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Abstract—We consider the problem of distributed detection
of a mean parameter corrupted by Gaussian noise in wireless
sensor networks, where a large number of sensor nodes jointly
detect the presence of a weak unknown signal. To circumvent
power/bandwidth constraints, a multilevel quantizer is employed
in each sensor to quantize the original observation. The quantized
data are transmitted through binary symmetric channels to a
fusion center where a generalized likelihood ratio test (GLRT)
detector is employed to perform a global decision. The asymptotic
performance analysis of the multibit GLRT detector is provided,
showing that the detection probability is monotonically increasing
with respect to the Fisher information (FI) of the unknown signal
parameter. We propose a quantizer design approach by maxi-
mizing the FI with respect to the quantization thresholds. Since
the FI is a nonlinear and nonconvex function of the quantization
thresholds, we employ the particle swarm optimization algorithm
for FI maximization. Numerical results demonstrate that with
2- or 3-bit quantization, the GLRT detector can provide detection
performance very close to that of the unquantized GLRT detector,
which uses the original observations without quantization.

Index Terms—Wireless sensor networks, multilevel quantiza-
tion, distributed detection, particle swarm optimization algorithm
(PSOA).

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have attracted con-
siderable interest over the past decades (see [1]–[8],

and references therein), due to the reliability, flexibility, cost-
effectiveness and ease of deployment. A WSN may consist of
a large number of spatially distributed sensors linked with a
fusion center (FC). The constituting sensors can be employed
to provide measurements of a given physical process (tempera-
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ture, humidity, etc.) as well as to detect specific events (mobile
target, alarms, etc.) over a region of interest [9]. Distributed de-
tection is a fundamental problem in WSNs, on which extensive
studies have been conducted [10]–[14].

Due to stringent power/bandwidth constraints, each sensor
may be required to quantize its observations, before transmit-
ting its data to the FC where a global decision is performed [7],
[8], [15], [16]. The simplest and coarsest quantizer is the one-bit
quantizer consisting of a single threshold. This one-bit quan-
tization significantly reduces the communication burden from
the sensor to the FC, but at the expenses of some performance
loss. Specifically, one-bit quantizer design for distributed de-
tection is considered in [17], where a generalized likelihood
ratio test (GLRT) detector is employed at the FC. Asymptotic
performance analysis of the one-bit GLRT detector is provided
for cases where the quantized data are transmitted to the FC via
perfect or imperfect channels. In [18], a one-bit Rao detector is
proposed as a computationally efficient alternative to the one-
bit GLRT detector. There is a notable performance gap between
the one-bit detector and the unquantized detector without quan-
tization [17]. This is because a considerable amount of useful
information is lost when the original observations are quantized
into only one-bit data. Clearly, one expects that the performance
gap can be closed by resorting to multilevel quantizers, and it
is of interest to examine the design of multilevel quantizers for
distributed detection.

Multilevel quantization for distributed detection and estima-
tion has been investigated in a multitude of studies [8], [19]–
[28]. The main challenge is the high computational complexity
as the design of a multilevel quantizer often involves a nonlinear
multi-dimensional search process [11]. In [19], a multilevel
quantizer is employed in an automatic digital radar detector to
quantize the radar video in amplitude and range. The quantiza-
tion thresholds are determined using an empirical procedure to
avoid exhaustive search. In [20], a quasi-optimum multilevel
quantizer is obtained with a gradient algorithm to maximize
the detection probability which can be approximately expressed
as a function of quantization thresholds. However, the gradient
algorithm is time-consuming and computationally prohibitive
when the number of quantization levels is large. In addition, it is
not guaranteed to converge to the optimum quantization levels.
A suboptimum multilevel quantization scheme with improved
computational efficiency is proposed by using fuzzy techniques
in [23]. Nevertheless, as stated in [23], the disadvantage of this
method is that it is generally unknown how to map the local
likelihood ratio to a fuzzy set to provide the best detection per-
formance for different scenarios. The authors in [24] consider
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the distributed detection problem with multilevel quantization
in each local sensor. However, the multilevel quantizer is con-
strained to be uniform in [24], i.e., the quantization thresholds
are constrained to be equally spaced. The GLRT fusion rule
based on soft decision is introduced in [26] where the target
is jointly detected and localized with improved performance
compared with a counting rule. Notice that in all above investi-
gations on multilevel quantization for distributed detection and
estimation, the communication channel from the sensors to the
FC center is assumed to be error-free. In practice, this channel
is in general prone to noise, and hence the quantized data may
be subjective to distortion during the transmission to the FC.
A cooperative spectrum sensing structure was investigated in
[29], where local M-level quantized data are reported through
distortion channels and fused at the FC. The erroneous channels
were molded based on quantization output values.

In this work, we are mainly concerned on the design of multi-
level quantizers for distributed detection of a weak signal [12],
[30]. Specifically, the problem is to detect a mean parameter
corrupted by Gaussian noise in a WSN where the channels
from the local sensors and the FC may be imperfect. We first
quantize the original observations into multi-bit data. These
quantized data are coded into binary codewords, and are then
transmitted to the FC through distortion channels modeled as
binary symmetric channels (BSCs). Using the quantized data
received at the FC, we propose a GLRT detector to make a
global decision about the presence or absence of an unknown
signal. An asymptotic performance analysis based on a weak-
signal assumption of this GLRT detector is provided, revealing
that the quantization thresholds play an important role in the
detection performance. More specifically, the detection proba-
bility is monotonic with respect to the unknown signal’s Fisher
information (FI). Given this insight, we propose a quantizer
design approach by maximizing the FI with respect to the
quantization thresholds. Since the objective function (i.e., the
FI) is nonlinear and non-convex in the quantization thresholds,
for which a gradient search is not effective, we resort to a
particle swarm optimization algorithm (PSOA) [31] to search
for the thresholds corresponding to the maximum FI. The
PSOA is a stochastic global optimization method modeled after
social behavior such as bird flocking and fish schooling [32].
It does not require any gradient information on the objective
function, and as well is easy to implemented.

