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Abstract: We examine a distributed detection problem in a wireless sensor network, where
sensor nodes collaborate to detect a Gaussian signal with an unknown change of power, i.e.,
a scale parameter. Due to power/bandwidth constraints, we consider the case where each
sensor quantizes its observation into a binary digit. The binary data are then transmitted
through error-prone wireless links to a fusion center, where a generalized likelihood ratio
test (GLRT) detector is employed to perform a global decision. We study the design of a
binary quantizer based on an asymptotic analysis of the GLRT. Interestingly, the quantization
threshold of the quantizer is independent of the unknown scale parameter. Numerical results
are included to illustrate the performance of the proposed quantizer and GLRT in binary
symmetric channels (BSCs).
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1. Introduction

In the context of wireless sensor networks (WSNs), the detection of unknown parameters by using
a multitude of sensor nodes has been of significant interest over the past few decades (e.g., [1–13]
and the references therein). The widely-deployed sensors are designated to provide measurements of a
given physical process (temperature, humidity, etc.), as well as to detect specific events (mobile target,
acoustic source, etc.) over a region of interest. An important strategy has been followed in many studies,
where a fusion center (FC) is employed to make a global decision based on original observations from
local sensors.

In practice, especially to meet bandwidth/energy constraints, there is a need to reduce the dimension
of raw measurements from each sensor to the FC by using one-bit quantization [1–11]. In [4], a fixed
quantization (FQ) approach was examined for distributed estimation of a mean parameter (i.e., the
mean of observations). It was shown that the optimum quantization threshold depends on the unknown
parameter to be estimated and is thus practically infeasible. To overcome this difficulty, a distributed
adaptive quantization (AQ) approach was proposed in [5,6], where the threshold is dynamically regulated
from one sensor to another, in such a way that the threshold converges to the optimum threshold. In [7],
the design of the binary antisymmetric quantizer was studied by the minimization of the worst case
of the Cramér–Rao bound (CRB). Using a generalized likelihood ratio test (GLRT) framework, joint
estimation and detection of an unknown mean parameter based on one-bit quantization was considered
in [8]. A one-bit Rao detector was introduced as a computationally-efficient alternative to the GLRT
in [9]. Meanwhile, distributed estimation of both an unknown mean parameter and a scale parameter
was considered in [10], where sensors are divided into two groups, each using a different threshold to
generate binary observations. In situations with less stringent bandwidth/power constraints, multi-bit
quantization strategies can be employed with enhanced estimation performance [11–13].

In this paper, we consider the problem of quantization for change detection using one-bit quantized
observations collected by distributed sensors and forwarded to a FC through distortive binary symmetric
channels (BSCs). The change detection problem involves an unknown change of the power, i.e., a
scale parameter, of the observed signals. To deal with the unknown parameter, we employ the GLRT
approach to develop a fusion rule for the FC to solve the change detection problem. We propose a
one-bit quantizer based on an asymptotic analysis of the GLRT. Our analysis demonstrates that the
optimum quantization thresholds for local sensors for GLRT fusion rule are identical and unrelated to the
unknown scale parameter. However, the optimum quantization threshold is dependent on the cross-over
error probability of the BSCs.

This paper is organized as follows. The problem is formulated in Section 2. In Section 3, the GLRT
fusion rule is proposed. In Section 4, we present an asymptotic analysis of the GLRT, which is used to
design the one-bit GLRT quantizers. In Section 5, the GLRT using unquantized observations in presented
as a benchmark to the proposed quantization/detection schemes. Simulation results and comparisons are
provided in Section 6. Finally, concluding remarks are given in Section 7.
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2. Problem Formulation

We use a WSN with N spatially-distributed sensor nodes to detect a random Gaussian signal with an
unknown variance σ2

1 . Each sensor collects an observation described as follows:{
H0 : xn ∼ N (0, σ2

0),

H1 : xn ∼ N (0, σ2
1),

n = 1, 2, . . . , N (1)

Specifically, xn are independent and identically distributed (i.i.d.) Gaussian random variables with
zero mean and variance σ2

i under hypothesis Hi, i = 0, 1, where it is assumed that the scale parameter
σ0 is known, whereas σ1 is not. For the considered problem, the sensors are employed to monitor a
sudden change of the signal power from a normal state with a known σ0 to an abnormal state with an
unknown σ1.

