us to develop
data acquisition devices with lower-cost and faster speed,
meanwhile achieving reconstruction performance similar
to that of using multiple-bit quantizer.

We discuss the choice of the pre-specified parameters Δ,
K1 and K2 that are used at the encoder and the decoder. To
speed up the catch-up process, the initial quantization step-
size Δ should be set a value that is of the same order of the
mean magnitude of y. A small K1Að1;2� is preferable in most
cases, and generally K2 is chosen equal to or slightly greater
than K1

2
to ensure that the step-size will decrease rapidly after

the threshold oscillates around the waveform. To introduce
randomness to the difference vector δ¼ y�τ, we randomly
generate the initial threshold τð1Þ.

Note that the adaptive process can roughly be divided
into a transient catch-up phase and a stable oscillating
phase. For the transient catch-up phase, the entries of the
difference vector δ may not have equal probabilities of
being positive or negative because the quantization
threshold τi is always larger or smaller than the mea-
surement yi during the catch-up phase. Nevertheless,
when the adaptive process reaches the oscillating phase,
the quantization threshold τi oscillates around the mea-
surement yi. Thus the entries of the difference vector will
generally have equal probabilities of being positive or
negative. Moreover, entries of the difference vector are
mutually independent because the evolution of each
threshold sequence fτðtÞi gqt ¼ 1 is independent of other
sequences fτðtÞj gq

t ¼ 1
; 8 ja i. Therefore the independence and

equal-probability assumption for entries of the difference
vector generally holds for the oscillating phase. To improve
the recovery performance, we can choose adaptive quan-
tization parameters to speed up the catch-up phase so that
the process is dominated by the oscillating phase.

We notice that an adaptive quantization architecture
was also proposed in [28,31]. Nevertheless, the archi-
tecture in [28,31] requires a feedback of the estimate of the
sparse signal from the decoder to the encoder for the
threshold adaptation, which may not be feasible in prac-
tice. Our scheme, in contrast, does not involves any feed-
back from the decoder. Also, the scheme [28] updates the
thresholds in a sequential manner, which is computa-
tionally expensive since the adaptive scheme requires to
compute an estimate of the sparse signal every iteration.
6. Numerical results

We now carry out experiments to corroborate our
previous analysis and to illustrate the performance of the
proposed adaptive quantization scheme. In our simula-
tions, the K-sparse signal is randomly generated with the
support set of the sparse signal randomly chosen accord-
ing to a uniform distribution. The signals on the support
set are independent and identically distributed (i.i.d.)
Gaussian random variables with zero mean and unit var-
iance. The measurement matrix AARm�n is randomly
generated with each entry independently drawn from
Gaussian distribution with zero mean and unit variance.

6.1. Performance under different threshold choices

We first examine the impact of the quantization design
on the reconstruction performance. The knowledge of the
original unquantized measurements y is assumed available
in order to validate our theoretical results. The thresholds
are chosen to be the sum of the unquantized measure-
ments y and a deviation term δ, i.e. τ ¼ yþδ, where δ is a
vector with its entries being independent discrete random
variables with Pðδi ¼ �aÞ ¼ 0:5 and Pðδi ¼ aÞ ¼ 0:5, in which
the parameter a40 controls the deviation of τ from y.
Fig. 3 depicts the reconstruction normalized mean squared
error (NMSE), E½Jx� x̂ J2=JxJ2�, vs. the number of mea-
surements m for different choices of a, where we set
n¼50, and K¼3. Results are averaged over 104 indepen-
dent runs. From Fig. 3, we see that the reconstruction
accuracy can be significantly improved by reducing the
deviation parameter a. In particular, a NMSE as small as
10�6 can be achieved when a is set 0.001. This corrobo-
rates our theoretical analysis that sparse signals can be
recovered from one-bit quantized data with an arbitrarily
small error by letting δ-0. Also, as expected, the recon-
struction error decreases with an increasing number of
measurements m. Nevertheless, the performance
improvement due to an increasing m is mild when m is
large. This fact suggests that the choice of quantization
thresholds is a more critical factor than the number of
measurements in achieving an accurate reconstruction. In
Fig. 4, we plot the root mean squared error (RMSE),
E½Jx� x̂ J2�, as a function of the deviation magnitude
ϵ¼ JδJ2 ¼

ffiffiffiffiffi
m

p
a, where we set m¼100, n¼120, K¼2 and a

varies from 10�3 to 1. It can be observed that the RMSE
decreases proportionally with the value ϵ, which coincides
with our theoretical analysis Eq. (13). To further corrobo-
rate our analysis, we consider a different way to generate
the deviation vector δ, with its entries randomly generated
according to a Gaussian distribution with zero mean and
variance σ2. Fig. 5 depicts the NMSE vs. the number of
measurements m for different values of σ, where n¼50,
and K¼3. Again, we observe that a more accurate estimate
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is achieved when the thresholds get closer to the
unquantized measurements y.

