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Two-Dimensional Pattern-Coupled Sparse Bayesian
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Abstract— We consider the problem of recovering
2D block-sparse signals with unknown cluster patterns.
The 2D block-sparse patterns arise naturally in many practical
applications, such as foreground detection and inverse synthetic
aperture radar imaging. To exploit the underlying block-
sparse structure, we propose a 2D pattern-coupled hierarchical
Gaussian prior model. The proposed pattern-coupled hierarchical
Gaussian prior model imposes a soft coupling mechanism among
neighboring coefficients through their shared hyperparameters.
This coupling mechanism enables effective and automatic
learning of the underlying irregular cluster patterns, without
requiring any a priori knowledge of the block partition of
sparse signals. We develop a computationally efficient Bayesian
inference method, which integrates the generalized approximate
message passing technique with the proposed prior model.
Simulation results show that the proposed method offers
competitive recovery performance for a range of 2D sparse
signal recovery and image processing applications over the
existing method, meanwhile achieving a significant reduction in
the computational complexity.

Index Terms— Pattern-coupled sparse Bayesian learning,
block-sparse structure, expectation-maximization (EM),
generalized approximate message passing (GAMP).

I. INTRODUCTION

COMPRESSED sensing is a recently emerged technique
for signal sampling and data acquisition which enables to

recover sparse signals from undersampled linear measurements

y = Ax + w (1)

where A ∈ R
M×N is a sampling matrix with M � N ,

x denotes an N-dimensional sparse signal, and w denotes
the additive noise. The problem has been extensively studied
and a variety of algorithms, e.g. the orthogonal matching pur-
suit (OMP) algorithm [1], the basis pursuit (BP) method [2],
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the iterative reweighted �1 and �2 algorithms [3], and the
sparse Bayesian learning method [4], [5] were proposed.
In many practical applications, in addition to the sparse
structure, sparse signals may exhibit two-dimensional cluster
patterns that can be utilized to enhance the recovery perfor-
mance. For example, the target of interest in the synthetic
aperture radar/inverse synthetic aperture radar (SAR/ISAR)
images often demonstrates continuity in both the range and
cross-range domains [6]. In video surveillance, the foreground
image exhibits a cluster pattern since the foreground objects
(humans, cars, text etc.) generally occupy a small continuous
region of the scene [7]. Besides these, block-sparsity is also
present in temporal observations of a time-varying block-
sparse signal whose support varies slowly over time [8].

Analyses [9]–[11] show that exploiting the inherent
block-sparse structure not only leads to relaxed condi-
tions for exact reconstruction, but also helps improve the
recovery performance considerably. A number of algorithms
have been proposed for recovering block-sparse signals over
the past few years, e.g., block-OMP [11], mixed �2/�1
norm-minimization [9], group LASSO [12], model-based
CoSaMP [10], and block-sparse Bayesian learning [13], [14].
These algorithms, however, require a priori knowledge of
the block partition (e.g. the number of blocks and location
of each block) such that the coefficients in each block are
grouped together and enforced to share a common sparsity
pattern. In practice, the prior information about the block
partition of sparse signals is often unavailable, especially
for two-dimensional signals since the block partition of a
two-dimensional signal involves not only the location but also
the shape of each block. For example, foreground images have
irregular and unpredictable cluster patterns which are very dif-
ficult to be estimated a priori. To address this difficulty, a few
sophisticated Bayesian methods which do not need the knowl-
edge of the block partition were developed. In [15], a “spike-
and-slab” prior model was proposed, where by introducing
dependencies among mixing weights, the prior model has
the potential to encourage sparsity and promote a tree struc-
ture simultaneously. This “spike-and-slab” prior model was
later extended to accommodate block-sparse signals [6], [16].
Nevertheless, for the “spike-and-slab” prior introduced
in [15] and [16], the posterior distribution cannot be derived
analytically, and a Markov chain Monte Carlo (MCMC) sam-
pling method has to be employed for Bayesian inference.
In [17] and [18], a graphical prior, also referred to as the
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“Boltzmann machine”, is employed as a prior on the sparsity
support in order to induce statistical dependencies between
atoms. With such a prior, the maximum a posterior (MAP) esti-
mator requires an exhaustive search over all possible sparsity
patterns. To overcome the intractability of the combinatorial
search, a greedy method [17] and a variational mean-field
approximation method [18] were developed to approximate
the MAP. In [19], to cope with the unknown cluster pattern,
an expanded model is employed by assuming that the original
sparse signal is a superposition of a number of overlapping
blocks, and the coefficients in each block share the same
sparsity pattern. Conventional block sparse Bayesian learning
algorithms such as those in [14] can then be applied to the
expanded model.