Simulation results show that the detector proposed here with
multilevel quantization significantly outperforms the one-bit
detector proposed in [17]. More importantly, it is demonstrated
that, the GLRT detector using 2- or 3-bit quantized data can
provide detection performance very close to the unquantized
detector which has full access to the original unquantized
sensor observations. Hence, through suitable quantizer design,
each sensor only needs to send 2 or 3 bits of information per
measurement, which is adequate to achieve the unquantized
detection performance, and further increase in the quantiza-
tion level does not bring in an obvious gain in the detection
performance.

The rest of the paper is organized as follows: In Section II,
we formulate the distributed detection problem with multi-bit
quantization. In Section III, a multi-bit GLRT scheme is pro-

Fig. 1. A distributed detection system.

posed. In Section IV, we present an asymptotic analysis of the
multi-bit GLRT detector, and design the multilevel quantizers
by using the PSOA. Numerical results and comparisons are
provided in Section V. Finally, concluding remarks are given
in Section VI.

Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters, all vectors are column vectors; superscript
(·)T denotes transposition; E{·} represents statistical expecta-
tion; Z+ symbolizes a set of positive integers; Rn signifies the
n-dimensional space of real numbers; [τ1,τ2]

n represents an
n-dimensional space, where each dimension is limited to
[τ1,τ2]; ‖ · ‖ is the Euclidean norm of a vector.

II. PROBLEM FORMULATION

Consider the problem of distributed detection of an unknown
scalar deterministic signal parameterized by θ in the presence of
zero-mean additive white Gaussian noise (AWGN), as depicted
in Fig. 1. Assume that there are N spatially distributed sensors,
and each sensor obtains a noisy observation of θ. Let the null
hypothesis (H0) be that the observations are signal free and the
alternative hypothesis (H1) be that the observations contain a
signal. The detection problem based on all the observations can
be formulated as the following binary hypothesis testing:

H0 : xn =wn

H1 : xn =hnθ+wn, n = 1,2, . . . ,N, (1)

where the subscript n is the sensor index; xn denotes the
nth sensor’s observation; hn ∈ R are the known observation
coefficients defining the input/output relation of the nth sensor
[17], [18]; wn represents the AWGN with zero mean and known
variance σ2

wn
. The noise at the local sensors is assumed to be

independent across the sensors.
To circumvent stringent bandwidth/energy limitations, we

have to quantize the sensors’ observations before transmitting
them to the fusion center (FC). Assume that a q-bit quantizer
denoted by Qn,q (q ∈ Z+) is employed in the nth sensor where
the observation is compared with a set of quantization thresh-
olds {τn,k}2q

k=0 with τn,0 =−∞,τn,2q =+∞. The output of Qn,q,
indicating which interval the observation lies in, is encoded
as a binary codeword denoted by dn ∈ {0,1}q before being
transmitted to the FC over binary symmetric channels (BSCs).
Relying on the received data yn, the FC forms a global decision
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Fig. 2. q-bit quantizer.

regarding the presence or absence of the signal θ. Obviously,
the quantization level and the quantization thresholds play a
vital role in this detection problem. The problem of interest here
is to design the q-bit quantizer in each sensor to assist detecting
the signal θ in the FC.

III. GLRT-BASED FUSION RULE

In this section, we assume the quantization thresholds
{τn,k}2q

k=0 are predetermined for each sensor, and we derive
a generalized likelihood ratio test (GLRT) based fusion rule
at the FC to detect θ from distorted data {yn}N

n=1. Quantizer
design will be considered in the next section. Before deriving
the GLRT rule, we briefly discuss q-bit quantization and the
distortion channel to introduce necessary notation.

A. q-Bit Quantizer

Fig. 2 shows the quantization characteristics for the q-bit
quantizer Qn,q at the nth sensor. Each q-bit quantizer Qn,q

involves a set of ordered thresholds {τn,k}2q

k=0 with τn,0 =
−∞,τn,2q = +∞. Note that the threshold sets of the quantizers
for different sensors are not constrained to be the same.

For fixed n and q, the real line R is demarcated by thresh-
olds {τn,k}2q

k=0 into 2q non-overlapping quantization intervals.
Each quantization interval is uniquely labeled using a label
set Γ = {γ1,γ2, . . . ,γ2q}. Each label γi can be encoded as a
q-bit binary codewords bn,i = [bn,i,q,bn,i,q−1, . . . , bn,i,1]

T , where
bn,i, j ∈{0,1}. Hence, the output codeword of the q-bit quantizer
at the nth sensor can be expressed as

dn =

⎧⎪⎪⎨
⎪⎪⎩

bn,1, ∞ < xn < τn,1,
bn,2, τn,1 ≤ xn < τn,2,
...

