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Abstract—Conventional compressed sensing theory assumes
signals have sparse representations in a known dictionary. Nev-
ertheless, in many practical applications such as line spectral es-
timation, the sparsifying dictionary is usually characterized by
a set of unknown parameters in a continuous domain. To apply
the conventional compressed sensing technique to such applica-
tions, the continuous parameter space has to be discretized to a
finite set of grid points, based on which a “nominal dictionary”
is constructed for sparse signal recovery. Discretization, however,
inevitably incurs errors since the true parameters do not necessar-
ily lie on the discretized grid. This error, also referred to as grid
mismatch, leads to deteriorated recovery performance. In this pa-
per, we consider the line spectral estimation problem and propose
an iterative reweighted method which jointly estimates the sparse
signals and the unknown parameters associated with the true dic-
tionary. The proposed algorithm is developed by iteratively de-
creasing a surrogate function majorizing a given log-sum objective
function, leading to a gradual and interweaved iterative process to
refine the unknown parameters and the sparse signal. A simple yet
effective scheme is developed for adaptively updating the regular-
ization parameter that controls the tradeoff between the sparsity
of the solution and the data fitting error. Theoretical analysis is
conducted to justify the proposed method. Simulation results show
that the proposed algorithm achieves super resolution and outper-
forms other state-of-the-art methods in many cases of practical
interest.

Index Terms—Super-resolution compressed sensing, line spectra
estimation, grid mismatch, iterative reweighted methods.
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I. INTRODUCTION

COMPRESSED sensing finds a variety of applications in
practice as many natural signals admit a sparse or an ap-

proximate sparse representation in a certain basis. Nevertheless,
accurate reconstruction of a sparse signal relies on the knowl-
edge of the sparsifying dictionary, while in many applications, it
is often impractical to pre-specify a dictionary that can sparsely
represent the signal. For example, for the line spectral estimation
problem, using a preset discrete Fourier transform (DFT) ma-
trix suffers from considerable performance degradation because
the true frequency components may not lie on the pre-specified
frequency grid. The same is true for direction-of-arrival (DOA)
estimation, where the true directions of sources may not align
with the presumed grid. In these and similar applications, the
sparsifying dictionary is characterized by a set of unknown pa-
rameters in a continuous domain. In order to apply compressed
sensing to such applications, the continuous parameter space has
to be discretized to a finite set of grid points, based on which
a nominal dictionary is constructed for sparse signal recovery.
Discretization, however, inevitably incurs errors since the true
parameters do not necessarily lie on the discretized grid. This
error, also referred to as the grid mismatch, leads to deteriorated
performance or even failure in recovering the sparse signal.
Finer grids can certainly be used to reduce grid mismatch and
improve the reconstruction accuracy. Nevertheless, recovery al-
gorithms may become numerically instable and computationally
prohibitive when very fine discretized grids are employed.

The grid mismatch problem has attracted a lot of attention
over the past few years. Specifically, in [1], the problem was
addressed in a general framework of “basis mismatch” where
the mismatch is modeled as a perturbation (caused by grid dis-
cretization, calibration errors or other factors) between the pre-
sumed and the actual dictionaries, and the impact of the basis
mismatch on the reconstruction error was analyzed. In [2], [3],
to deal with grid mismatch, the true dictionary is approximated
as a summation of a presumed dictionary and a structured pa-
rameterized matrix via a Taylor expansion. The recovery per-
formance of this method, however, depends on the accuracy of
the Taylor expansion in approximating the true dictionary. The
grid mismatch problem was also examined in [4], [5], where a
highly coherent dictionary (very fine grids) is used to mitigate
the discretization error, and a class of greedy algorithms which
use the technique of band exclusion (coherence-inhibiting)
were proposed for sparse signal recovery. Besides these efforts,
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another line of work [6]–[9] studied the problem of grid mis-
match in a more fundamental way: they circumvent the dis-
cretization issue by working directly on the continuous parame-
ter space, leading to the so-called super-resolution technique. In
[6]–[9], an atomic norm-minimization approach was proposed
to handle the infinite dictionary with continuous atoms. It was
shown that given that the frequency components are sufficiently
separated, the frequency components of a mixture of complex si-
nusoids can be super-resolved with infinite precision from only
coarse-scale measurements. Other related works include [10]
for the extension of the atomic-norm techniques and [11] based
on a low rank Hankel matrix completion. In [12], [13], by treat-
ing the sparse signal as hidden variables, Bayesian approaches
were proposed to iteratively refine the dictionary, and are shown
able to achieve super-resolution. Parametric dictionary learning
for sparse signal recovery was also considered in [14], where
the objective is to optimize the dictionary parameters in order to
minimize the distance of the dictionary to an equiangular tight
frame (ETF).

In this paper, we address the line spectral estimation problem
in a super-resolution compressed sensing framework1. Specif-
ically, line spectral estimation is formulated as a sparse sig-
nal recovery problem with an unknown parametric dictionary.
We propose an iterative reweighted method for joint dictionary
parameter learning and sparse signal recovery. The proposed
method is developed by iteratively decreasing a surrogate func-
tion that majorizes the original log-sum objective function. Note
that the use of the iterative reweighted scheme for sparse sig-
nal recovery is not new and has achieved great success over
past few years (e.g., [15]–[19]). Nevertheless, previous works
concern only recovery of the sparse signal. The current work,
instead, generalizes the iterative reweighted scheme for joint
dictionary parameter learning and sparse signal recovery. More-
over, previous iterative reweighted algorithms usually involve
iterative minimization of a surrogate function majorizing a given
objective function, while we propose to iteratively decrease a
surrogate function. This generalization extends the applicability
of the iterative reweighted scheme since finding a simple and
convex surrogate function which admits an analytical solution
could be difficult for many complex problems.

The current work is an extension of our previous work [20]
to more general scenarios involving noisy and/or multiple mea-
surement vectors. As will be shown in this paper, this extension
is technically non-trivial for the following two reasons. First,
the extension to the noisy case inevitably involves a choice of
a regularization parameter controlling the tradeoff between the
data fitting error and the sparsity of the solution, which is tricky
but meanwhile critical to the recovery performance. In the pa-
per, to address this issue, a simple yet effective scheme was
developed for adaptively updating the regularization parameter.
Second, a pruning operation is introduced to remove those small
coefficients along with their associated frequency components
during the iterative process, which brings in improved stabil-
ity and substantial reduction in computational complexity. Note

1The notion of “super-resolution” was introduced in [6] to refer to the ability
of resolving the true parameters with infinite precision. In some other works,
“super-resolution compressed sensing” also refers to “off-grid compressed
sensing”.

that such a pruning operation is not applicable to [20] because
performing the pruning will result in an ill-posed inverse prob-
lem (see Section III.B for additional details). In this paper, we
also provide a theoretical analysis for the log-sum minimization
considered in this paper. Our theoretical analysis shows that the
global minimum of the log-sum minimization approaches the
true solution as the parameter of the log-sum functional reduces
to zero, i.e., ε → 0, which offers a theoretical justification for
the proposed algorithm.