A. Contributions of This Work

Despite the above efforts, most existing block-sparse recov-
ery methods have limited capability in handling irregular
cluster patterns or incur a prohibitive computational com-
plexity, especially for two-dimensional (2D) signals whose
overall dimension is usually large. To address these issues,
in this paper, we develop a computationally efficient Bayesian
method for 2D block-sparse signal recovery. The proposed
method is able to recover irregularly clustered sparse signals
by exploiting the underlying block-sparse structure, while
without requiring the knowledge of the block partition of
sparse signals. More specifically, the contributions of this work
are mainly from the following two aspects.

• Firstly, based on our previous work [20], we propose a
generalized pattern-coupled hierarchical Gaussian prior
model for 2D sparse signal recovery. The proposed
pattern-coupled hierarchical Gaussian prior model offers
a soft coupling mechanism between each sample of
the sparse signal and its neighboring samples through
their shared hyperparameters. This coupling mechanism
enables effective and automatic learning of the underlying
irregular cluster patterns, thus circumventing the need
for the prior knowledge of block partition of 2D sparse
signals, which is difficult to obtain in practice.

• Secondly, to reduce the computational complexity,
we develop an efficient Bayesian inference method
which integrates the generalized approximate message
passing (GAMP) technique with the proposed prior
model. The algorithm is developed within an expectation-
maximization (EM) framework, using the GAMP to
efficiently compute approximations of the posterior dis-
tributions of the hidden variables. The hyperparameters
associated with the hierarchical Gaussian prior are learned
by iteratively maximizing the Q-function which is calcu-
lated based on the posterior approximations obtained from
the GAMP.

Simulation results show that the proposed method offers
competitive recovery performance for 2D block-sparse signals
as compared with existing methods, meanwhile achieving a
significant reduction in computational complexity.

The rest of the paper is organized as follows. In Section II,
we introduce a 2D pattern coupled hierarchical Gaussian

framework to model the sparse prior and the pattern depen-
dencies among the neighboring coefficients. In Section III,
a GAMP-based EM algorithm is developed to obtain the
maximum a posterior (MAP) estimate of the hyperparameters,
along with the posterior distribution of the sparse signal.
Simulation results are provided in Section IV, followed by
concluding remarks in Section V.

II. BAYESIAN MODEL

We consider the problem of recovering a two-dimensional
block-sparse signal X ∈ R

Q×L from compressed noisy mea-
surements

y = f (X) + w (2)

where y ∈ R
M denotes the compressed measurement vector,

f (·) is a linear map: R
Q×L → R

M , with M � N � QL, and
w ∈ R

M is an additive multivariate Gaussian noise with zero
mean and covariance matrix σ 2 I . Let x � vec(X), the linear
map f (X) can generally be expressed as

f (X) = Ax (3)

where A ∈ R
M×N denotes the measurement matrix. In the

special case where f (X) = vec(BX), then we have A �
I ⊗ B, in which ⊗ stands for the Kronecker product. The
above model (2) arises in image applications where signals are
multi-dimensional in nature, or in the scenario where multiple
snapshots of a time-varying sparse signal are available. In these
applications, signals usually exhibit two-dimensional cluster
patterns that can be utilized to improve the recovery accuracy.
To leverage the underlying block-sparse structures, we intro-
duce a 2D pattern-coupled Gaussian prior model which is a
generalization of our previous work [20]. Before proceeding,
we provide a brief review of the conventional hierarchical
Gaussian prior model [4], and some of its extensions.

A. Review of Conventional Gaussian Prior Model

For ease of exposition, we consider the prior model for
the two-dimensional signal X instead of its one-dimensional
form x. Let xq,l denote the (q, l)th entry of X . In the conven-
tional sparse Bayesian learning framework [4], a two-layer
hierarchical Gaussian prior was employed to promote the
sparsity of the solution. In the first layer, coefficients {xq,l}
of X are assigned a Gaussian prior distribution

p(X|α) =
Q∏

q=1

L∏

l=1

N (xq,l |0, α−1
q,l ) (4)

where αq,l is a non-negative hyperparameter controlling the
sparsity of the coefficient xq,l . The second layer specifies
Gamma distributions as hyperpriors over the hyperparameters
α � {αq,l}, i.e.

p(α) =
Q∏

q=1

L∏

l=1

Gamma(αq,l |a, b) (5)

As discussed in [4], for properly chosen a and b, this hyper-
prior allows the posterior mean of αq,l to become arbitrar-
ily large. As a consequence, the associated coefficient xq,l
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will be driven to zero, thus yielding a sparse solution. This
conventional hierarchical model, however, does not encourage
structured-sparse solutions since the sparsity of each coeffi-
cient is determined by its own hyperparameter and the hyper-
parameters are independent of each other. In [13] and [14],
the above hierarchical model was generalized to deal with
block-sparse signals, in which a group of coefficients shar-
ing the same sparsity pattern are assigned a multivariate
Gaussian prior parameterized by a common hyperparameter.
Nevertheless, this model requires the knowledge of the block
partition to determine which coefficients should be grouped
and assigned a common hyperparameter.