...
bn,2q , τn,2q−1 ≤ xn <+∞,

(2)

where xn and dn are the input and output of the q-bit quantizer
at nth sensor, respectively.

Denote by Pn, j
wn (θ) the probability that the observation xn

at the nth sensor falls into the jth quantization interval
[τn, j−1,τn, j). Then, under hypothesis H1, we have

Pn, j
wn

(θ) =P(dn = bn, j;θ)

=P(τn, j−1 ≤ xn < τn, j;θ)

=Fwn(τn, j−1 −hnθ)−Fwn(τn, j −hnθ), (3)

where Fwn(·) is the complementary cumulative density function
(CCDF) of the Gaussian noise wn.

B. Distortion Channel: BSC

Assume that the distortion channels from all sensor nodes
to the FC are independent, and each of them can be modeled

Fig. 3. Binary symmetric channel (BSC) model.

Fig. 4. The distortion channel from the nth sensor to the FC.

with a BSC as illustrated in Fig. 3, where P̃ is the crossover
probability, and 1− P̃ is the probability of correctly receiving
0 or 1. Suppose further that each bit can be independently
transmitted over the BSC.

Fig. 4 shows the output of the BSC with the input dn = bn, j

(1 ≤ j ≤ 2q). Due to the distortion effect in the BSC, the output
yn may potentially be any one of the binary codewords. The
probability that bn, j is changed to bn,i over the BSC can be
calculated as

P(yn =bn,i|dn = bn, j)

= P̃Dn,i, j(1− P̃)(q−Dn,i, j)

=G(q, P̃,Dn,i, j), (4)

where Dn,i, j is the Hamming distance between bn,i and bn, j

defined as

Dn,i, j
Δ
= D(bn,i,bn, j) = q−

q−1

∑
k=0

I(bn,i,q−k,bn, j,q−k), (5)

with the indicator function I(·) being

I(A,B) =

{
1, A = B,
0, otherwise.

(6)

Note that the Hamming distance Dn,i, j is the total of incorrectly
received bits for each transmitted received codeword pair be-
tween bn,i and bn, j.

The probability mass function (PMF) of the output yn of the
BSC under H1 is given by

P(yn;θ) =
2q

∑
i=1

2q

∑
j=1

P(yn = bn,i|dn = bn, j)P(dn = bn, j)

=
2q

∏
i=1

{
2q

∑
j=1

G
(
q, P̃,Dn,i, j

)
Pn, j

wn
(θ)

}I(yn,bn,i)

, (7)

where P(dn = bn, j) is defined in (3) and we note in the
second equality, the indicator function I(yn,bn,i) is zero except
for one specific i when it equals 1 (i.e., when yn takes that
codeword bn,i).
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C. GLRT Detector

Due to the unknown parameter θ, we resort to the GLRT
[33] to solve the detection problem in (1). The GLRT detector
can be obtained by replacing the unknown parameter with its
maximum likelihood (ML) estimate, i.e.,

Tq(Y) =
P(Y; θ̂,H1)

P(Y;H0)

H1
≷
H0

η, (8)

where the subscript q means that the test statistic is for the case
of the q-bit quantization scheme; η is a detection threshold; Y=
[y1,y2, . . . ,yN ] is the input data matrix of the FC; P(Y; θ̂,H1)
and P(Y;H0) denote the PMFs or likelihood function of Y
under H1 and H0, respectively; θ̂ is the ML estimate under H1.

Specifically, the likelihood function under H1 is given by

P(Y;θ,H1)

=
N

∏
n=1

P(yn;θ)

=
N

∏
n=1

2q

∏
i=1

{
2q

∑
j=1

G
(
q, P̃,Dn,i, j

)
Pn, j

wn
(θ)

}I(yn,bn,i)

. (9)

We can obtain θ̂ by

θ̂ = argmax
θ

[P(Y;θ,H1)] , (10)

whereas P(Y;H0) can be obtained from P(Y;θ,H1) by setting
θ = 0. In general, the ML estimate of θ rarely admits a closed-
form expression. However, it can be verified that P(Y;θ,H1)
is a concave function for Gaussian noise [34]. Therefore, any
one-dimensional gradient-based search starting from a random
initial estimate is guaranteed to converge to the global maxi-
mum, and many efficient routines exist for this type of work
[35]. Substituting the ML estimate θ̂ in (8), we can obtain the
final GLRT detector.

IV. QUANTIZER DESIGN

In this section, we first provide an asymptotic performance
of the GLRT detector, which leads to design criterion for the
optimization of the q-bit quantizers. Next, we discuss how to
use the particle swarm optimization algorithm (PSOA) to solve
the optimization problem.