Note that estimating the frequencies of a mixture of
complex sinusoids is an extensively studied problem in radar,
sonar and seismic applications. Classical techniques include
subspace-based methods such as the MUSIC [21], ESPRIT
[22], matrix-pencil [23]. Some recent works on frequency
parameter estimation include, e.g., [24], [25]. Sparse signal
representation (compressed sensing) provides a new perspec-
tive and methodology to address the line spectral estimation
problem. Compressed sensing-based methods present several
unique advantages over conventional subspace-based methods,
e.g., they are able to achieve super-resolution accuracy with
a small number of time samples, and can deal with coherent
sources. A more detailed discussion and comparison between
compressed-sensing methods and classical subspace-based
methods, however, is beyond the scope of this paper as our major
objective is to devise a new approach to overcome the grid mis-
match limitation inherent in conventional compressed sensing
techniques. Also, although our paper focuses on line spectral
estimation problem, the proposed method is quite general and
may be applied to other parametric dictionary models.

The rest of the paper is organized as follows. In Section II, the
line spectral estimation problem is formulated as a joint sparse
representation and dictionary parameter estimation problem. An
iterative reweighted algorithm is developed in Section III. The
choice of the regularization parameter controlling the tradeoff
between sparsity and data fitting is discussed in Section IV,
where a simple and effective update rule for the regularization
parameter is proposed. In Section V, we provide a theoretical
analysis of the considered optimization problem for the noise-
less case. Extension of the proposed algorithm to the multiple
measurement vector scenario is studied in Section VI. Simula-
tion results are provided in Section VII, followed by concluding
remarks in Section VIII.

II. PROBLEM FORMULATION

Consider the line spectral estimation problem where the ob-
served signal is a summation of a number of complex sinusoids:

ym =
K∑

k=1

αke−jωk m + em m = 1, . . . ,M (1)

where ωk ∈ [0, 2π) and αk denote the frequency and the
complex amplitude of the k-th component, respectively,
and em represents the observation noise. Define a(ω) �
[e−jω e−j2ω . . . e−jM ω ]T , the model (1) can be rewritten in
a vector-matrix form as

y = A (ω) α + e (2)
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where y � [y1 . . . yM ]T ,α � [α1 . . . αK ]T , and A(ω) �
[a(ω1) . . . a(ωK )]. Note that in some applications, to facilitate
data acquisition, we may wish to estimate {ωk} and {αk} from
a subset of measurements randomly extracted from {ym}M

m=1 .
This random sampling operation amounts to constructing a new
dictionary by retaining the associated rows and removing other
rows of A(ω). This modification, however, makes no difference
to our algorithm development.

We first discuss how conventional compressed sensing tech-
niques are applied to address this line spectral estimation prob-
lem. For conventional compressed sensing techniques, the con-
tinuous frequency parameter space has to be discretized into
a finite set of grid points. The unknown frequency compo-
nents {ωk} are assumed to lie on some of the discretized
grid points. Estimating {ωk} and {αk} can then be for-
mulated as a sparse signal recovery problem y = Az + e,
where A ∈ CM ×N (M � N) is an overcomplete dictionary
constructed based on the discretized grid points. In practi-
cal applications, the true parameters do not necessarily lie on
the discretized grid, in which case the recovery performance
deteriorated.

To circumvent this issue, in this paper, the parameters
{θn} associate with the overcomplete dictionary A(θ) �
[a(θ1) . . . a(θN )], where each atom a(θn ) is determined by a
frequency parameter θn , are treated unknown. Estimating {ωk}
and {αk} can therefore be formulated as a sparse signal recovery
problem with an unknown parametric dictionary. In this frame-
work, the objective is not only to estimate the sparse signal, but
also to optimize/refine the frequency parameters θ � {θn}N

n=1
such that the parametric dictionary will approach the true spar-
sifying dictionary. More specifically, the goal is to search for
a set of unknown parameters {θn}N

n=1 with which the ob-
served signal y can be represented by as few atoms as possible
with a specified error tolerance. Such a problem can be readily
formulated as

min
z,θ

‖ z ‖0

s.t. ‖ y − A (θ) z ‖2 ≤ ξ (3)

where ‖ z ‖0 stands for the number of the nonzero components
of z, and ξ is an error tolerance parameter related to noise
statistics. The optimization (3), however, is an NP-hard problem.
Alternative sparsity-promoting functions such as �1-norm can
be used to replace �0-norm to find a sparse solution of z more
computationally efficient. In this paper, we consider the use of
the log-sum sparsity-encouraging functional. Log-sum penalty
function has been used for sparse signal recovery [17], [19]
and was shown to be more sparsity-encouraging than the �1-
norm [19], [26]. Replacing the �0-norm in (3) with the log-sum
functional leads to

min
z,θ

L (z) =
N∑

n=1

log
(
|zn |2 + ε

)

s.t. ‖ y − A (θ) z ‖2 ≤ ξ (4)

where zn denotes the nth component of the vector z, and ε >
0 is a positive parameter to ensure that the function is well-
defined. The choice of ε will be discussed later in our paper.
The optimization (4) can be formulated as an unconstrained
optimization problem by removing the constraint and adding a
data fitting term, λ ‖ y − A(θ)z ‖2

2 , to the objective functional,
which yields the following optimization

min
z,θ

G (z,θ) �
N∑

n=1

log
(
|zn |2 + ε

)
+ λ ‖ y − A (θ) z ‖2

2

= L (z) + λ ‖ y − A (θ) z ‖2
2 (5)

where λ > 0 is a regularization parameter controlling the trade-
off between data fitting and the sparsity of the solution, and its
choice will be more thoroughly discussed later in this paper.
The above optimization (5) can be solved via a two-stage itera-
tive algorithm [27] that alternates between a sparse coding stage
and a dictionary update stage. Nevertheless, this two-stage algo-
rithm does not guarantee a monotonically decreasing objective
function value. The algorithm is also very likely to be trapped
in undesirable local minima. In the following, we develop
an iterative reweighted algorithm which shall overcome these
limitations.