B. Proposed 2D Pattern-Coupled Hierarchical Model

To exploit the 2D block-sparse structure, we utilize the
fact that the sparsity patterns of neighboring coefficients are
statistically dependent. To capture the pattern dependencies
among neighboring coefficients, the Gaussian prior for each
coefficient xq,l not only involves its own hyperparameter αq,l ,
but also its immediate neighbor hyperparameters. Specifically,
a prior over X is given by

p(X|α) =
Q∏

q=1

L∏

l=1

N (xq,l |0, δ−1
q,l ) (6)

where

δq,l � αq,l + β
∑

(i, j )∈N(q,l)

αi, j (7)

in which N(q,l) denotes the neighborhood of the grid point
(q, l). Here we define N(q,l) � {(q, l − 1), (q, l + 1),
(q − 1, l), (q + 1, l)}.1 Note that depending on different appli-
cation scenarios, the definition of N(q,l) may be modified to
capture different kinds of pattern dependencies. For example,
to exploit the pattern dependencies among coefficients in rows,
we can define N(q,l) � {(q − 1, l), (q + 1, l)}. β ∈ [0, 1]
is a parameter indicating the pattern relevance between the
coefficient xq,l and its neighboring coefficients. Clearly, this
model is an extension of our previous prior model [20] to
the two-dimensional case. When β = 0, the prior model (6)
reduces to the conventional sparse Bayesian learning model.
When β > 0, we see that the sparsity of each coefficient xq,l

is not only controlled by the hyperparameter αq,l , but also by
the neighboring hyperparameters Sαq,l � {αi, j |(i, j) ∈ N(q,l)}.
The coefficient xq,l will be driven to zero if αq,l or any
of its neighboring hyperparameters goes to infinity. In other
words, suppose αq,l approaches infinity, then not only its
corresponding coefficient xq,l will be driven to zero, the
neighboring coefficients Sxq,l � {xi, j |(i, j) ∈ N(q,l)} will
decrease to zero as well. We see that the sparsity patterns
of neighboring coefficients are related to each other through
their shared hyperparameters. On the other hand, for any
pair of neighboring coefficients, each of them has its own
hyperparameters that are not shared by the other coefficient.
Hence, no coefficients are pre-specified to share a common

1Note that for edge grid points, they only have two or three immediate
neighboring points, in which case the definition of N(q,l) changes accordingly.

sparsity pattern, which enables the prior to provide flexibility
to model any block-sparse structures.

Following [4], we use Gamma distributions as hyperpriors
over the hyperparameters {αq,l}, i.e.

p(α) =
Q∏

q=1

L∏

l=1

Gamma(αq,l |a, b) (8)

where we set a > 1, and b = 10−6. The choice of a will
be elaborated later in our paper. Also, the noise variance
σ 2 � 1/γ is assumed unknown, and to estimate this parameter,
we place a Gamma hyperprior over γ , i.e.

p(γ ) = Gamma(γ |c, d) (9)

where we set c = 1 and d = 10−6.

III. PROPOSED ALGORITHM

We now proceed to perform Bayesian inference for the
proposed pattern-coupled hierarchical model. The following
model is considered since the linear map f (X) can be
expressed as f (X) = Ax

y = Ax + w (10)

We first translate the prior for the two-dimensional signal X
to a prior for its one-dimensional form x. From (6), the prior
over x can be expressed as

p(x|α) =
N∏

n=1

N (xn|0, η−1
n ) (11)

where

ηn � αn + β
∑

i∈N(n)

αi (12)

in which N(n) denotes the neighbors of the point (q, l) on
the two-dimensional grid, i.e. N(n) � {(l − 2)Q + q, l Q + q,
(l − 1)Q + q − 1, (l − 1)Q + q + 1}.2 The relation between
n and (q, l) is given by n = (l − 1)Q + q , that is, l = �n/Q�,
and q = n mod Q, in which �·� denotes the ceiling operator.
Note that for notational convenience, we, with a slight abuse
of notation, use xn to denote the nth entry of x and αn to
denote the hyperparameter associated with the coefficient xn .
Also, let α � {αn} since its exact meaning remains unaltered.
From (8), we have

p(α) =
N∏

n=1

Gamma(αn |a, b) (13)

An expectation-maximization (EM) algorithm can be devel-
oped for learning the sparse signal x as well as the hyperpara-
meters {α, γ }. In the EM formulation, the signal x is treated as
hidden variables, and we iteratively maximize a lower bound
on the posterior probability p(α, γ | y) (this lower bound is also
referred to as the Q-function). Briefly speaking, the algorithm
alternates between an E-step and a M-step. In the E-step, we
need to compute the posterior distribution of x conditioned on

2For edge grid points which have only two or three neighboring points, the
definition of N(n) changes accordingly.
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the observed data and the hyperparameters estimated from the
tth iteration, i.e.

p(x| y,α(t), γ (t)) ∝ p(x|α(t))p(y|x, γ (t)) (14)

It can be readily verified that the posterior p(x| y,α(t), γ (t))
follows a Gaussian distribution with its mean and covariance
matrix given respectively by

μ =γ (t)�AT y (15)

� =(γ (t) AT A + D)−1 (16)

where D � diag(η
(t)
1 , . . . , η

(t)
N ). The Q-function can then be

computed. In the M-step, we maximize the Q-function with
respect to the hyperparameters {α, γ }.