A. Asymptotic Performance Analysis

According to [33], the asymptotic statistical distribution of
the modified test statistic, i.e., 2 lnTq(y), is1

2 lnTq(Y)
a∼
{

χ2
1, under H0,

χ′2
1 (λq), under H1,

(11)

1Equation (11) holds under the weak signal condition, i.e., θ is relatively
small compared to the noise variance. For most WSN applications, it is weak
signal detection that is of primary interest. If the signal to be detected is
strong, a few sensors along with a standard quantization schemes (e.g., uniform
quantizer) would suffice.

where “a” denotes an asymptotic distribution; χ2
r denotes a

Chi-squared distribution with r degrees of freedom (DOFs);
χ′2

r (λq) designates a non-central Chi-squared distribution with r
DOFs and the non-centrality parameter λq. Moreover, the non-
centrality parameter λq is expressed as

λq = (θ1 −θ0)
2
�q(θ0), (12)

where θ0 = 0 and θ1 = θ is the value of θ under H1; �q(θ) rep-
resents the Fisher information (FI) given by (see Appendix A
for details)

�q(θ) =
N

∑
n=1

h2
n

2q

∑
i=1

{
∑2q

j=1 G
(
q, P̃,Dn,i, j

)
ρn, j

wn (θ)
}2

∑2q

j=1 G
(
q, P̃,Dn,i, j

)
Pn, j

wn (θ)
, (13)

where

ρn, j
wn
(θ) = pwn(τn, j−1 −hnθ)− pwn(τn, j −hnθ), (14)

and pwn(·) denotes the probability density function (PDF) of
the observation noise wn. The Cramér-Rao bound (CRB) for θ
is given by

CRBθ =
1

�q(θ)
. (15)

B. Design Criterion of q-Bit Quantizers

We can see from (11) that the larger the non-centrality
parameter λq, the better the detection performance. Notice that
the non-centrality parameter λq given in (12) is a monotonically
increasing function with respect to the FI evaluated in θ = θ0

which is associated with the (2q −1)-dimensional quantization

threshold vectors τττn
Δ
= [τn,1,τn,2, . . . ,τn,2q−1], n = 1,2, . . . ,N. It

is worth remarking that τn,0=−∞ and τn,2q=+∞ for arbitrary n.
The two extreme thresholds are no longer included in the
threshold sets which are to be examined.

The best asymptotic detection performance of the GLRT
detector can be achieved by solving the following optimization
problem:

max
{τn}N

n=1

N

∑
n=1

h2
n

2q

∑
i=1

{
∑2q

j=1 G(q, P̃,Dn,i, j)ρ
n, j
wn (0)

}2

∑2q

j=1 G(q, P̃,Dn,i, j)P
n, j
wn (0)

. (16)

For convenience of mathematical computation, the noise distri-
bution is normalized to have a unit variance: w̃n = wn/σwn ∼
N (0,1). Thus, the optimization problem is recast to

max
{τn}N

n=1

N

∑
n=1

h2
n

σ2
wn

2q

∑
i=1

{
∑2q

j=1 G
(
q, P̃,Dn,i, j

)
ρn, j

w̃n
(0)
}2

∑2q

j=1 G
(
q, P̃,Dn,i, j

)
Pn, j

w̃n
(0)

, (17)

where

ρn, j
w̃n
(0) = pw̃n

(
τn, j−1

σwn

)
− pw̃n

(
τn, j

σwn

)
, (18)

Pn, j
w̃n

(0) =Fw̃n

(
τn, j−1

σwn

)
−Fw̃n

(
τn, j

σwn

)
, (19)

with pw̃n and Fw̃n denoting the PDF and CCDF of w̃n, respectively.
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Because of the previous assumption that the distortion chan-
nels are independent, the above optimization equation decou-
ples into N independent optimization problems:

max
τττn

gn(τττn), (20)

where

gn(τn) =
2q

∑
i=1

{
∑2q

j=1 G
(
q, P̃,Dn,i, j

)
ρn, j

w̃n
(0)
}2

∑2q

j=1 G
(
q, P̃,Dn,i, j

)
Pn, j

w̃n
(0)

, (21)

where we omit the constant h2
n

σ2
wn

in each objective function. For

ease of notation, we drop the index n and rewrite (20) as

max
τττ

g(τττ)

s.t. τττ = [τ1,τ2, . . . ,τ2q−1]
T ,

−∞ < τ1 < τ2 < .. . < τ2q−1 <+∞, (22)

where the order constraint on the thresholds is explicitly
imposed.

An intuitive discussion on the decoupling of the quantization
threshold is in order. In distributed detection involving an
unknown parameter with a finite range, it is common that a
set of different thresholds is employed by different sensors
nodes so that a better detection performance would be achieved,
because some of thresholds are potentially close to the unknown
parameter. However, in this paper, the unknown deterministic
parameter is assumed to be weak (θ≈ 0), and thus all thresholds
tend to be identical. Conventional optimization methods such
as the gradient search method (GSM) [36, p. 34], to a great
extent, rely on the assumption of the cost function’s charac-
teristics (e.g., concavity, convexity, and monotonicity). Such
optimization methods are not suitable to the above optimization
problem, since the cost function g in (22) exhibits, non-linear
and non-convex properties. In the following, we resort to the
particle swarm optimization algorithm (PSOA) to search the
solution to the optimization problem in (22).

C. PSOA-Based Solution

The PSOA proposed first by Kennedy and Eberhart [37]
is a stochastic optimization method inspired by the social
cooperative and competitive behaviors of bird flocking and fish
schooling. It has been successfully applied to address many
high-dimensional, non-convex optimization problems [38]. The
PSOA is initialized with a swarm of candidate solutions (called
particles) randomly positioned in a high dimensional search
space. Each particle has two primary operators: velocity update
and position update. During each iteration, the velocity and
position of each particle is dynamically adjusted according to
its personal best position and the global best position found by
the entire swarm so far.

