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Knowledge-Aided Range-Spread Target
Detection for Distributed MIMO Radar
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Abstract—This paper deals with the problem of detecting a
moving range-spread target in distributed MIMO radar. A new
knowledge-aided (KA) model that takes into account the nonho-
mogenous characteristics of the disturbance (clutter and noise)
in distributed MIMO radar is proposed. Specifically, the distur-
bance covariance matrices corresponding to different transmit-
receive (Tx-Rx) pairs are modeled as random matrices. These
covariance matrices share a prior covariance matrix structure but
with different power levels to model the nonhomogeneous clutter
powers across different Tx-Rx pairs. Two cases are considered,
involving either no range training (i.e., when the disturbance is
highly nonhomogeneous) or some range training data. For the first
case, we develop a KA generalized likelihood ratio test (GLRT) for
range-spread target detection, along with a simplified version of the
KA-GLRT for point-like target detection. For the second case, the
KA-GLRT becomes computationally intractable, a simple ad-doc
KA detector is introduced to take advantage of training data for
range-spread target detection. Simulation results are presented to
illustrate the performance and effectiveness of the proposed detec-
tors in nonhomogeneous environments.

Index Terms—Range-spread target, knowledge-aided detection,
distributed MIMO radar, generalized likelihood ratio test (GLRT).

I. INTRODUCTION

M IMO radar has received considerable attention in re-
cent years [1]–[8]. Unlike the traditional phased-array

radar using one transmit antenna with a single probing wave-
form, MIMO radar is equipped with multiple transmit-receive
(Tx-Rx) antennas along with multiple probing waveforms. Ex-
tensive studies via theoretical analysis and computer simulation
have shown that MIMO radar has many potential advantages,
such as enhanced detection performance [4], improved angular
resolution and parameter identifiability [1], providing more de-
grees of freedom, and better spatial coverage [7]. There are two
types of MIMO radar in terms of antenna configuration. The
first is the co-located MIMO radar with closely spaced antenna
elements within both the transmit and receive arrays. The second
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is the distributed MIMO radar with widely separated antennas.
This work addresses the distributed MIMO radar.

Distributed MIMO radars can view a target from different
spatial angles, resulting in a spatial diversity that can be ex-
ploited to enhance detection performance. In [9], the spatial
diversity and the resulting detection diversity gain was exam-
ined. Assuming the availability of a set of training data, a sample
covariance matrix (SCM)-based detector is considered for de-
tection in cases with homogeneous disturbance signals (clutter,
noise, etc.) [2], [10], [11]. Then, a robust SCM (RSCM)-based
detector is developed by exploiting a compound Gaussian model
for the disturbance [12]. In [13], the authors utilize a persymmet-
ric covariance structure to reduce the training size for detection
in distributed MIMO radar. In [14], an auto-regressive model
is employed to detect moving targets. The target detection in
distributed MIMO radar under phase synchronization mismatch
or imperfect signal separation is considered in [15]. Most of the
above studies assume the disturbance to be spatially homoge-
neous, namely, the covariance matrices for all Tx-Rx pairs are
identical. As shown in [16], the disturbance is strongly loca-
tion dependent, i.e., it depends on the geometry of the Tx-Rx
pair. Thus, the covariance matrix may vary significantly across
resolution cells and is different from one Tx-Rx pair to another.