III. PROPOSED ITERATIVE REWEIGHTED ALGORITHM

A. Algorithm Development

We now develop an iterative reweighted algorithm for joint
dictionary parameter learning and sparse signal recovery. We
resort to a bounded optimization approach, also known as the
majorization-minimization (MM) approach [17], [28], to solve
the optimization (5). The idea of the MM approach is to it-
eratively minimize a simple surrogate function majorizing the
given objective function. Nevertheless, in this paper we will
show that through iteratively decreasing (not necessarily mini-
mizing) the surrogate function, the iterative process also yields
a non-increasing objective function value and eventually con-
verges to a stationary point of G(z,θ). To obtain an appropriate
surrogate function for (5), we first find a suitable surrogate func-
tion for the log-sum functional L(z). It can be verified that a
differentiable and convex surrogate function majorizing L(z) is
given by

Q
(
z|ẑ(t)

)
�

N∑

n=1

⎛

⎜⎝
|zn |2 + ε
∣∣∣ẑ(t)

n

∣∣∣
2

+ ε
+ log

(∣∣∣ẑ(t)
n

∣∣∣
2

+ ε

)
− 1

⎞

⎟⎠

(6)

where ẑ(t) � [ẑ(t)
1 . . . ẑ

(t)
N ]

T
denotes an estimate of z at iter-

ation t. We can easily verify that Q(z|ẑ(t)) − L(z) ≥ 0, with
the equality attained when z = ẑ(t) . Consequently the surrogate
function for the objective function G(z,θ) is

S
(
z,θ|ẑ(t)

)
� Q

(
z|ẑ(t)

)
+ λ‖y − A (θ) z‖2

2 (7)

Solving (5) now reduces to minimizing the surrogate function
iteratively. Ignoring terms independent of {z,θ}, optimizing the
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surrogate function (7) is simplified as

min
z,θ

zH D(t)z + λ‖ y − A (θ) z ‖2
2 (8)

where [·]H denotes the conjugate transpose, and D(t) is a diag-
onal matrix given as

D(t) � diag

⎧
⎪⎨

⎪⎩
1

∣∣∣ẑ(t)
1

∣∣∣
2

+ ε
, . . . ,

1
∣∣∣ẑ(t)

N

∣∣∣
2

+ ε

⎫
⎪⎬

⎪⎭

Conditioned on θ, the optimal z of (8) can be readily obtained
as

z∗ (θ) =
(
AH (θ) A (θ) + λ−1D(t)

)−1
AH (θ) y (9)

Substituting (9) back into (8), the optimization simply becomes
searching for the unknown parameter θ:

min
θ

f (θ) � −yH A (θ)
(
AH (θ) A (θ) + λ−1D(t)

)−1

× AH (θ) y (10)

An analytical solution of the above optimization (10) is difficult
to obtain. Nevertheless, in our algorithm, we only need to search

for a new estimate θ̂
(t+1)

such that the following inequality
holds

f
(
θ̂

(t+1)) ≤ f
(
θ̂

(t))
(11)

Since f(θ) is differentiable for our case, such an estimate can
be easily obtained by using a gradient descent method. Given

θ̂
(t+1)

, ẑ(t+1) can be obtained via (9), with θ replaced by θ̂
(t+1)

,
i.e.,

ẑ(t+1) = z∗
(
θ̂

(t+1))
(12)

In the following, we show that the new estimate

{ẑ(t+1) , θ̂
(t+1)} results in a non-increasing objective function

value, that is,

G
(
ẑ(t+1) , θ̂

(t+1)) ≤ G
(
ẑ(t) , θ̂

(t))
(13)

To this goal, we first show the following inequality

S
(

ẑ(t) , θ̂
(t)

∣∣∣ ẑ(t)
) (a)

≥ S
(

z∗
(
θ̂

(t))
, θ̂

(t)
∣∣∣ ẑ(t)

)

= f
(
θ̂

(t))
+ constant

(b)
≥ f

(
θ̂

(t+1))
+ constant

= S
(

z∗
(
θ̂

(t+1))
, θ̂

(t+1)
∣∣∣ ẑ(t)

)

(c)
= S

(
ẑ(t+1) , θ̂

(t+1)
∣∣∣ ẑ(t)

)
(14)

where (a) comes from the fact that z∗(θ) is the optimal solution
to the optimization (8); (b) and (c) follow from (11) and (12),
respectively. Moreover, we have

G
(
ẑ(t+1) , θ̂

(t+1))− S
(

ẑ(t+1) , θ̂
(t+1)

∣∣∣ ẑ(t)
)

= L
(
ẑ(t+1)

)
− Q

(
ẑ(t+1)

∣∣∣ ẑ(t)
)

(a)
≤ L

(
ẑ(t)

)
− Q

(
ẑ(t)

∣∣∣ ẑ(t)
)

= G
(
ẑ(t) , θ̂

(t))− S
(

ẑ(t) , θ̂
(t)

∣∣∣ ẑ(t)
)

(15)

where (a) follows from the fact that Q(z|ẑ(t)) − L(z) attains its
minimum when z = ẑ(t) . Combining (14)–(15), we eventually
arrive at

G

(
ẑ

(t+1)
, θ̂

(t+1)
)

= G

(
ẑ

(t+1)
, θ̂

(t+1)
)
− S

(
ẑ

(t+1)
, θ̂

(t+1)
∣∣∣ ẑ

(t)
)

+ S

(
ẑ

(t+1)
, θ̂

(t+1)
∣∣∣ ẑ

(t)
)

≤ G

(
ẑ

(t)
, θ̂

(t)
)
− S

(
ẑ

(t)
, θ̂

(t)
∣∣∣ ẑ

(t)
)

+ S

(
ẑ

(t+1)
, θ̂

(t+1)
∣∣∣ ẑ

(t)
)

≤ G

(
ẑ

(t)
, θ̂

(t)
)

(16)

We see that through iteratively decreasing (not necessarily min-
imizing) the surrogate function, the objective function G(z,θ)
is guaranteed to be non-increasing at each iteration and the it-
erative process eventually converges to a stationary point of
G(z,θ). To better evaluate the proposed algorithm, it is also
meaningful to examine the convergence rate of our proposed
method. Several works [29], [30] reported results on the conver-
gence rate of iterative reweighted methods. These theoretical
results, however, are inapplicable for our proposed algorithm
because our proposed method is different from conventional it-
erative reweighted methods that consider only the recovery of
sparse signals. Hence it still remains an open issue to examine
the convergence property of the proposed method.

For clarification, we summarize our algorithm as follows.

Iterative Reweighted Algorithm I

1. Given an initialization ẑ(0) , θ̂
(0)

, and a pre-selected
regularization parameter λ.

2. At iteration t = 0, 1, . . .: Based on the estimate ẑ(t) ,
construct the surrogate function as depicted in (7).
Search for a new estimate of the unknown parameter

vector, denoted as θ̂
(t+1)

, by using the gradient
descent method such that the inequality (11) is
satisfied. Compute a new estimate of the sparse signal,
denoted as ẑ(t+1) , via (12).

3. Go to Step 2 if ‖ ẑ(t+1) − ẑ(t)‖2 > ε, where ε is a
prescribed tolerance value; otherwise stop.
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B. Discussions

We see that in our algorithm, the unknown parameters and
the signal are refined in a gradual and interweaved manner. This
gradual and interweaved refinement allows different atoms in
the dictionary, meanwhile gradually refined, fully competing
against each other to represent the observed data. Thus the true
frequency components are more likely to stand out, and as a
result, the algorithm is less likely to get stuck in undesirable
local minima. In addition, similar to [18], the parameter ε used
throughout our optimization can be gradually decreased instead
of remaining fixed. For example, at the beginning, ε can be set
to a relatively large value, say 1. We then gradually reduce the
value of ε in the subsequent iterations until ε attains a sufficiently
small value, e.g., 10−8 . Numerical results demonstrate that this
gradual refinement of the parameter ε can further improve the
probability of finding the correct solution.