Applying the PSOA to (22), we assume that a swarm of
M particles explore the (2q − 1)-dimensional hyperspace Δ
in search of a solution. Assume that the search interval for
each dimension of Δ is restricted to [−τmax,τmax], where τmax

denotes the maximum position limitation. At the end of this
subsection, we will discuss the selection of Δ. The ith particle

(i = 1,2, . . . ,M) at the kth iteration is described by two charac-
teristics: position vector τττk

i = [τk
i,1,τ

k
i,2, . . . ,τ

k
i,2q−1] and velocity

vector vk
i = [vk

i,1,v
k
i,2, . . . ,v

k
i,2q−1].

We set the current iteration counter k = 0 and indepen-
dently initialize τ0

i, j according to a uniform distribution on
[−τmax,τmax]. In order to prevent the particles from leaving
the search space Δ, we initialize v0

i,k according to a uniform
distribution in [−vmax,vmax] (as in, e.g., [32, p. 39]), where
vmax = [τmax − (−τmax)]/2 = τmax. For the order constraint in
(22), the mechanism for confining τi, j is described as follows:

If τk
i, j−1 > τk

i, j, then set τk
i, j−1 = τk

i, j − ε,2 ≤ j ≤ 2q −1; (23)

where ε is an arbitrary small positive real number. Based on the
initial particles {τττ0

i }M
i=1, we set the initial personal best position

pbestpbestpbest0
i of the ith particle to be

pbestpbestpbest0
i = τττ0

i , i = 1,2, . . . ,M. (24)

Substituting the initial particles {τττ0
i }M

i=1 into the objective func-
tion g(·) in (22), we obtain a set of values {g(τττ0

i )}M
i=1, and then

set the initial global best position gbestgbestgbest0 to be

gbestgbestgbest0 = argmax
{τττ0

i }
{g
(
τττ0

1

)
,g
(
τττ0

2

)
, . . . ,g

(
τττ0

M

)
}. (25)

At the (k+ 1)st iteration, the velocity vector vk+1
i and posi-

tion vector τττk+1
i of the ith particle is updated as, respectively,

vk+1
i =K

[
vk

i + c1rk
i,1

(
pbestpbestpbestk

i −τττk
i

)
+c2rk

i,2

(
gbestgbestgbestk−τττk

i

)]
(26)

and

τττk+1
i = τττk

i +vk+1
i , (27)

where rk
i,1 and rk

i,2 are random numbers uniformly distributed
within [0,1]; the positive constants c1 and c2 represent the
acceleration coefficients that guide the particles towards the
personal best and global best positions, respectively; K is a
constriction factor given by [31]

K =
2∣∣∣2−ϕ−
√

ϕ2 −4ϕ
∣∣∣ , (28)

with ϕ = c1+c2 and ϕ > 4. Usually, these two constants c1 and
c2 are assigned to be 2.05 [31]. Inserting them into (28) yielding
K = 0.7298.

Denote by pbestpbestpbestk
i = [pbestk

i,1, pbestk
i,2, . . . , pbestk

i,2q−1 ] the per-
sonal best position achieved by the ith particle at the kth
iteration. The update criterion for the position of the ith particle
at the (k+1) iteration is given by

pbestpbestpbestk+1
i =

⎧⎨
⎩

pbestpbestpbestk
i , if g

(
τττk+1

i

)
≤ g

(
pbestpbestpbestk

i

)
,

τττk+1
i , if g

(
τττk+1

i

)
> g

(
pbestpbestpbestk

i

)
.

(29)

The global best position gbestgbestgbestk+1 at the (k + 1)st iteration is
obtained by comparing all the personal best positions updated
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by particles until the kth iteration, namely,

gbestgbestgbestk+1=arg max
{pbestpbestpbestk+1

i }

{
g
(

pbestpbestpbestk+1
1

)
, · · · ,g

(
pbestpbestpbestk+1

M

)}
. (30)

Notice that it is possible for some particles to move outside
[−τmax,τmax]

2q−1 during the iteration process. To avoid this, we
impose the following step in iterations [32, p. 41], [38]:

If τk+1
i, j > τmax, then τk+1

i, j = τmax;

else if τk+1
i, j <−τmax, then τk+1

i, j =−τmax. (31)

The above steps are repeated until a termination criterion
is met. Here, we stop the termination when the following
condition is satisfied [39]∥∥∥vk

i

∥∥∥≤ vtol , (32)

where vtol denotes the stopping tolerance velocity.
Finally, the whole iterative optimization procedures are sum-

marized in Algorithm 1.

Algorithm 1 PSOA for Quantizer Optimization

Input: vtol , vmax, τmax, c1, c2, r0
i,1, r0

i,2, K, M, N, q
Output: a solution τττ� to (22)

1) Set k := 0, randomly initialize τττ0
i ∈ [−τmax,τmax]

2q−1 and
v0

i ∈ [−vmax,vmax]
2q−1 for 1 ≤ i ≤ M;

2) Alter the initial position τττ0
i by (23);

3) Evaluate g(τττ0
i ), and set pbestpbestpbest0

i and gbestgbestgbest0 by (24) and
(25), respectively;

4) Update the velocity vk+1
i and the position τττk+1

i by (26)
and (27), respectively;

5) Alter the position τττk+1
i by (23) and (31);

6) Evaluate g(τττk+1
i ) for 1 ≤ i ≤ M, and update pbestpbestpbestk+1

i and
gbestgbestgbestk+1 by (29) and (30), respectively;

7) Set k := k+1;
8) Repeat Step 4–Step 7 until ‖vk+1

i ‖ ≤ vtol ;

Output: τττ� = gbestgbestgbestk+1.