High range resolution (HRR) radar is of increasing interest
for various applications including automatic target recognition
(ATR) [17]. For target detection, HRR radar conveys abundant
target information and makes the signals backscattered by
the range-spread target less fluctuated [18]. However, with
high resolution radar systems, a target may occupy multiple
range bins. As a result, the detection of range-spread targets
has become a critical problem of research in the application
of high-resolution radars. For range-spread target detection in
white Gaussian noise, a generalized likelihood ratio test (GLRT)
detector incorporating the target scatterer density is derived in
[19]. Range-spread target detection in Gaussian noise with an
unknown covariance matrix is considered in [20], where both
a GLRT and a two-step GLRT detectors are proposed, which
employ target-free range training signals to estimate the noise
covariance matrix. Range-spread target detection involving a
multi-rank subspace target signal is examined in [21], [22].
Range-spread target detection with an orthogonal interference
rejection ability is discussed in [23]. In [18], the detection of
a range-spread target is addressed under the assumption that a
properly transformed inverse covariance matrix belongs to a uni-
tary invariant function set. More discussions about range-spread
target detection and other related work can be found in [24]–[27]
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and the references therein. To the best of our knowledge, there
is little published work addressing distributed MIMO high
resolution radar detection in non-homogeneous environments.

In this paper, we consider the problem of knowledge-aided
(KA) detection of a range-spread target in distributed MIMO
radar. We propose a new KA model that takes into account non-
homogeneous characteristics of the disturbance. The covariance
matrix for each Tx-Rx pair is modeled as a random matrix which
is also different across different Tx-Rx pairs. Moreover, the
power level for each stochastic covariance matrix is also differ-
ent across the many Tx-Rx pairs. Based on the proposed signal
model, we consider range-spread target detection in two cases
with or without training data. For the range training-free case,
we develop a KA-GLRT detector along with a simplified version
tailored for detecting a point-like target. When training is avail-
able, the exact KA-GLRT becomes computationally intractable.
Instead, we develop a simple ad-hoc KA detector which can
still benefit from both the prior knowledge and the training data.
Numerical results show that the proposed detectors can achieve
significantly enhanced detection performance over conventional
detectors when the amount of training data is limited.

The remainder of this paper is organized as follows. In
Section II, we present the signal model. The proposed KA de-
tectors are presented in Section III for the training-free case
and, respectively, in Section IV for the case with training. In
Section V, simulation results are provided to illustrate the detec-
tion performance of the proposed detectors. Finally, conclusions
are given in Section VI.

The following notations are used throughout the paper. The
conjugate, transpose, and conjugate transpose operations are
denoted by (·)∗, (·)T , and (·)†, respectively. tr(·) indicates
the trace of a matrix. etr(·) indicates the exponential function
of the trace of a matrix. |·| with a square matrix argument rep-
resents the determinant of that matrix, and |·| with a complex
number represents the modulus. The notation CN denotes the
complex Gaussian distribution. The notation CW denotes the
complex inverse Wishart distribution.

II. SIGNAL MODEL

Consider the moving target detection problem involving a
high range-resolution distributed MIMO radar with M trans-
mit antennas and N receive antennas that are widely spaced
from each other [2], [3]. Suppose each transmitter sends L
pulses over a coherent processing interval, and the wave-
forms from different transmitters are orthogonal to each other.
Each receiver uses a bank of M matched filters correspond-
ing to M orthogonal waveforms. Due to high range resolu-
tion, we have to address the range-spread issue. Assume a
target may spread up to H ≥ 1 range cells. The matched fil-
ter output at the nth receive antenna that is matched to the mth
transmit antenna is denoted by Xmn = [xmn,1 , · · · ,xmn,H ] ∈
CL×H,m = 1, · · · ,M, n = 1, · · · , N . Across different Tx-Rx
pairs, the primary data vector Xmn can be assumed to be inde-
pendent of each other due to the use of widely spaced antennas
in distributed MIMO radar [13]. The range-spread target detec-
tion problem can then be formulated as the following binary

hypothesis testing

H1 : Xmn = pmnαT
mn + Nmn ,

H0 : Xmn = Nmn ,

m = 1, · · · ,M, n = 1, · · · , N,

(1)

where αmn = [αmn,1 , · · · , αmn,H ]T contains the unknown
amplitude parameters of the range-spread target, p ∈
CL×1 denotes the target steering vector, and Nmn =
[nmn,1 , · · · ,nmn,H ] denotes the disturbance that may include
clutter and noise. The target steering vector is given by