It can be seen that the EM algorithm, at each iteration,
requires to update the posterior distribution p(x| y,α(t), γ (t)),
which involves computing an N × N matrix inverse. Thus
the EM-based algorithm has a computational complexity
of O(N3) flops, and therefore is not suitable for many
real-world applications involving large dimensions. In the fol-
lowing, we will develop a computationally efficient algorithm
by resorting to the generalized approximate message pass-
ing (GAMP) technique [21]. GAMP is a very-low-complexity
Bayesian iterative technique recently developed [21] for
obtaining an approximation of the marginal posterior distri-
bution p(xn| y,α(t), γ (t)),∀n. It therefore can naturally be
embedded within the EM framework to replace the compu-
tation of the true posterior distribution. From GAMP’s point
of view, the hyperparameters {α, γ } are considered as known.
The hyperparameters can be updated in the M-step based on
the approximate posterior distribution of x. We now proceed to
derive the GAMP algorithm for the pattern-coupled Gaussian
hierarchical prior model.

A. Pattern-Coupled Hierarchical Gaussian GAMP

GAMP was developed in a message passing-based frame-
work. By using central-limit-theorem approximations, message
passing between variable nodes and factor nodes can be
greatly simplified, and the loopy belief propagation on the
underlying factor graph can be efficiently performed. As noted
in [22] and [21], the central-limit-theorem approximations
become exact in the large-system limit under i.i.d. zero-mean
sub-Gaussian A.

For notational convenience, let θ � {α, γ } denote the hyper-
parameters. Firstly, GAMP approximates the true marginal
posterior distribution p(xn| y, θ ) by

p̂(xn| y, r̂n, τ r
n , θ ) = p(xn|θ)N (xn |r̂n, τ

r
n )∫

x p(xn|θ)N (xn|r̂n, τ r
n )

(17)

where r̂n and τ r
n are quantities iteratively updated during

the iterative process of the GAMP algorithm. Here, we have
dropped their explicit dependence on the iteration number k
for simplicity. Substituting (11) into (17), it can be easily
verified that the approximate posterior p̂(xn| y, r̂n , τ r

n , θ) fol-
lows a Gaussian distribution with its mean and variance given

respectively as

μx
n � r̂n

1 + ηnτ r
n

(18)

φx
n � τ r

n

1 + ηnτ r
n

(19)

Another approximation is made to the noiseless output
zm � aT

m x, where aT
m denotes the mth row of A. GAMP

approximates the true marginal posterior p(zm | y, θ) by

p̂(zm | y, p̂m, τ
p

m , θ) = p(ym|zm, θ )N (zm | p̂m, τ
p

m )∫
z p(ym|zm , θ)N (zm | p̂m, τ

p
m )

(20)

where p̂m and τ
p

m are quantities iteratively updated during
the iterative process of the GAMP algorithm. Again, here we
dropped their explicit dependence on the iteration number k.
Under the additive white Gaussian noise assumption, we have
p(ym|zm , θ) = N (ym |zm, 1/γ ). Thus p̂(zm | y, p̂m, τ

p
m , θ) also

follows a Gaussian distribution with its mean and variance
given by

μz
m �τ

p
mγ ym + p̂m

1 + γ τ
p

m
(21)

φz
m � τ

p
m

1 + γ τ
p

m
(22)

With the above approximations, we can now define the
following two scalar functions: gin(·) and gout(·) that are used
in the GAMP algorithm. The input scalar function gin(·) is
simply defined as the posterior mean μx

n [21], i.e.

gin(r̂n, τ r
n , θ) = μx

n = r̂n

1 + ηnτ r
n

(23)

The scaled partial derivative of τ r
n gin(r̂n, τ

r
n , θ) with respect

to r̂n is the posterior variance φx
n , i.e.

τ r
n

∂

∂ r̂n
gin(r̂n, τ r

n , θ) = φx
n = τ r

n

1 + ηnτ r
n

(24)

The output scalar function gout(·) is related to the posterior
mean μz

m as follows

gout( p̂m, τ
p

m , θ) = 1

τ
p

m
(μz

m − p̂m)

= 1

τ
p

m

(
τ

p
mγ ym + p̂m

1 + γ τ
p

m
− p̂m

)
(25)

The partial derivative of gout( p̂m, τ
p

m , θ) is related to the
posterior variance φz

m in the following way

τ
p

m
∂

∂ p̂m
gout( p̂m, τ

p
m , θ) = φz

m − τ
p

m

τ
p

m
= −γ τ

p
m

1 + γ τ
p

m
(26)

Given the above definitions of gin(·) and gout(·), the GAMP
algorithm tailored to the considered sparse signal estimation
problem can now be summarized as follows (details of the
derivation of the GAMP algorithm can be found in [21]), in
which amn denotes the (m, n)th entry of A, μx

n(k) and φx
n (k)

denote the posterior mean and variance of xn at iteration k,
respectively.