We now discuss the choice of the search space Δ. There
are two main reasons why each dimension of the search space
Δ is constrained in a finite interval [−τmax,τmax]. First, each
parameter to be examined in (22) corresponds to a threshold
which affects the objective function g(·) through the CCDF of
a normal Gaussian variable. It is well known that the normal
Gaussian distribution is mainly concentrated on a finite interval.
Second, the restriction on the search space is often imposed
in the PSOA algorithm [32, p. 41], which can significantly
alleviate the computational burdens.

V. NUMERICAL RESULTS

In this section, numerical simulations are conducted to il-
lustrate the performance of the proposed quantization and de-
tection techniques. In the simulations, we assume hn = 1 and
σ2

wn
= 1 for all n. In addition, we select θ = 0.5, PFA = 0.1,

M = 100, τmax = 5, and vtol = 10−6.

Fig. 5. Comparisons between the convergence behaviors of the PSOA and the
GSM for different initializations.

TABLE I
COMPARISON OF THE CPU TIME OF THE PSO AND GSM

IN THE ERROR-FREE CHANNELS (UNIT: SECONDS)

A. PSOA Versus GSM

Fig. 5 compares the FI values obtained by using the PSOA
and the conventional GSM for q= 2. For each search algorithm,
we use five different random initializations. Each initialization
for the GSM is independently and uniformly drawn from the
search space Δ. It is noted that each initialization for the PSOA
is obtained with (25). Specifically, first we independently draw
M points (i.e., particles) from the search space Δ, and then
use the global best position as the initialization. Inspections
of Fig. 5 highlight that the largest FI is consistently obtained
by using the PSOA with different initializations, while the
GSM is not guaranteed to obtain the largest value of FI, and
may converge to local maxima with different initializations.
Table I shows that the comparison of the CPU time incurred
by the PSO and GSM algorithms for the 2-bit and 3-bit
cases in error-free channels. The runtime of the PSO based
approach is slightly longer than that of the GSM counterpart
because of the larger number of function evaluations required
by PSO.

B. Quantizer Design

We now examine the quantization thresholds obtained by
using the PSOA. As an example, we consider the cases of q = 2
and 3. The optimum quantization thresholds obtained by using
the PSOA for q = 2 and 3 are reported in Tables II and III,
respectively. We consider five different crossover probabilities,
i.e., P̃ = 0,10−3,10−2,10−1,0.2. In particular, P̃ = 0 corre-
sponds to the channel without distortion.

From Tables II and III, it is observed that each set of
thresholds for the q-bit quantizer is symmetric with respect to
the middle threshold τ = 0. This can be explained by two facts.
First, is that the Gaussian distribution of the noise is symmetric;
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TABLE II
2-BIT QUANTIZER FOR DIFFERENT P̃

TABLE III
3-BIT QUANTIZER FOR DIFFERENT P̃

Second, the noise PDF is unimodal around zero. We note that
the latter fact does not always guarantee threshold-symmetry
around zero, even in the single-bit case, when other noise PDFs
are employed (e.g. the generalized Gaussian distribution), as
shown in [40]. Although our algorithm can be used to design
quantizers for noise with an arbitrary distribution, we consider
only the case of Gaussian noise in our simulation.

Using these quantization thresholds in Tables II and III, we
can obtain that the non-centrality parameters λq for q = 2 and 3
in the case of the errorless channel are, respectively,

λ2 ≈ 0.8825λ∞, (33)

and

λ3 ≈ 0.9655λ∞. (34)

where λ∞
Δ
= θ2 ∑N

n=1
h2

n
σ2

wn
represents the non-centrality of the

unquantized case. Apparently, relative to the unquantized case,
q = 3 entails a smaller loss than q = 2. This explains why the
3-bit GLRT detector outperforms the 2-bit one.

It is worth noting that the optimum quantization thresholds
for P̃ = 0 in Tables II and III are the same as those obtained
in [41]. Nevertheless, our method is different from that in
[41]. First, the criteria of designing the optimum quantizer
are distinct. Our criterion here is to maximize the detection
performance of the GLRT fusion scheme, while the criterion in
[41] is to retain as much signal fidelity as possible to reconstruct
the signal at the receiver. Second, the search algorithms used in
[41] and our work are different.

For the purpose of comparison, we have included the uniform
quantizer in some of the simulation results. The 1-bit uniform
quantizer is the same as our 1-bit quantizer with τ = 0. We
have added uniform quantizer for 2-bit and 3-bit cases whose

dynamic ranges are [−5,5] with 4 and 8 levels, respectively.
Some discussions of the choice of the uniform quantizers are
in order. On the one hand, for the uniform quantizer, we
have to set the dynamic range of the signal to be quantized.
For our detection problem, the dynamic range is unknown
under H1, since θ is unknown. So in practice, there is some
difficulty of using the uniform quantizer. On the other hand, the
performance of the uniform quantizer is quite sensitive when
the dynamic range used for the uniform quantizer is either too
small or too large. Our choice of [−5,5] for the considered
simulation set-ups represents a better scenario for the uniform
quantizer. Therefore, the corresponding quantization thresholds
are [−2.5, 0, 2.5] for 2-bit quantizer, and [−3.75, −2.5, −1.25,
0, 1.25, 2.5, 3.75] for 3-bit quantizer.