The second step of the proposed algorithm involves searching
for a new estimate of the unknown parameter vector to meet the
condition (11). As mentioned earlier, this can be accomplished
via a gradient-based search algorithm. Details of computing the
gradient of f(θ) with respect to θ are provided in Appendix A.
Also, to achieve a better reconstruction accuracy, the estimates
of {θi} can be refined in a sequential manner. Our experiments
suggest that a new estimate which satisfies (11) can be easily
obtained within only a few iterations.

The main computational task of our proposed algorithm
at each iteration is to calculate z∗(θ) (as per (9)) and the
first derivative of f(θ) with respect to θ, both of which in-
volve computing the inverse of the following N × N matrix:
AH (θ)A(θ) + λ−1D(t) . The computational complexity of the
proposed method can be reduced by introducing a pruning op-
eration, that is, at each iteration, we remove those small co-
efficients along with their associated frequency components.
Thus the dimension of the signal z and the parameter θ keeps
shrinking as the iterative process evolves. As a consequence, the
dimension of the matrix AH (θ)A(θ) + λ−1D(t) to be inverted
decreases accordingly, and hence the computational complexity
is reduced. A hard thresholding rule can be used to remove those
irrelevant frequency components. Specifically, if the coefficient
ẑ

(t)
n is less than a pre-specified small value τ , i.e., ẑ

(t)
n ≤ τ ,

then the associated frequency component θ̂
(t)
n can be removed

from further consideration since its contribution to the signal
synthesis is negligible.

Note that the above pruning procedure cannot be applied
to our previous algorithm [20] developed for the scenario of
noiseless measurements. To see this, the previous algorithm
requires computing the inverse of the following M × M ma-

trix A(θ)(D(t))
−1

AH (θ) at each iteration. Performing pruning
operations will result in an ill-posed inverse problem since the
above matrix will eventually become singular as the dimen-
sion of A(θ) shrinks. The proposed method in the current work
is therefore computationally more attractive than our previous
algorithm, particularly when the number of observed data sam-
ples, M , is large.

Our proposed method requires a finite set of grid points
as initial estimates of the dictionary parameters. Nevertheless,

unlike conventional compressed sensing methods, the dictio-
nary parameters are jointly optimized/refined along with the
sparse signal during the iterative process. For our method, a
general guideline for choosing N is to let N 	 K in order to
obtain a sufficiently fine grid, because a finer initial grid makes
the search for the dictionary parameters easier, faster, and less
likely to be trapped in undesirable local minima. With a fine
initial grid, some of the grid points are close to the true fre-
quency components. The estimated coefficients associated with
these grid points are expected to be prominent during the first
few iterations, thus serving as a reliable estimate for subsequent
refinement/optimization. On the contrary, a coarse grid, for ex-
ample, considering the extreme case N = K, would make the
search for the dictionary parameters more difficult and vulnera-
ble to convergence to local minima since the initial grid points
are far away from the true frequency components. Also note that
N does not necessarily need to be greater than the number of
measurements M . The proposed algorithm works well as long
as N 	 K.

IV. ADAPTIVE UPDATE OF λ

As mentioned earlier, λ is a regularization parameter con-
trolling the tradeoff between the sparsity of the solution and
the data fitting error. Clearly, a small λ leads to a sparse solu-
tion, whereas a larger λ renders a less sparse but better-fitting
solution. As a consequence, in scenarios where frequency com-
ponents are closely-spaced, choosing a small λ may result in an
underestimation of the frequency components while an exces-
sively large λ may lead to an overestimation. Thus the choice of
λ is critical to the recovery performance.

When the knowledge of the noise level is known a priori, the
regularization parameter λ can be chosen such that the norm of
the residual matches the noise level of the data. This selection
rule is also known as the discrepancy principle [31]. For the
case of unknown noise variance, the L-curve method has been
shown to provide a reasonably good and robust parameter choice
[31] in some experiments. Nevertheless, the L-curve method is
computationally expensive for our case since, in order to plot
the L-curve, it requires us to solve the optimization problem
(5) for a number of different values of λ. To the best of our
knowledge, a general rule for regularization parameter selection
remains an open issue. In this section, we propose a simple yet
effective scheme for adaptively updating the parameter λ during
the iterative process. The developed scheme does not require the
knowledge of the noise variance.

Note that iterative reweighted methods have a close connec-
tion with sparse Bayesian learning algorithms [32]–[34]. In fact,
a dual-form analysis [19] reveals that sparse Bayesian learning
can be considered as a non-separable iterative reweighted strat-
egy solving a non-separable penalty function. Inspired by this
insight, it is expected the mechanism inherent in the sparse
Bayesian learning method to achieve automatic balance be-
tween the sparsity and the fitting error should also work for
the iterative reweighted methods. Let us first briefly exam-
ine how the sparse Bayesian learning algorithm works. In the
sparse Bayesian learning framework, the observation noise is



4654 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 18, SEPTEMBER 15, 2016

assumed to be white Gaussian noise with zero mean and vari-
ance δ � σ2 , and the sparse signal z is assigned a Gaussian
prior distribution [32]

p (z|α) =
N∏

n=1

p (zn |αn )

where p(zn |αn ) = N (zn |0, α−1
n ) and α � {αn}. Here each

αn is the inverse variance (precision) of the Gaussian distri-
bution, and a non-negative sparsity-controlling hyperparameter.
For each iteration, given a set of estimated hyperparameters
{α(t)

n }, the maximum a posterior (MAP) estimator of z can be
obtained via

ẑ(t) = arg min
z

zH D(t)z + δ−1‖y − A (θ) z‖2
2 (17)

where D(t) � diag(α(t)
1 , . . . , α

(t)
N ). Meanwhile, given the esti-

mated sparse signal ẑ(t) and its posterior covariance matrix, the
hyperparameters {αi} are re-estimated. In this Bayesian frame-
work, the tradeoff between the sparsity and the data fitting is
automatically achieved by employing a probabilistic model for
the sparse signal z, and the tradeoff tuning parameter is equal
to the inverse of the noise variance δ (cf. (17)).

Comparing (8) and (17), we see that the sparse Bayesian
learning method and our proposed iterative reweighted algo-
rithm have similar formulations in updating the spares signal z,
except that the diagonal matrix D(t) is calculated in different
ways. The formulation of (17) sheds light on the choice of λ

in (8). Following (17), we can set λ inversely proportional to
the noise variance, i.e., λ = dδ−1 , where d is a constant scaling
factor. Note that when the noise variance is unknown a priori,
the noise variance δ can be iteratively estimated, based on which
the tuning parameter λ can be iteratively updated. A reasonable
estimate of the noise variance is given by

δ̂(t) =

∥∥∥y − A
(
θ̂

(t))
ẑ(t)

∥∥∥
2

2

M
(18)

and accordingly λ(t) can be updated as

λ(t) =
d

δ̂(t)
=

dM
∥∥∥y − A

(
θ̂

(t))
ẑ(t)

∥∥∥
2

2

(19)

As mentioned earlier, the choice of λ is always a tricky issue.
In order to achieve a reasonable balance between data fitting
and sparsity, we may need to tune λ for different numbers of
samples, different signal-to-noise ratios, and different frequency
spacings. The proposed adaptive update scheme helps circum-
vent this issue. Although another parameter d was introduced,
its choice is much easier: the value of d can be fixed irrespec-
tive of other factors such as signal-to-noise ratios and frequency
spacings. In other words, once d is chosen, no further tuning of d
is needed. The iterative update of λ can be seamlessly integrated
into our algorithm, which is summarized as follows.