We have now derived an efficient algorithm to
obtain approximate posterior distributions for the
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Algorithm 1 GAMP Algorithm

variables x and z � Ax. We see that the GAMP algorithm no
longer needs to compute the aforementioned matrix inverse.
The dominating operations in each iteration is the simple
matrix-vector multiplications, which scale as O(M N). Thus
the computational complexity is significantly reduced. In the
following, we discuss how to update the hyperparameters via
the EM.

B. Hyperparameter Learning via EM

In the EM framework, the hyperparameters {α, γ } are
estimated by treating x as hidden variables and iteratively
maximizing the Q-function, i.e.

{α(t+1), γ (t+1)} = arg max
α,γ

Q(α, γ |α(t), γ (t))

= arg max
α,γ

Ex|y,α(t),γ (t) [log p(α, γ |x, y)]
(27)

where the operator Ex|y,α(t),γ (t) [·] denotes the expectation
with respect to the posterior distribution p(x| y,α(t), γ (t)).
The details of the derivation are included in Appendix.
In summary, the hyperparameter αn can be updated according
to the following sub-optimal but effective rule

α(t+1)
n = a − 1

0.5ωn + b
∀n (28)

Algorithm 2 PCSBL-GAMP Algorithm

where

ωn �〈x2
n 〉 + β

∑

i∈N(n)

〈x2
i 〉 (29)

Here 〈x2
n 〉 denotes the expectation with respect to the

posterior distribution p(x| y,α(t), γ (t)). Here we use

p̂(xn| y, r̂n(k0), τ
r
n (k0), θ

(t)), i.e. the approximate posterior
distribution of xn obtained from the GAMP algorithm, to
replace the true posterior distribution p(x| y,α(t), γ (t)) in
computing the expectation. Since p̂(xn| y, r̂n(k0), τ

r
n (k0), θ

(t))
follows a Gaussian distribution with its mean and variance
given by (18)–(19), we have

〈x2
n 〉 = (r̂n(k0))

2

(1 + η
(t)
n τ r

n (k0))2
+ τ r

n (k0)

1 + η
(t)
n τ r

n (k0)
(30)

The update rule for γ is given by

γ (t+1) = M + 2c − 2

2d + ∑
m〈(ym − zm)2〉 (31)

where 〈·〉 denotes the expectation with respect to
p(zm | y, p̂m(k0), τ

p
m (k0), θ

(t)), i.e. the approximate posterior
distribution of zm . Recalling that the approximate posterior of
zm follows a Gaussian distribution with its mean and variance
given by (21)–(22), we have

〈(ym − zm)2〉 = (ym − μz
m)2 + φz

m (32)

where μz
m and φz

m are given by (21)–(22), with { p̂m, τ
p

m }
replaced by { p̂m(k0), τ

p
m (k0)}, and γ replaced by γ (t).

So far we have completed the development of our GAMP-
based pattern-coupled sparse Bayesian learning algorithm.
For clarify, we now summarize our proposed PCSBL-GAMP
algorithm in Algorithm 2.

C. Discussions

Notice that the update rule (28) resembles that of the
conventional sparse Bayesian learning work [4] except that ωn

is equal to 〈x2
n 〉 for the conventional sparse Bayesian learning

method, while for our case, ωn is a weighted summation
of 〈x2

n 〉 and 〈x2
i 〉 for i ∈ N(n). Numerical results show

that this update rule, although sub-optimal, guarantees an
exact recovery in the noiseless case and provides superior
recovery performance. The reason can be explained as follows.
If we examine the update rule (28) more closely, we can
see that the Bayesian Occam’s razor which contributes to
the success of the conventional sparse Bayesian learning
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method also works for our proposed algorithm. Specifically,
note that in the E-step, when computing the posterior mean
and covariance matrix, a large hyperparameter αn not only
suppresses the posterior mean and variance of its associated
coefficient xn , but also the posterior means and variances
associated with its neighboring coefficients {xi |i ∈ Nn}
(c.f. (15)-(16)). As a result, the value of ωn becomes smaller,
which in turn leads to a larger hyperparameter αn according to
the update formula (28). This negative feedback mechanism
keeps decreasing most of the entries of x̂ until they reach
machine precision and become negligible (as small as 10−8),
while leaving only a few prominent nonzero entries survived
to fit the data. The process eventually leads to an exact block-
sparse solution, and thus no pruning operation is needed.