Next, the performance of the ML estimator for the unknown
parameter θ is examined. The MSEs of the estimators for θ
are presented using Monte Carlo (MC) techniques for different
quantization bits in Fig. 6. The quantization thresholds are
obtained by using the PSOA. The number of MC trials for each
case is 105. For comparison purposes, the CRB of the estimator
for θ is also provided by using (15). As shown in [42, p. 30],
the CRB for the unquantized approach without quantization
is CRBNQ(θ) = σ2/N, where the subscript NQ represents no
quantization. Note that the unquantized approach provides a
lower performance bound, since it has full access to the sensors’
original observations without any quantization loss.

It is shown in Fig. 6(a) that when the channel is error-free (i.e.,
P̃ = 0), the MSE is consistent with the corresponding CRB in
each quantization case. In addition, we observe that the more
the number of bits, the more accurate the estimate. Interestingly,
the MSE with 2- or 3-bit quantization is very close to the CRB
in the case of no quantization. Hence, it suffices to transmit
2 or 3 bits per sample to achieve the estimation performance
close to that of the unquantized approach. Fig. 6(b) also tells
us that when the channel is distortional (e.g., P̃ = 0.2), the
MSE approaches the CRB asymptotically with an increasing
N. As we can see, the proposed q-bit quantizer’s performance
is notably better than that of the q-bit uniform quantizer for both
two cases.

C. Detection Performance

Based on the asymptotic statistical properties of the GLRT
detector presented in (11), the probability of false alarm can be
calculated as

PFA = 2Q
(√

2lnη
)
, (35)

where Q(·) denotes the Q-function of the standard Gaussian tail
probability.

The detection probability can be given by

PD = Φχ′21 (λq)
(2lnη), (36)

where Φχ′2n (λq)
(·) denotes the right-tail probability of the non-

central Chi-squared distribution with n DOFs and noncentrality
parameter λq. Fig. 7 depicts the detection probability curves of
the q-bit proposed GLRT detector versus the number of sensors
for q = 1,2, and 3. As a benchmark, the performance of the
unquantized detector is also reported. It is demonstrated that
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Fig. 6. CRBs and MSEs for the q-bit proposed/uniform schemes; (a) P̃ = 0
case; (b) P̃ = 0.2 case.

the more the number of quantization bits (or the number of
sensors), the better the detection performance. In particular, the
detection performance of the 2- or 3-bit detector is very close
to that of the unquantized detector without quantization, when
the channel is perfect (i.e., P̃ = 0). The 3-bit and 2-bit GLRT
detector with perfect links achieve the detection probability of
about PD = 0.86 and PD = 0.82, respectively, when 30 sensors
are employed. The 1-bit counterpart however can only attain a
detection probability of approximately 0.7. It reveals again that
only 2- or 3-bit quantization is enough for closely achieving
the benchmark performance. It is also seen from Fig. 7 that
the performance of the quantized GLRT detector is notably
degraded in the presence of channel errors (e.g., P̃ = 0.2 in this
example).

Note that the proposed quantization scheme is proposed
under the assumption of weak signal. It is of interest to examine
its performance when the assumption is removed. Fig. 8 depicts
the performance of the proposed scheme and the uniform quan-
tizer in error-free channels when the signal-to-noise ratio (SNR)
is set to θ/σ2 = 2. It is seen that with increasing θ, the detection
performance for all schemes significantly improves. Interest-
ingly, the proposed quantization scheme does not fall apart
as the SNR increases; rather, the benefit of trying to optimize

Fig. 7. Performance comparisons of q-bit proposed GLRT detectors for
different q and P̃.

Fig. 8. Performance comparison when θ/σ2 = 2 (i.e., the weak signal as-
sumption is removed).

the quantizer diminishes with growing SNR. Indeed, for larger
SNR, there is no significant difference between the proposed
quantization scheme and the ad hoc uniform quantizer, and
their performance approach that of using unquantized samples.
This also corroborates that it is the weak signal detection that
is most critical, which requires more sophisticated designs for
quantization and distributed detection.

Fig. 9 plots the receiver operating characteristics (ROC)
curves of the unquantized detector and the GLRT detector for
q = 1,2, and 3. Both the analytical expressions (derived in
Section IV-A) and MC simulations are used to obtain the ROC
curves for the cases of q = 2 and 3. The number of independent
trials used to calculate the detection probability in each case is
105. The MC results for each q are denoted by the same symbol
“+” for clarity of exposition in Fig. 9. It can be observed that
the analytical results match the MC results pretty well. As we
can see, the performance of the proposed q-bit GLRT schemes
is better than that of the q-bit uniform schemes. We also observe
that the increase in the number of quantization bits leads to
a significant gain in the detection performance. Nevertheless,
when the number of quantization bits increases to only 3, the
quantization loss can be negligible.
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Fig. 9. ROC curves of q-bit GLRT detectors for different q and P̃, when
N = 30; (a) P̃ = 0 case; (b) P̃ = 0.2 case.

D. Mismatch Channels

As shown in (21), a priori knowledge of the crossover prob-
ability P̃ in the distortion channel is required in the quantizer
design. In practice, this crossover probability may be unknown,
and needs to be estimated. Denote by P̂ the estimated crossover
probability. Obviously, there inevitably exists an error in the
estimate of the crossover probability. In the following, we
examine the effect of the estimation error in the crossover
probability on the performance of the proposed GLRT detector.
As an example, we consider the case of q = 2. Fig. 10 shows
the detection probability curves as a function of the number
of sensors for different estimated crossover probabilities P̂,
where the actual crossover probability P̃ is 0.2. Note that
the quantization thresholds are obtained by the PSOA for
the estimated crossover probability P̂. Apparently, there exists
mismatch when these thresholds obtained for P̂ are applied to
the case of P̃ �= P̂. We can observe from Fig. 9 that the error
in the crossover probability can produce a non-negligible loss
in the detection performance. The more the error, the more the
loss in the detection performance.