The above algorithm, in fact, can be interpreted as an alternat-
ing procedure for solving the following optimization problem

Iterative Reweighted Algorithm II

1. Given an initialization ẑ(0) , θ̂
(0)

, and λ(0) .
2. At iteration t = 0, 1, . . .: Based on ẑ(t) and λ(t) ,

construct the surrogate function as depicted in (7).
Search for a new estimate of the unknown parameter

vector, denoted as θ̂
(t+1)

, by using the gradient
descent method such that the inequality (11) is
satisfied. Compute a new estimate of the sparse signal,
denoted as ẑ(t+1) , via (12). Compute a new
regularization parameter λ(t+1) according to (19).

3. Go to Step 2 if ‖ ẑ(t+1) − ẑ(t)‖2 > ε, where ε is a
prescribed tolerance value; otherwise stop.

which involves optimization of z, θ, and λ:

min
z,θ,λ

G̃ (z,θ, λ) �
N∑

n=1

log
(
|zn |2 + ε

)
+ λ ‖ y − A (θ) z ‖2

2

− dM log λ

= L (z) + λ ‖ y − A (θ) z ‖2
2 − dM log λ

(20)

To see this, note that given an estimate of {ẑ(t) , θ̂
(t)}, the op-

timal λ of (20) is given by (19). On the other hand, for a fixed
λ(t) , the above optimization reduces to (5), in which case a new

estimate {ẑ(t+1) , θ̂
(t+1)} can be obtained according to (11) and

(12). Therefore the proposed algorithm ensures that the ob-
jective function of (20) keeps non-increasing at each iteration,
and the proposed algorithm eventually converges to a stationary
point of (20). The last term dM log λ in (20) is a regularization
term included to pull λ away from zero. Without this term, the
optimization (20) becomes meaningless since the optimal λ in
this case equals to zero.

V. THEORETICAL ANALYSIS

In this section, we consider the noiseless case and provide
a theoretical analysis to show that the global minimum of the
optimization (4) approaches the true solution as ε → 0. For the
noiseless case, the optimization (4) simply becomes

min
z,θ

L (z) =
N∑

i=1

log
(
|zi |2 + ε

)

s.t. y = A (θ) z (21)

Let θ0 � [ω1 . . . ωK ] and z0 � [α1 . . . αK ] denote the true
frequencies and complex amplitudes, respectively; θ0 and z0
denote the associated augmented N -dimensional vectors. Also,
define Sω � {ωi}K

i=1 . Let {θ̂, ẑ} denote a feasible solution of
(21). Clearly, we have

A
(
θ0

)
z0 = A

(
θ̂
)

ẑ (22)

where ẑ is an N -dimensional vector. We assume ẑ has J ≤
N nonzero coefficients, which are denoted as {ẑi}J

i=1 . The
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associated estimated frequencies are denoted by {θ̂i}
J

i=1 . With-

out loss of generality, we partition {θ̂i}
J

i=1 into two subsets:

S1 = {θ̂i}
p

i=1 and S2 = {θ̂i}
J

i=p+1 , where S1 ∩ Sω = ∅ and
S2 ⊆ Sω .

If S2 = Sω and {ẑi}J
i=p+1 = {αi}K

i=1 , we clearly have
L(ẑ) ≥ L(z0), and the inequality becomes equality when
{ẑi}p

i=1 are equal to zero, which implies that the solution
{θ̂, ẑ} is equivalent to the groundtruth. Hence we only need
to consider the general case where S2 ⊂ Sω , or S2 = Sω but
{ẑi}J

i=p+1 = {αi}K
i=1 . For this general case, it is easy to know

that

p ≥ M − K + 1 (23)

otherwise there is no way to satisfy (22). Without loss of gener-
ality, we assume

|ẑ1 | ≥ |ẑ2 | ≥ · · · ≥ |ẑp | (24)

Also, since S1 ∩ Sω = ∅, we can assume

|θ̂i − ωj | > ν ∀i ∈ {1, . . . , p} , j ∈ {1, . . . ,K} (25)

where ν is a very small value, say 10−6 , to ensure that θ̂i and
ωj are differentiable, otherwise θ̂i can be considered essentially
equivalent to ωj . Similarly, we assume

|θ̂i − θ̂j | > ν ∀i, j ∈ {1, . . . , p} (26)

|ωi − ωj | > ν ∀i, j ∈ {1, . . . , K} (27)

otherwise the two frequencies, say θ̂i and θ̂j , can be merged.
With the above assumptions, we have

A
(
θ̂
)

ẑ − A
(
θ0

)
z0 =

p∑

i=1

ẑia
(
θ̂i

)
+

J∑

i=p+1

ẑia
(
θ̂i

)

−
K∑

i=1

αia (ωi) =
p∑

i=1

ẑia
(
θ̂i

)
+

K∑

i=1

ηia (ωi) (28)

in which

ηi �
{

ẑp+i − αi p + i ≤ J
−αi otherwise

(29)

Define ηmax � maxi |ηi | and assume

ηmax > τ (30)

where τ is a very small value, say 10−6 , to ensure that {ẑi}J
i=p+1

and {αi} are differentiable, otherwise {ẑi}J
i=p+1 can be consid-

ered essentially equivalent to {αi}.
In the following, we will show that we can always find a

sufficiently small ε such that the inequality L(ẑ) > L(z0) holds.
The result is summarized as follows.

Theorem 1: Let {θ̂, ẑ} denote a feasible solution of (21) and
satisfy the assumptions made from (22) to (28). Also, let θ0 �
[ω1 . . . ωK ] and z0 � [α1 . . . αK ] denote the true frequencies
and complex amplitudes, respectively; θ0 and z0 denote the
associated augmented N -dimensional vectors. Define αmax �

maxi |αi |, and assume M ≥ 2K. If

ε < min

{(
CM −K +1

2K α2K
max

) 1
M −2 K + 1

, α2
max

}
(31)

then we have L(ẑ) > L(z0), where

C � 1
M(N−M+K)

C1τ
2 (32)

C1 � (M − 1)(M −1)/2

M (M −1)

∣∣∣2 sin
ν

2

∣∣∣
M (M −1)/2

(33)

where ν and τ are defined in (25) and (30), respectively.
Proof: See Appendix B. �
Theorem 1 suggests that for any feasible solution {θ̂, ẑ} =

{θ0 ,z0}, we can always find a sufficiently small ε such that
L(ẑ) > L(z0). In other words, by setting ε → 0, we can ensure
that the global minimum of (21) approaches the true solution.
Note that the frequency minimum separation condition required
by atomic-norm minimization methods (e.g., [6], [7], [9]) to
ensure exact recovery is no longer needed in our analysis. This
suggests that the proposed algorithm has the potential to resolve
more closely-spaced frequency components.