6.2. Performance of adaptive quantization scheme

We now carry out experiments to illustrate the per-
formance of the proposed adaptive quantization (AQ)
algorithm. In our experiments, we set n¼50, and K¼2. The
NMSE vs. the number of iterations (i.e. number of bits, q,
per measurement) is plotted in Fig. 6, where we set m to
30, and 50, respectively. Results are averaged over 103

independent runs, with the sampling matrix and the
sparse signal randomly generated for each run. From Fig. 6,
we see that the AQ algorithm provides a consistent per-
formance improvement through iteratively refining the
quantization thresholds, and usually provides a reasonable
reconstruction performance within only a few iterations.

To further show the effectiveness of the AQ scheme, we
compare with a uniform quantization (UQ) scheme which
employs a q-bit uniform quantizer at the encoder. A uni-
form q-bit quantizer uniformly divide the observation
dynamic range ½�η; η� into intervals of length Δ¼ 2η=
ð2q�1Þ and round the message yi to the nearest
neighboring endpoints of these intervals. The quantized
data ŷ9 ½ŷ1 … ŷm�T are then transmitted to the decoder,
where multi-bit quantized compressed sensing techniques
[15,17] can be employed to reconstruct the sparse signal.
Specifically, in [17], the reconstruction problem was casted
as the following convex optimization with a quantization
consistency constraint

min
z

JzJ1 s:t: AzARŷ ð47Þ

where Rŷ denotes the quantization region of ŷ . This
reconstruction scheme is referred to as compressed sen-
sing with quantization consistency (CS-QC) method in our
paper. Another class of decoders called as Basis Pursuit
DeQuantizer of moment p (BPDQ) ð1ZpZ2Þ [15] for-
mulate the recovery problem as

min
z

JzJ1 s:t: J ŷ�AzJprϵ ð48Þ

where we choose p¼2 in our simulations, in which case
BPDQ becomes the BPDN method. Note that when p¼1
and ϵ¼ Δ=2, the two formulations Eqs. (47) and (48)
become identical. We also consider a one-bit random
quantization scheme (referred to as the RQ scheme) whose
thresholds are randomly generated according to a uniform
distribution over a range ½�η; η�. To make a fair compar-
ison, the RQ scheme samples each measurement q times
using uniformly generated q thresholds, and yields q bits
of information which are reported to the decoder. For the
RQ scheme, suppose the knowledge of the thresholds are
also available at the decoder, the sparse recovery problem
can also be formulated as Eq. (42) and efficiently solved.
Figs. 7 and 8 depict the NMSEs of respective schemes as a
function of the ratio m=n for different choices of q, where
the measurement matrix is chosen to be a random matrix
in Fig. 7 and a deterministic discrete consine transform
(DCT) matrix in Fig. 8. We set Δ¼ 0:2, K1¼1.3, and K2¼1.5,
for the AQ scheme, and η¼ 2 (such a choice guarantees
that the measurements y fall into the region ½�η; η� with a
high probability) for the CS-QC, BPDQ and RQ schemes.
Note that all these schemes send the same number of
bits, i.e. mq bits, to the decoder. From Figs. 7 and 8, we see
that our proposed AQ scheme presents a significant
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performance advantage over the RQ scheme. This is not
surprising since iteratively refined thresholds are generally
closer to the original measurements y than randomly
generated thresholds. We also observe that the AQ scheme
outperforms the CS-QC and BPDQ methods by a big margin
when q is small. The AQ scheme is surpassed by the CS-QC
method as q increases. This performance advantage,
however, is achieved with the cost of employing a high-
resolution ADC at the encoder.
7. Conclusion

We studied the problem of quantization design in a
general framework of one-bit compressed sensing with
non-zero quantization thresholds. Our theoretical analysis
reveals that when the number of one-bit measurements is
sufficiently large, with a high probability the sparse signal
can be recovered with a bounded error. The error bound is
linearly proportional to the ℓ2-norm of the difference
between the thresholds and the original unquantized
measurements. By setting the thresholds sufficiently close
to the original unquantized measurements, sparse signals
can be recovered with an arbitrarily small error. The
unquantized measurements, unfortunately, are inacces-
sible to the decoder. To address this issue, we proposed an
adaptive quantization (AQ) scheme where the encoder
iteratively adjusts the quantization thresholds based on
previous encoded bits such that the quantization thresh-
olds eventually oscillate around the true measurements.
Based on the one-bit quantized data received from the
encoder, the decoder can calculate the quantization
thresholds that are used at the encoder, and compute an
estimate of the sparse signal based on the thresholds and
the binary data. Simulation results showed that the pro-
posed AQ scheme presents superiority over other one-bit
compressed sensing schemes and achieves recovery per-
formance similar to that of using a multi-bit quantizer.
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