VI. CONCLUSION

In this paper, the problem of multilevel quantizer design
in WSNs is examined for the distributed detection of a mean

Fig. 10. Performance comparisons of 2-bit GLRT detector for different esti-
mated crossover probabilities P̂.

parameter corrupted by Gaussian noise. We employ in each sen-
sor a multilevel quantizer determined by a set of quantization
thresholds. An asymptotic performance analysis for the GLRT
detector is given in terms of probabilities of false alarm and
detection. This analysis reveals that the detection performance
of the proposed GLRT detector is increasing with the FI. It is
shown that the FI is a non-linear and non-convex function of the
sets of quantization thresholds. A design criterion for the multi-
level quantizers is proposed by maximizing the FI with respect
to the quantization thresholds. Because of the non-linearity and
non-convexity, we resort to one of evolutionary computation
algorithms, i.e., the PSOA, to obtain the quantization thresholds
corresponding to the maximal FI. Notice that the PSOA is more
suitable than the conventional gradient search approaches for
this maximization problem, since the latter is more sensitive to
initialization.

Extensive simulation results are presented, which show that
the proposed multi-bit GLRT detector has a notable improve-
ment over the one-bit GLRT detector of [17]. Interestingly,
with only 2- or 3-bit quantization, the GLRT detector performs
similarly to the unquantized GLRT detector which utilized the
original observations without quantization. Hence, it is enough
to closely achieve the benchmark performance by using only
a small number of quantization bits. Further increase in the
number of quantization bits bring in negligible gain in the
detection performance, except adding communication burdens
and computational complexity.

APPENDIX A
PROOF OF (13)

In the light of (9), the natural logarithm of the likelihood
function L̃q(θ) is given by

L̃q(θ) = lnLq(Y;θ) =
N

∑
n=1

2q

∑
i=1

I(yn,bn,i) ln fn,i, (37)

where

fn,i =
2q

∑
j=1

G
(
q, P̃,Dn,i, j

)
Pn, j

wn
(θ), (38)
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with Pn, j
wn (θ) defined in (3). Accordingly, the second-order

derivative of L̃q(θ) with respect to θ can be calculated as

∂2L̃q(θ)
∂θ2 =

N

∑
n=1

2q

∑
i=1

I(yn,bn,i)

[
f ′′n,i

fn,i
−
(

f ′n,i
fn,i

)2
]
, (39)

where f ′n,i and f ′′n,i denote the first and second derivatives of fn,i

with respect to θ, respectively, i.e.,

f ′n,i = hnG
(
q, P̃,Dn,i,1

)
[−pwn(τn,1 −hnθ)]

+hnG
(
q, P̃,Dn,i,2

)
[pwn(τn,1 −hnθ)− pwn(τn,2 −hnθ)]

+ · · ·+hnG
(
q, P̃,Dn,i,2q

)
[pwn(τn,2q−1 −hnθ)] , (40)

and

f ′′n,i = h2
nG
(
q, P̃,Dn,i,1

)[
p′wn

(τn,1 −hnθ)
]

+h2
nG
(
q, P̃,Dn,i,2

)[
p′wn

(τn,2 −hnθ)− p′wn
(τn,1 −hnθ)

]
+ · · ·+h2

nG
(
q, P̃,Dn,i,2q

)[
−p′wn

(τn,2q−1 −hnθ)
]
, (41)

where pwn(·) denotes the PDF of the observation noise wn;
p′wn

(·) represents the first derivative of pwn(·) with respect
to θ.

Define

J(yn;θ) =
2q

∑
i=1

I(yn,bn,i)

[
f ′′n,i

fn,i
−
(

f ′n,i
fn,i

)2
]
. (42)

The FI with respect to the parameter θ can be written as

�q(θ)= −EY

{
∂2L̃q(θ)

∂θ2

}
=−

N

∑
n=1

2q

∑
i=1

J(yn = bn,i;θ) fn,i

= −
N

∑
n=1

2q

∑
i=1

⎡
⎢⎣ f ′′n,i −

(
f ′n,i

)2

fn,i

⎤
⎥⎦ . (43)

Noting that ∑2q

i=1 G(q, P̃,Dn,i, j) = 1, we have

2q

∑
i=1

f ′′n,i =h2
n

{[
p′wn

(τn,1 −hnθ)
]

+
[
p′wn

(τn,2 −hnθ)− p′wn
(τn,1 −hnθ)

]
+ · · ·+

[
−p′wn

(τn,2q−1 −hnθ)
]}

= 0. (44)

Therefore, the FI is given by

Fq(θ)=
N

∑
n=1

h2
n

2q

∑
i=1

{
∑2q

j=1 G
(
q, P̃,Dn,i, j

)
ρn, j

wn (θ)
}2

∑2q

j=1 G
(
q, P̃,Dn,i, j

)
Pn, j

wn (θ)
(45)

where ρn, j
wn (θ) is defined in (14). The proof of (13) is now

complete.
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