When noise is present, the recovery performance will cer-
tainly degrade. A theoretical analysis of the recovery accuracy
of the proposed method in the noisy case, however, seems very
challenging, and will be a topic of our future investigation. Nev-
ertheless, our experiments suggest that the frequency estimates
are less sensitive to the observation noise. Even with a moder-
ate signal-to-noise ratio, our proposed method can still super-
resolve the frequency components with a decent success rate.
We note that some theoretical analyses for the noisy case are
now available for the atomic-norm minimization method, and it
was shown [9] that the frequency estimation error is bounded
and tends to zero as the number of samples grows.

VI. EXTENSION TO THE MMV MODEL

In some practical applications such as EEG/MEG source
localization and DOA estimation, multiple measurements
{y1 , . . . ,yL} of a time series process may be available. Also, is
was shown [35] that for the line spectral estimation problem, ex-
ploitation of the covariance matrix of the received signal can help
remove the minimum frequency separation requirement for ex-
act recovery. This motivates us to consider the super-resolution
compressed sensing problem in a multiple measurement vector
(MMV) framework [36]

Y = A (θ) Z + E (34)

where Y � [y1 y2 · · ·yL ] is an observation matrix consisting
of L observed vectors, Z � [z1 z2 · · · zL ] is a sparse matrix
with each row representing a possible source or frequency com-
ponent, and E denotes the noise matrix. Note that in the MMV
model, we assume that the support of the sparse signal remains
unchanged over time, that is, the matrix Z has a common row
sparsity pattern. This is a reasonable assumption in many appli-
cations where the variations of locations or frequencies are slow
compared to the sampling rate. The problem of joint dictionary
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parameter learning and sparse signal recovery can be formulated
as follows

min
Z,θ

‖ u ‖0

s.t. ‖ Y − A (θ) Z ‖F ≤ ξ (35)

where ‖ X ‖F denotes the Frobenius norm of the matrix X ,
and u is a column vector with its entry un defined as

un � ‖ zn · ‖2 ∀n = 1, . . . , N

in which zn · represents the nth row of Z. Thus ‖ u ‖0 equals to
the number of nonzero rows in Z. Clearly, the optimization (35)
aims to search for a set of unknown parameters {θn} with which
the observed matrix Y can be represented by as few atoms as
possible with a specified error tolerance. Again, to make the
problem (35) tractable, the �0-norm can be replaced with the
log-sum functional, which leads to the following optimization

min
Z,θ

L (Z) =
N∑

n=1

log
(
‖ zn ·‖2

2 + ε
)

s.t. ‖Y − A (θ) Z‖F ≤ ξ (36)

The above optimization can be reformulated as

min
Z,θ

G (Z,θ) � L (Z) + λ‖Y − A (θ) Z‖2
F (37)

Again, we can resort to the majorization-minimization (MM)
approach to solve (37). Details of the derivations are omitted
here since they are similar to the development for the single
measurement vector case.

VII. SIMULATION RESULTS

We now carry out experiments to illustrate the performance
of our proposed super-resolution iterative reweighted algorithm
(referred to as SURE-IR)2. In our simulations, the initial value
of λ and the pruning threshold τ are set equal to λ(0) = 100 and
τ = 0.05, respectively. Also, to improve the stability of our pro-
posed algorithm, the initial value of λ is kept unchanged and the
frequency components are unpruned during the first few itera-
tions. The parameter d used in (19) to update λ is set to d = 0.2.
We compare our proposed algorithm with other existing state-of-
the-art super-resolution compressed sensing methods, namely,
the sparse Bayesian learning with dictionary refinement algo-
rithm (denoted as DicRefCS) [12], the sparse Bayesian learn-
ing with dictionary estimation (denoted as SBL-DE) [13], the
atomic norm minimization via the semi-definite programming
(SDP) approach [8], and the off-grid sparse Bayesian inference
(OGSBI) algorithm [2]. The work [3] is not included for compar-
ison because the method [3] requires to place a non-negativity
constraint on the sparse signal. This assumption is valid for
covariance-based estimation problems but inconsistent with the
setup in our simulations. Among these methods, the SURE-IR,
DicRefCS, SBL-DE, and the OGSBI methods require to pre-
specify the initial grid points. In our experiments, the initial
grid points are set to be θ(0) = (2π/N)[0 . . . N − 1]T , where

2Codes are available at http://www.junfang-uestc.net/codes/Sure-IR.rar.

we choose N = 64 for the SURE-IR, the DicRefCS and the
SBL-DE methods. While for the OGSBI method, a much finer
grid (N = 200) is used to improve the Taylor approximation
accuracy and the recovery performance.

In our experiments, the signal yT � [y1 . . . yT ]T is a mix-
ture of K complex sinusoids corrupted by independent and
identically distributed (i.i.d.) zero-mean Gaussian noise, i.e.,

yl =
K∑

k=1

αke−jωk l + el l = 1, . . . , T

where the frequencies {ωk} are uniformly generated over [0, 2π)
and the amplitudes {αk} are uniformly distributed on the unit
circle. The measurements y are obtained by randomly selecting
M entries from T elements of yT . The observation quality
is measured by the peak-signal-to-noise ratio (PSNR) which is
defined as PSNR � 10 log10(1/σ2), where σ2 denotes the noise
variance.

We introduce two metrics to evaluate the recovery perfor-
mance of respective algorithms, namely, the reconstruction
signal-to-noise ratio (RSNR) and the success rate. The RSNR
measures the accuracy of reconstructing the original signal yT

from the partial observations y, and is defined as

RSNR = 20 log10

(
‖ yT ‖2

‖ yT − ŷT ‖2

)

The other metric evaluates the success rate of exactly resolving
the K frequency components {ωk}. The success rate is com-
puted as the ratio of the number of successful trials to the total
number of independent runs, where {αk}, {ωk} and the sam-
pling indices (used to obtain y) are randomly generated for each
run. A trial is considered successful if the number of frequency
components is estimated correctly and the estimation error be-
tween the estimated frequencies {ω̂k} and the true parameters
{ωk} is smaller than 10−3 , i.e., 1

2π ‖ ω − ω̂ ‖2 ≤ 10−3 . Note
that the SDP methods requires the knowledge of the number
of complex sinusoids, K, which is assumed perfectly known to
it. The OGSBI method may result in an overestimated solution
which may contain multiple peaks around each true frequency
component. To compute the success rate for the OGSBI, we
only keep those K frequency components associated with the
first K largest coefficients.