There are several applications to which our formulation is relevant. One notable example is spectrum
sensing (SS), where the secondary user (SU) needs to reliably detect weak licensed user (LU) signals of
possibly unknown types over a targeted frequency band in order to opportunistically use under-utilized
frequency bands [14,15]. In distributed SS scenarios, multiple SUs collaborate in detecting the
presence/absence of the LU [14]. The received signal at each SU is often modeled as a zero-mean
Gaussian random variable with different variances under the null and alternative hypotheses, respectively
(e.g., [14–16]). We assume the sensors are in a small neighborhood, and each of them is exposed to the
same phenomenon. For the aforementioned spectral sensing problems, this implies that the collaborating
secondary users are relatively close to each other, compared with their distances to the licensed user (e.g.,
a TV tower). As a result, their received signals have similar power.

Due to limited bandwidth/power budgets in WSNs, we consider a case where all sensor nodes quantize
their local observations {xn} into one-bit binary data {bn} before transmitting them to the FC. The
quantized observations {bn} are transmitted to the FC through some noisy wireless links, and the FC
forms a global decision. The problem of interest is to design the one-bit quantizer for the sensors and
the fusion rule for the FC.

3. GLRT-Based Fusion Rule

In this section, we discuss a GLRT-based fusion rule by assuming that the quantizers are known. The
quantized data are transmitted to the FC over a distortion channel modeled as binary symmetric channels
(BSCs) to form a global decision. The design of the quantizers will be discussed in Section 4.

3.1. One-Bit Quantization Schemes

In our study, we consider a non-regular quantizer using a pair of symmetric thresholds
±τn (τn > 0) [17] (p. 314) :

bn = Q(xn) =

0, if |xn| ≤ τn,

1, if |xn| > τn,
n = 1, 2, . . . , N (2)
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where xn denotes the local observation at the n-th sensor and bn the quantized binary digit. To facilitate
our analysis, we describe xn under H1 as:

xn = σ1wn, n = 1, 2, . . . , N, (3)

where wn denotes a random variable having the same distribution as xn, but with unit variance; σ1 is the
unknown scale parameter to be estimated. Then, under hypothesis Hi, i = 0 or 1, the probability mass
function (PMF) of bn is:

PB,i(bn;σi) =

[
2− 2Fw

(
τn
σi

)]bn [
2Fw

(
τn
σi

)
− 1

]1−bn
(4)

where Fw(·) denotes the cumulative distribution function (CDF) of wn.

3.2. Distortion Channel: BSC

Let bn denote the binary data obtained by the quantizer (2). We assume that the distortion channels
between all sensor nodes and the FC are independent, and each of them is modeled as a binary symmetric
channel (BSC), i.e.,

yn =

{
bn with probability 1− p̃
1− bn with probability p̃

(5)

where yn denotes the received data given input bn and p̃ is the crossover probability of the BSC. Clearly,
the PMF of the received data at the FC under Hi, i = 0 or 1, is expressed as:

PY,i(yn;σi) = (1− p̃)PB,i(yn;σi) + p̃PB,i(1− yn;σi) (6)

3.3. GLRT Detector

Based on the quantization scheme, due to the unknown parameter σ1, we apply the GLRT [18] to solve
the detection problem in (1). The GLRT detector can be obtained by replacing the unknown parameter
with its maximum likelihood (ML) estimate, i.e.,

T (y) =
PY,1(y; σ̂1)

PY,0(y;σ0)

H1

≷
H0

η (7)

where y = [y1, y2, . . . , yN ] contains the received data at the FC, T (y) denotes the test statistic,
PY,i(y; σ̂i), i = 0 or 1, denotes the PMF or likelihood function of y under hypothesis i corresponding to
the non-regular quantization scheme, σ̂1 is the ML estimate under H1 and η is a detection threshold.

Specifically, since {yn} are independent, the likelihood function under Hi is given by:

PY,i(y;σi) =
N∏
n=1

PY,i(yn;σi) (8)

The ML estimate σ̂1 is obtained by maximizing the likelihood function under H1, i.e.,

σ̂1 , arg max
σ1

PY,1(y;σ1) (9)
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For the considered quantizer, the ML estimate σ̂1 cannot be computed in closed-form. However, it
can be efficiently obtained through a one-dimensional (1D) search (e.g., gradient search). Substituting
the ML estimate σ̂1 in (7), we can obtain the GLRT detector.

4. Quantizer Design

This section considers the optimization of the one-bit quantizers by using an asymptotic result of the
GLRT detector as our design criterion.