IV. SIMULATION RESULTS

We now carry out experiments to illustrate the performance
of our proposed algorithm, also referred to as PCSBL-GAMP
algorithm, and its comparison with other existing methods.
The performance of the proposed algorithm3 will be examined
using both synthetic and real data. The parameters a, b, c,
d for our proposed algorithm are set equal to a = 1.5,
b = 10−6, c = 1, and d = 10−6 throughout our experiments.
The relevance parameter β is set equal to β = 1 in our
experiments. In fact, our empirical results suggest that its
choice is not very critical to the recovery performance as long
as β is set into the region β ∈ [0.1, 1].

A. Synthetic Data

We first evaluate the recovery performance of the
PCSBL-GAMP method using the synthetic data. In our sim-
ulations, we generate a one-dimensional block-sparse signal
in a way similar to [20]. Suppose the N-dimensional sparse
signal contains K nonzero coefficients (K is also denoted as
the sparsity level) which are partitioned into T blocks with
random sizes and random locations. The nonzero coefficients
of the sparse signal x and the measurement matrix A ∈ R

M×N

are randomly generated with each entry independently drawn
from a normal distribution, and then the sparse signal x and
columns of A are normalized to unit norm. Fig. 1 depicts the
success rate of the proposed PCSBL-GAMP method vs. the
ratio M/N , where we set N = 200, K = 40 and T = 6.
The success rate is computed as the ratio of the number
of successful trials to the total number of independent runs.
A trial is considered successful if the normalized squared
recovery error ‖x − x̂‖2/‖x‖2 is no greater than 10−6, where
x̂ denotes the estimate of the sparse signal. The success
rates of the EM-based PC-SBL method [20] (referred to as
the PCSBL-EM), the conventional SBL [4], and the basis
pursuit (BP) method [2], [23] are also included for comparison.
From Fig. 1, we see that the PCSBL-GAMP method achieves
almost the same performance as that of the PCSBL-EM
method, and presents a significant performance advantage over
the SBL and BP methods due to exploiting the underlying

3Matlab codes for our algorithm are available at http://www.junfang-
uestc.net/codes/PCSBL-GAMP.rar.

Fig. 1. Success rates vs. the ratio M/N .

Fig. 2. Average run times vs. N .

block-sparse structures. The average run times of respective
algorithms as a function of the signal dimension N is plotted
in Fig. 2, where we set M = 0.4N . Results are averaged
over 100 independent runs. We see that the PCSBL-GAMP
requires much less run time than the PCSBL-EM, particularly
when the signal dimension N is large. Also, it can be observed
that the average run time of the PCSBL-EM grows rapidly
with an increasing N , whereas the average run time of
the PCSBL-GAMP increases very slowly. This observation
coincides with our computational complexity analysis.

We also carry out experiments using patches of letters
“C” and “S” (16 × 16 pixels) with black background,
where most of the pixels on the patches are zeros and
the nonzero coefficients exhibit irregular block patterns.
We compare our method with other block-sparse signal
recovery algorithms, namely, the cluster-structured MCMC
algorithm (Cluss-MCMC) [16], the Boltzman machine-based
greedy pursuit algorithm (BM-MAP-OMP) [17], and the block
sparse Bayesian learning method (BSBL) method [14], [19].
Note that although the BM-MAP-OMP and the BSBL algo-
rithms are developed for one-dimensional sparse signal recov-
ery, we extend their methods to the two-dimensional scenario.
In our simulations, model parameters used by the competing
algorithms are adjusted to achieve the best performance.
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Fig. 3. Original patches of letters and patches reconstructed by respective algorithms for a noiseless case.

Fig. 4. Original patches of letters and patches reconstructed by respective algorithms, SNR=20dB.

For the BSBL algorithms, the block size parameter h is set
equal to 2. Fig. 3 and 4 depict the original patches and the
reconstructed patches under a noiseless case and a noisy case
respectively, where we set M = 80. For the noisy case, white
Gaussian noise is added to the patches. The signal-to-noise
ratio (SNR) is set to 20dB, with SNR � 10 log(‖Ax‖2

2/Mσ 2).
When there is no noise, we see that the proposed method is
able to achieve an exact reconstruction of the original patches
with a moderate number of measurements. For the noisy case,
it can be observed that our proposed PCSBL-GAMP method
provides the best visual quality with recognizable letters,
whereas the letters reconstructed by other algorithms have
considerably lower quality, particularly for the Cluss-MCMC
and the BM-MAP-OMP methods. This result also implies that
our proposed method is flexible to accommodate any irregular
cluster patterns.