In the following, we examine the behavior of respective al-
gorithms under different scenarios. In Fig. 1, we plot the av-
erage RSNRs and success rates of respective algorithms as
a function of the number of measurements M , where we set
T = 64,K = 3, PSNR = 25 dB. Results are averaged over 103

independent runs, with {αk}, {ωk} and the sampling indices
(used to obtain y from yT ) randomly generated for each run. We
see that the proposed method is superior to all other four meth-
ods in terms of both the RSNR and success rate. In particular,
it is worth mentioning that the proposed method outperforms
the SDP method which is guaranteed to find the global solu-
tion. This is probably because the log-sum penalty functional
adopted by our algorithm is more sparse-encouraging than the
atomic norm that is considered as the continuous analog to the �1
norm for discrete signals. We also see that the OGSBI method,
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Fig. 1. RSNRs and success rates of respective algorithms vs. M, T = 64, K = 3, and PSNR = 25 dB. (a) RSNRs vs. M . (b) Success rates vs. M .

Fig. 2. RSNRs and success rates of respective algorithms vs. K, T = 64, M = 30, and PSNR = 25 dB. (a) RSNRs vs. K . (b) Success rates vs. K .

though using a very fine grid, still achieves performance infe-
rior to our proposed SURE-IR method. In Fig. 2, we depict the
RSNRs and success rates of respective algorithms vs. the num-
ber of complex sinusoids, K, where we set T = 64,M = 30,
and PSNR = 25 dB. It can be observed that our proposed SURE-
IR algorithm outperforms other methods by a big margin for a
moderately large number of complex sinusoids K. For example,
when K = 10, a gain of about 10 dB in RSNR can be achieved
by our algorithm as compared with the DicRefCS and the SDP
methods. This advantage makes our algorithm the most attrac-
tive for scenarios consisting of a moderate or large number of
sinusoid components. On the other hand, we also noticed that
the SBL-DE method incurs a considerable performance perfor-
mance loss as K increases. Although the rationale behind [12]
and [13] are similar, we see that the behaviors of these two algo-
rithms are quite different, possibly because they have different
inference schemes for updating the dictionary.

To better illustrate the performance, we plot the phase transi-
tion curve for each algorithm. Set T = 64 and PSNR = 25 dB.
We vary the sparsity level K = 3 : 3 : 51 and the number of
measurements M = 3 : 3 : 51. For each point (M,K), we con-
duct 100 independent trials and compute the success rate of
exactly resolving the K frequency components, with frequen-
cies randomly generated (the minimum frequency separation
is ensured to be greater than 2π/N ) and amplitudes uniformly
distributed on the unit circle for each trial. The definition of a
successful trial is the same as described earlier. In the phase

transition plot, the grey value of each point represents the suc-
cess rate, with white corresponding to perfect recovery while
black corresponding to complete failure. We can see from Fig. 3
that our proposed algorithm has a sharper transition boundary
than other methods. We also notice that our proposed method
provides a cleaner area below the transition boundary as com-
pared with other competing methods, which implies higher suc-
cess rates are achieved for points in the area.

We now examine the ability of respective algorithms in re-
solving closely-spaced frequency components. The signal y is
assumed a mixture of K complex sinusoids with the frequency
spacing df � 1

2π (ω1 − ω2) = μ/T , where μ is the frequency
spacing coefficient ranging from 0.4 to 2. Fig. 4 shows success
rates of respective algorithms vs. the frequency spacing coef-
ficient μ, where we set T = 64,M = 25, and PSNR = 15 dB.
Results are averaged over 103 independent runs. We observe
that when the frequency components are very close to each
other, the SDP can hardly identify the true frequency param-
eters, whereas the nonconvex optimziation-based methods, in-
cluding the SURE-IR, the DicRefCS and the SBL-DE are still
capable of resolving these closely-spaced components with de-
cent success rates. The OGSBI method does not perform as
well as the other three nonconvex optimziation-based meth-
ods in resolving closely-spaced frequency components, pos-
sibly because the Taylor expansion-based approximation is
not accurate enough to distinguish closely located complex
sinusoids.
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Fig. 3. Phase transitions of respective algorithms, T = 64, and PSRN = 25 dB.

Fig. 4. Success rates of respective algorithms vs. the frequency spacing coefficient μ, T = 64, M = 25, PSNR = 15 dB. (a) K = 2. (b) K = 3.

Our last experiment tests the recovery performance of respec-
tive algorithms using a real-world amplitude modulated (AM)
signal [5], [37] that encodes the message appearing in the top left
corner of Fig. 6. The signal was transmitted from a communi-
cation device using carrier frequency ωc = 8.2 kHz, and the re-
ceived signal was sampled by an analog-digital converter (ADC)
at a rate of 32 kHz. The sampled signal has a total number of
32768 samples. For the sake of computational efficiency, in our
experiment, the AM signal is divided into a number of short-time
segments, each consisting of T = 1024 data samples. For each
segment, we randomly select M data samples, based on which
we use respective algorithms to recover the whole segment. Af-
ter all segments are reconstructed, we perform AM demodula-
tion on the recovered signal to reconstruct the original message.
The RSNR is then computed using the reconstructed message
and the true message. Fig. 5 plots the RSNRs of respective algo-
rithms vs. the ratio M/T (the SDP method was not included in
this experiment due to its prohibitive computational complexity
when the signal dimension is large). We see that our proposed
SURE-IR method offers the best performance and presents a

Fig. 5. RSNRs of respective algorithms vs. the ratio M/T .

significant performance advantage over the other algorithms for
a small ratio M/T , where data acquisition is more beneficial due
to high compression rates. In particular, when M/T = 0.02, all
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Fig. 6. The true message and the messages reconstructed by respective algorithms, M = 100.

Fig. 7. The true message and the messages reconstructed by respective algorithms, M = 20.

the other methods (DicRefCS, SBL-DE and OGSBI) fail to pro-
vide an accurate reconstruction, while our proposed algorithm
still renders a decent recovery accuracy. Figs. 6 and 7 show the
true message and the messages recovered by respective algo-
rithms, where M is set to 20 and 100, respectively. It can be seen
that our proposed algorithm can obtain a fairly accurate recon-
struction of the original signal even with as few as M = 20 mea-
surements, whereas the message reconstructed by the other three
methods, particularly the OGSBI, is highly smeared/distorted.
The average running times of respective algorithms are also
provided in Table I. We see that the SBL-DE is the most compu-
tationally efficient algorithm, whereas our proposed method has

TABLE I
AVERAGE RUNNING TIMES OF RESPECTIVE ALGORITHMS (SEC)

Algorithm M = 20 M = 60 M = 100

SURE-IR 118.78 124.02 140.16
DicRefCS 11.95 12.55 15.92
SBL-DE 3.034 3.761 4.867
OGSBI 28.13 29.24 33.34

a higher computational complexity than the other three meth-
ods. This is because in the second step of our proposed algo-
rithm, the dictionary parameters {θi} are refined in a sequential
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manner. This sequential refinement leads to a more stable esti-
mate of {θi}, but meanwhile resulting in an increased compu-
tational complexity.