4.1. Asymptotic Performance Analysis

According to [18] (p. 206) , the asymptotic statistical distribution of the modified test statistic
2 lnT (y) asymptotically follows:

2 lnT (y)
a∼

{
χ2
1, under H0,

χ′21 (λ), under H1,
(10)

where “a” denotes an asymptotic distribution; χ2
r denotes a chi-squared distribution with r degrees

of freedom (DOFs); χ′2r (λ) designates a non-central chi-squared distribution with r DOFs and the
non-centrality parameter λ given by:

λ = (σ1 − σ0)2FI(σ)|σ=σ0 (11)

where FI(σ) denotes the Fisher information (FI) associated with the PDF under H1, which is derived
by taking the negative of the expectation of the second derivative with respect to σ of the logarithm of
PY,1(y;σ). Specifically, it can be shown:

FI(σ; τ ) = −E
{
∂2 lnPY,1(y;σ)

∂σ2

}
=

N∑
n=1

Ψn(σ; τn) (12)

where τ = [τ1, τ2, . . . , τN ] and Ψn(σ; τn) is:

Ψn(σ; τn) =
(2− 4p̃)2

(
τ2n
σ4

)
p2w
(
τn
σ

)[
(2− 3p̃)− (2− 4p̃)Fw

(
τn
σ

)]
× 1[

(−1 + 3p̃) + (2− 4p̃)Fw

(
τn
σ

)]
(13)

where pw(·) denotes the probability density function (PDF) of wn. In light of the asymptotic statistical
property of the GLRT detector presented in (10), the probability of the false alarm of the GLRT detector
is given by:

PFA = Qχ2
1

(2 ln η) (14)

where Qχ2
1
(·) represents the right-tail probability of the chi-squared distribution with one DOF. The

detection probability of the GLRT is calculated as:

PD = Qχ′2
1 (λ)(2 ln η) (15)
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where Qχ′2
1 (λ)(·) denotes the right-tail probability of the noncentral chi-squared distribution with one

DOF and noncentrality parameter λ.

4.2. Design Criterion of One-Bit Quantizers

We can see from (10) that given a specific false alarm probability, the larger the non-centrality
parameter λ, the higher the detection probability. According to (11), the non-centrality parameter
λ is proportional to FI, which is a function of the quantization threshold τn. Therefore, in order to
achieve the best asymptotic detection performance of the GLRT detector, we optimize the quantization
threshold τn by maximizing the non-centrality parameter λ. Since {yn} are independent of each other,
the above optimization problem decouples into a collection of N independent quantization threshold
design problems. Therefore, the optimum quantization threshold is identical for all sensors. Specifically,
the optimization problem is given by:

max
τn

Ψn(σ0; τn), ∀n (16)

Figure 1 illustrates the non-centrality parameter of the proposed quantization scheme versus τn/σ0,
which denotes the ratio of the threshold to the standard deviation of the observation under hypothesis
H1. As shown in Figure 1, in both the error-free case (i.e., p̃ = 0) and BSC scenarios, the noncentrality
parameter of the one-bit proposed quantization scheme is unimodal, which implies a unique maximum.
Therefore, the optimum thresholds τ ? of the proposed quantizer in perfect/imperfect channels can
be easily found by a conventional numerical method, and the results are reported in Table 1. The
performance of the noncentrality parameter degrades rapidly as the threshold τ deviates from its
maximum value (e.g., optimum value τ ?) and as the crossover probability p̃ increases. It is noted that in
the BSC scenarios (i.e., p̃ 6= 0), the optimum threshold τ ? is different from that in the error-free case.
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Figure 1. Non-centrality λ of the proposed quantization scheme over perfect and binary
symmetric channels (BSCs) versus the normalized threshold τn

σ0
, when the number of sensors

N = 100.
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Table 1. Optimum quantization threshold in perfect/BSC channels.

Cross-Over Probability τ?

p̃ = 0 1.4821σ0
p̃ = 10−2 1.4109σ0
p̃ = 10−1 1.1736σ0
p̃ = 0.2 1.0785σ0

5. The Unquantized GLRT Detector

As a performance benchmark, we consider the performance of the GLRT detector, which receives the
original local observations without quantization (also referred to as the unquantized GLRT detector). In
this case, as shown in [18] (p. 203), the MLE of σ1 is σ̂2

1 = 1
N

∑N
n=1 x

2
n. Therefore, we conclude that the

unquantized GLRT detector decides H1 if:

TNQ(x) =

(
σ0
σ̂1

)N
exp

{
N

2

(
σ̂2
1

σ2
0

− 1

)}
> η (17)

where the superscript ‘NQ’ is used to stand for no quantization. From an asymptotic analysis, we know
that the modified test statistic 2 lnTNQ(x) asymptotically follows:

2 lnTNQ(x)
a∼

{
χ2
1, under H0,

χ′21 (λNQ), under H1,
(18)

The noncentrality parameter is given by:

λNQ = 2N

(
σ1
σ0
− 1

)2

(19)

From (19), λNQ is dependent on the number of sensors and standard deviations of the observations
under hypotheses H0 and H1.