B. Satellite Image Recovery

In this subsection, we carry out experiments on a non-
negative 256 × 256 satellite image.4 The image is sparse in

4Image data is available at http://sourceforge.net/projects/gampmatlab.

the spatial domain, with only 6678 (approximately 10.2% of
total pixels) nonzero pixels. In our experiments, compressive
measurements are corrupted by additive i.i.d. Gaussian noise,
i.e. y = Ax + w, where the image is represented as a one-
dimensional vector x. The sensing matrix A is chosen to
be the same as that used in [24], i.e. A = ��S, where
� ∈ {0, 1}M×N and its rows are randomly selected from the
N × N identity matrix, � ∈ {−1, 1}N×N is a Hadamard
transform matrix, S ∈ R

N×N is a diagonal matrix with
its entries randomly chosen from {−1, 1}. Sensing using
such a measurement matrix can be executed using a fast
binary algorithm, which makes the hardware implementation
simple. Note that the BM-MAP-OMP, the BSBL and the
Cluss-MCMC methods were not included in this experiment
due to their prohibitive computational complexity when the
signal dimension is large. Instead, we compare our method
with some other computationally efficient GAMP-based meth-
ods, namely, the EM-NNGM-GAMP method [24] and the
EM-GM-AMP method [25]. These two methods have demon-
strated state-of-the-art recovery performance in a series of
experiments. The spectral projected gradient (SPG) method
(referred to as SPGL1) which was developed in [26] to
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Fig. 5. Original satellite image and images reconstructed by respective algorithms.

Fig. 6. Satellite image: NMSEs vs. the ratio M/N .

efficiently solve the basis pursuit or basis pursuit denoising
optimizations is also included for comparison. Among these
methods, only the EM-NNGM-GAMP algorithm exploits the
non-negativity of the satellite image. Therefore the signals
recovered by these algorithms, except the EM-NNGM-GAMP,
may contain negative coefficients. These negative coefficients
are manually set to zero in our simulations. Fig. 5 shows
the original satellite image and the images reconstructed
by respective algorithms, where we set M = 0.15N and
SNR = 60dB. It can be seen that the PCSBL-GAMP offers
a significantly better image quality as compared with other
methods. Fig. 6 plots the normalized mean square errors
(NMSEs) of respective algorithms vs. the ratio M/N . Results
are averaged over 100 independent trails, with the sensing
matrix A randomly generated for each trial. The recovered
negative coefficients are kept unaltered in calculating the
NMSEs. We see that our proposed PCSBL-GAMP method
outperforms other algorithms by a big margin for a small ratio
M/N (e.g. M/N ≤ 0.25), where data acquisition is practically
appealing due to high compression rates.

C. Background Subtraction

Background subtraction, also known as foreground detec-
tion, is a technique used to automatically detect and track
moving objects in videos from static cameras. Usually, the
foreground innovations are sparse in the spatial image domain.
By exploiting this sparsity, the sparse foreground innova-
tions within a scene can be reconstructed using compressed
measurements, which relieves the communications burden

placed on data transmission [7]. Specifically, the idea is
to reconstruct the foreground image from the difference
between the compressed measurements of the background
image and the compressed measurements of the test
image [7]

y f = yt − yb = A(xt − xb) = Ax f

where xt and xb represent the test and the background images,
respectively; yt and yb denote the compressed measurements
of the test and background images, respectively; and x f is
the foreground image to be recovered. In our experiments, we
use the Convoy2 data set that was used in [27]. The Convoy2
data set was collected on the Spesutie island, consisting of a
video sequence with 260 frames and one background frame
recorded by a single static camera. The video sequence has
a dynamic sparse foreground as vehicles enter and exit the
filed of view over time. We first choose the 40th frame of the
Convoy2 data set as a test image, which is shown in Fig. 7.
The background image and the foreground image are also
included in Fig. 7. The foreground image is regarded as the
groundtruth image. This foreground image, however, does not
have a pure background since x f = xt − xb is not an exactly
sparse signal and contains many small nonzero components.
In our experiments, the original images of 480×381 pixels are
resized to 120 × 96 pixels. For the resized foreground image,
we have a total number of 923 coefficients whose magnitudes
are greater than 10−2, thus the percentage of nonzero coeffi-
cients is 923/(120×96) = 8.01%. Again, the BM-MAP-OMP,
BSBL, and the Cluss-MCMC methods are not included due to
their prohibitive computational complexity. Here we compare
our method with the EM-GM-AMP method [25] and the
EM-BG-AMP method [28]. Fig. 8 depicts images recon-
structed by respective algorithms, where we use only
M = 0.1N measurements. The measurement matrix A is
randomly generated with each entry independently drawn
from a normal distribution. We see that our proposed
PCSBL-GAMP method provides the finest image quality with
a clear appearance of the vehicle, whereas the object sil-
houettes recovered by other methods are hardly recognizable.
In our next experiments, frames from the 10th to 60th are
used as test images. For each test image, we use M = 0.1N
measurements to recover the difference (foreground) image.
Fig. 9 shows the NMSEs of respective algorithms vs. the
frame number, where the NMSEs are obtained by averaging
over 100 independent runs, with the measurement matrix A
randomly generated for each run. From Fig. 9, we observe
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Fig. 7. From left to right: the test image xt (40th frame of the Convoy2 data set), the background image xb , the foreground image x f .

Fig. 8. Foreground images reconstructed by respective algorithms.

Fig. 9. NMSEs vs. the frame number.

that our proposed method presents a significant performance
advantage over other methods.