VIII. CONCLUSION

This paper studied the super-resolution compressed sensing
problem where the sparsifying dictionary is characterized by
a set of unknown parameters in a continuous domain. Such a
problem arises in many practical applications such as direction-
of-arrival estimation and line spectral estimation. By resorting to
the majorization-minimization approach, we developed a gen-
eralized iterative reweighted �2 algorithm for joint dictionary
parameter learning and sparse signal recovery. The proposed
algorithm iteratively decreases a surrogate function majorizing
a given objective function, leading to a gradual and interweaved
iterative process to refine the unknown parameters and the sparse
signal. Simulation results show that our proposed algorithm ef-
fectively overcomes the grid mismatch problem and achieves a
super-resolution accuracy in resolving the unknown frequency
parameters. The proposed algorithm also demonstrates superi-
ority over several existing super-resolution compressed sensing
methods in resolving the unknown parameters and reconstruct-
ing the original signal.

APPENDIX A
DERIVATIVE OF f(θ) W.R.T. θ

Define

X � A (θ)
(
AH (θ) A (θ) + λ−1D(t)

)−1
AH (θ)

Using the chain rule, the first derivative of f(θ) with respect to
θi,∀i can be computed as

∂f (θ)
∂θi

= tr

{(
∂f (θ)
∂X

)T
∂X

∂θi

}
+ tr

{(
∂f (θ)
∂X∗

)T
∂X∗

∂θi

}

where X∗ donates the conjugate of the complex matrix X ,
and

∂f (θ)
∂X

=
∂

∂X
tr
{
−yyH X

}
= −

(
yyH

)T

∂f (θ)
∂X∗ =

∂

∂X∗ tr
{
−yyH X

}
= 0

∂X

∂θi
=

∂

∂θi

(
A(θ)

(
AH (θ) A(θ) + λ−1 D(t)

)−1
AH (θ)

)

=
∂A(θ)

∂θi

(
AH (θ) A(θ) + λ−1 D(t)

)−1
AH (θ)

+ A(θ)
(
AH (θ) A(θ) + λ−1 D(t)

)−1 ∂AH (θ)
∂θi

− A(θ)
(
AH (θ) A(θ) + λ−1 D(t)

)−1
(

∂AH (θ)
∂θi

A(θ)

+AH (θ)
∂A(θ)

∂θi

)(
AH (θ) A(θ) + λ−1 D(t)

)−1
AH (θ)

APPENDIX B
PROOF OF THEOREM 1

From (28), we have

p∑

i=1

ẑia
(
θ̂i

)
+

K∑

i=1

ηia (ωi) = 0 (38)

The above equation can be rewritten as

−
p∑

i=M −K +1

ẑia
(
θ̂i

)
=

M −K∑

i=1

ẑia
(
θ̂i

)
+

K∑

i=1

ηia (ωi) (39)

Taking the norm of both sides of the above equation, we obtain

∥∥∥∥∥

p∑

i=M −K +1

ẑia
(
θ̂i

)∥∥∥∥∥

2

2

= ‖Bx0‖2
2 (40)

where B is an M × M square matrix defined as

B �
[
a (ω1) . . . a (ωK ) a

(
θ̂1

)
. . . a

(
θ̂M −K

)]

and

x0 � [η1 . . . ηK ẑ1 . . . ẑM −K ]T

From (40), we would like to obtain a lower bound on |ẑM −K +1 |.
To this objective, we first seek a lower bound for ‖ Bx0‖2 .
Clearly we have

‖ Bx0‖2
2

‖ x0‖2
2

≥ min
x

‖ Bx ‖2
2

‖ x ‖2
2

= σmin (B) (41)

The following lemma provides a lower bound on the minimum
singular value of any square matrix.

Lemma 1: Let X ∈ CM ×M , and σmin(X) denote the min-
imum singular value of X . Then

σmin (X) ≥
(

M − 1
M

)(M −1)/2

× |det (X) |

×max

{
cmin (X)

∏M
i=1 ci (X)

,
rmin (X)

∏M
i=1 ri (X)

}
(42)

where ri(X), ci(X) denote the 2-norm of the ith row and col-
umn of X , respectively, and rmin(X), cmin(X) denote the min-
imum of ri(X) and ci(X), respectively.

Proof: Please refer to [38], [39] for a rigorous proof. �
Note that for the matrix B defined in (40), we can easily

verify that ri(B) = ci(B) =
√

M,∀i, and since B is a square
Vandermonde matrix, its determinant is given by

det (B) =
∏

1≤l<m≤M

(
ejϕl − ejϕm

)
(43)
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where {ϕi}M
i=1 � Sω ∪ {θ̂i}

M −K

i=1 . By utilizing Lemma 1, we
have

σmin (B) ≥
(√

M − 1
M

)M −1
∣∣∣∣∣

∏

1≤l<m≤M

(
ejϕl − ejϕm

)
∣∣∣∣∣

(a)
≥

(√
M − 1
M

)M −1

|2 sin (ν/2)|
M (M −1 )

2 � C1

(44)

where (a) comes from |ejϕl − ejϕm | ≥ 2| sin(ν/2)|. From (41)
and (44), we have

‖ Bx0‖2
2 ≥ C1‖ x0 ‖2

2 ≥ C1η
2
max > C1τ

2 (45)

On the other hand, the term on the left-hand side of (40) can be
upper bounded by
∥∥∥∥∥

p∑

i=M −K +1

ẑia
(
θ̂i

)∥∥∥∥∥

2

2

≤
p∑

i=M −K +1

∥∥∥ẑia
(
θ̂i

)∥∥∥
2

2

=
p∑

i=M −K +1

M |ẑi |2

≤ M (p − M + K) |ẑM −K +1 |2 (46)

where the last inequality follows from the fact that entries
{ẑi}p

i=1 are sorted in a descending order. Combining (40), (45)
and (46), we arrive at |ẑM −K +1 | is lower bounded by

|ẑM −K +1 |2 ≥ C1τ
2

M (p − M + K)
≥ C1τ

2

M (N − M + K)
� C

(47)
Since entries {ẑi}p

i=1 are sorted in a descending order, we have

|ẑi |2 ≥ C i = 1, . . . ,M − K + 1 (48)

Based on (48), a lower bound on L(ẑ) can be readily obtained
as

L (ẑ) =
N∑

i=1

log
(
|ẑi |2 + ε

)

=
p∑

i=1

log
(
|ẑi |2 + ε

)

+
J−p∑

i=1

log
(
|ẑp+i |2 + ε

)
+ (N − J) log ε

≥ (M − K + 1) log C + [N − (M − K + 1)] log ε

� gLB (49)

On the other hand, L(z0) is upper bounded by

L (z0) =
K∑

i=1

log
(
|αi |2 + ε

)
+ (N − K) log ε

≤ K log
(
2α2

max
)

+ (N − K) log ε � gUB (50)

When the condition (31) is satisfied, we have gLB ≥ gUB . As
a consequence, the inequality L(ẑ) > L(z0) holds valid from
(49)–(50). This completes our proof.
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