6. Simulation Results

In this section, we present computer simulation results to illustrate the performance of the proposed
quantization scheme. Specifically, we use MATLAB to simulate distributed detection in a wireless sensor
network with a parallel configuration, where N sensors make observations of a random Gaussian signal,
and each sensor quantizes its observations into one bit of information, which is sent to the fusion center
with a binary symmetric channel. The fusion center forms a global decision regarding the change of the
scale parameter from σ0 to σ1. Our simulation is carried out with the following setups: σ0 = 1, σ1 = 2,
PFA ∈ {0.1, 0, 01}, p̃ ∈ {0, 0.1, 0.2}.

Figure 2 plots the detection probabilities of the unquantized case and the one-bit GLRT detector with
the optimum threshold τ ? versus the number of sensors. In the figure, a solid line and a dashed line
represent the theoretical asymptotic performance, while the plus marks and circle marks represent the
performance of the Monte Carlo (MC) experiments obtained by averaging over 104 independents runs.
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It is observed that the theoretical asymptotic analysis provides a good approximation of the experimental
performance with an increasing number of sensors. When the probability of false alarm (PFA) is reduced,
more sensors are required for the simulation to match asymptotic analysis.
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Figure 2. Performance the proposed one-bit generalized likelihood ratio test (GLRT)
detector with the optimum threshold τ ? and the unquantized detector, when PFA = 0.1 (a)
and 0.01 (b).

We provide simulation results to illustrate the performance of the GLRT used along with the proposed
one-bit quantization scheme. Figure 3 depicts the detection probabilities of the GLRT (assuming
error-free transmission between the sensors and the FC) versus the number of sensors. As a benchmark,
the performance of the unquantized detector is also reported. In our simulation, for the proposed scheme,
we consider three choices of the threshold, include two heuristic choices, including τ = 0.5σ0 and
τ = σ0, as well as the optimum threshold τ ? selected from Table 1. We assume that the standard
deviation under H0 and H1 is σ0 = 1 and σ1 = 2, respectively. In the figure, the performance of
the Monte Carlo (MC) experiments is obtained by averaging over 104 independent runs. It is observed
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that the theoretical asymptotic analysis provides a good approximation of the experimental performance
when the number of sensors is increasing. Meanwhile, the two heuristic thresholds lead to considerable
performance loss.
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Figure 3. Performance the proposed one-bit GLRT detector with several choices of the
threshold τ and the unquantized detector, when PFA = 0.1.

Figure 4 plots the receiver operating characteristics (ROC) curves of the unquantized detector and the
one-bit GLRT detector in BSC channels with several cross-over probabilities p̃. The unquantized case
provides a reference on the optimal detection performance. It is seen that channel errors have a notable
impact on the the one-bit detector.
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Figure 4. ROC curves of the proposed one-bit GLRT in BSC channels, when N = 5.

As shown in (13), the proposed quantization scheme requires knowledge of the crossover probability
p̃, which needs to be estimated in practice. Let the estimated crossover probability be denoted by p̂. It
is of interest to examine how sensitive the proposed quantization scheme is to a mismatch between p̃
and p̂. Figure 5 shows the detection probability curves as a function of the number of sensors for several
estimated crossover probabilities p̂, where the actual crossover probability p̃ is 0.2. It is seen from
Figure 5 that a slight mismatch (e.g., p̂ = 0.1) leads to negligible performance loss. As expected, with
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notable estimation error in p̂ (e.g., p̂ is away from p̃ by an order of magnitude), the resulting performance
loss is no longer negligible.
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Figure 5. Performance of the proposed one-bit GLRT with several estimated values p̂ of the
crossover probability p̃ = 0.2.

7. Conclusions

We have proposed a one-bit quantization scheme for the distributed detection of an unknown scale
parameter in both the ideal and the distortion channel. Our analysis indicates that for the proposed
quantization scheme, the optimum quantization thresholds are independent of the unknown variance
under H1 with either perfect links or binary symmetric channel between sensors and the FC. The
proposed one-bit quantization scheme can achieve the same detection performance as a unquantized
detector by slightly increasing the number of sensors.
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