V. CONCLUSIONS

We developed a computationally efficient pattern-
coupled sparse Bayesian learning method for recovery of
two-dimensional block-sparse signals whose cluster patterns
are unknown a priori. A two-dimensional pattern-coupled
hierarchical Gaussian prior model is proposed to characterize
and exploit the pattern dependencies among neighboring
coefficients. The proposed pattern-coupled hierarchical model

is effective and flexible to capture any underlying block-
sparse structures, without requiring the prior knowledge of
the block partition. An efficient Bayesian inference method
was developed by integrating the generalized approximate
message passing (GAMP) technique into the proposed
algorithm. Specifically, the algorithm was developed within
an expectation-maximization (EM) framework, where the
GAMP is employed to efficiently compute an approximation
of the marginal posterior distribution of hidden variables.
Simulation results show that our proposed algorithm presents
a substantial performance advantage over other existing state-
of-the-art methods in image recovery, meanwhile achieving a
significant reduction in computational complexity.

APPENDIX

HYPERPARAMETER LEARNING VIA EM

It can be readily verified that the Q-function can be decom-
posed into a summation of two terms

Q(α, γ |α(t), γ (t)) = Ex|y,α(t),γ (t) [log p(α)p(x|α)]
+ Ex|y,α(t),γ (t)[log p(γ )p(y|x, γ )]

� Q(α|α(t), γ (t)) + Q(γ |α(t), γ (t)) (33)

Hence α and γ can be estimated independently.
We first examine the update of α, i.e.

α(t+1) = arg max
α

Q(α|α(t), γ (t)) (34)
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Recalling (11)–(13), Q(α|α(t), γ (t)) can be expressed as

Q(α|α(t), γ (t))

∝
N∑

n=1

(
(a − 1) log αn − bαn + 1

2
log ηn − 1

2
ηn〈x2

n 〉
)

(35)

where 〈x2
n 〉 denotes the expectation with respect to the

posterior distribution p(x| y,α(t), γ (t)). We see that in the
Q-function (35), hyperparameters are entangled with each
other due to the logarithm term log ηn (note that ηn , defined
in (12), is a function of α). In this case, an analytical solution
to the optimization (34) is difficult to obtain. Gradient descent
methods can certainly be used to search for the optimal solu-
tion. Nevertheless, for gradient descent methods, there is no
explicit formula for the hyperparameter update. Also, gradient-
based methods involve higher computational complexity as
compared with an analytical update rule. Here we consider an
alternative strategy which aims at finding a simple, analytical
sub-optimal solution of (34). Such an analytical sub-optimal
solution can be obtained by examining the optimality condition
of (34). Suppose α∗ = {α∗

n } is the optimal solution of (34).
Then the first derivative of the Q-function with respect to
α equals to zero at the optimal point, i.e.

∂ Q(α|θ (t))

∂αn
|α=α∗ = a − 1

α∗
n

− b + 1

2
ν∗

n − 1

2
ωn = 0 (36)

where

ν∗
n � 1

η∗
n

+ β
∑

i∈N(n)

1

η∗
i

(37)

ωn � 〈x2
n 〉 + β

∑

i∈N(n)

〈x2
i 〉 (38)

Since all hyperparameters {αn} and β are non-negative, it can
be easily verified (1/α∗

n) > (1/η∗
n) > 0, and (1/βα∗

n) >
(1/η∗

i ) > 0 for i ∈ N(n). Therefore ν∗
n is bounded by

5

α∗
n

> ν∗
n > 0 (39)

Consequently we have

a + 1.5

α∗
n

>
a − 1

α∗
n

+ 1

2
ν∗

n >
a − 1

α∗
n

(40)

Combining (36) and (40), we reach that α∗
n is within the range

α∗
n ∈

[
a − 1

0.5ωn + b
,

a + 1.5

0.5ωn + b

]
∀n (41)

A sub-optimal solution to (34) can therefore simply be
chosen as

α(t+1)
n = a − 1

0.5ωn + b
∀n (42)

We now discuss the update of the hyperparameter γ , the
inverse of the noise variance. Since the GAMP algorithm also
provides an approximate posterior distribution for the noiseless
output z = Ax, we can simply treat z as hidden variables when
learning the noise variance, i.e.

γ (t+1) = arg max
γ

Ez|y,α(t),γ (t)[log p(γ )p(y|z, γ )]
� arg max

γ
Q(γ |α(t), γ (t)) (43)

Taking the partial derivative of the Q-function with respect
to γ gives

∂ Q(γ |α(t), γ (t))

∂γ
= c − 1

γ
− d + M

2γ
− 1

2

M∑

m=1

〈(ym − zm)2〉
(44)

where 〈·〉 denotes the expectation with respect to
p(zm | y, p̂m(k0), τ

p
m (k0), θ

(t)), i.e. the approximate posterior
distribution of zm . Setting the derivative equal to zero, we
obtain the update rule for γ as

γ (t+1) = M + 2c − 2

2d + ∑
m〈(ym − zm)2〉 . (45)
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