pmn = [1 e−j2πfm n · · · e−j2πfm n (L−1) ]T , (2)

where fmn denotes the normalized Doppler frequency for each
Tx-Rx pair, and the Doppler frequency is different for different
Tx-Rx due to the moving target motion. Each column vector of
Nmn is assumed to be independent and identically distributed
(i.i.d.) complex zero-mean Gaussian vector with covariance ma-
trix Rmn , namely, nmn,h ∼ CN (0,Rmn ), h = 1, · · · ,H . Note
that Rmn is in general different from one Tx-Rx pair to another
in distributed MIMO radar.

Remark: It is noted that orthogonal waveforms are standard
choices of signalling for MIMO radar. In practice, due to phase
noise of oscillators, synchronization errors, and other propaga-
tion related issues, strict orthogonality may not be maintained in
real MIMO systems. The effects of the above impairments are
examined in a number of studies, e.g., [15], [28]. For simplicity
and to focus on the problem of interest, we do not consider such
effects in this work.

Conventional covariance matrix-based detectors for point tar-
get detection [2], [10]–[12] can be extended to solve the range-
spread target detection problem. However, they all require a
set of i.i.d. training data, which has the same spectral property
as the disturbance in the test data, to estimate the unknown
covariance matrix Rmn . For a distributed MIMO radar with
MN Tx-Rx pairs, the total number of required training data
is roughly 2LMN in order for such a covariance matrix-based
detector to obtain a acceptable detection performance [29]. As
such, their training requirement is very demanding for large M ,
N , and/or L. It is often challenging to obtain a large number
of homogeneous training data, due to fact that the clutter is in-
herently non-homogeneous in multi-static configurations [14].
Therefore, there is a need to develop more efficient solutions for
range-spread target detection in distributed MIMO radar.

To address the above problem, we introduce a stochastic
model for range-spread target detection in this paper. Our pro-
posed model is an extension of the random covariance matrix
model of [30]–[34], in order to deal with the non-homogenous
clutter power across different Tx-Rx pairs. Specifically, we
model Rmn as a complex inverse Wishart random matrix:

Rmn ∼ CW−1(v, λmn (v − L)R̄), (3)

where v denotes the degrees of freedom of the inverse Wishart
distribution, (v − L)R̄ denotes the prior covariance matrix
structure, and λmn denotes the different power level for different
Tx-Rx pairs. Compared with the previous models [30]–[33], we
use MN random matrices Rmn to model the clutter observed
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by the different Tx-Rx pairs. These random matrices have also
different power level parameters λmn in order to model the
non-homogeneous clutter powers across different Tx-Rx pairs.

The probability density function (PDF) of Rmn conditioned
on λmn is given by

f(Rmn |λmn ) =
|λmn (v − L)R̄|v
Γ̄L (v)|Rmn |v+L

etr[−(v − L)λmnR−1
mnR̄],

(4)
where

Γ̄L (v) = πL(L−1)/2
L∏

l=1

Γ(v − l + 1) (5)

with Γ(·) being the Gamma function. The problem of inter-
est is develop solutions to the range-spread target detection
problem (1) in distributed MIMO radar by utilizing the pro-
posed covariance matrix model (3).

III. KA DETECTION WITHOUT RANGE TRAINING

As stated previously, conventional covariance matrix-based
detectors require a large number of training signals for covari-
ance matrix estimation [2], [10]–[13]. However, due to the non-
homogeneous nature of the disturbance observed by different
Tx-Rx pair, it is difficult to obtain such a large amount of train-
ing data. In this section, we consider how to exploit the prior
knowledge for target detection in distributed MIMO radar when
no range training is available, which correspond to the case when
the disturbance is highly non-homogeneous. We first present a
KA detector for range-spread target detection, which is then
simplified for the detection of a point-like target.

A. Range-Spread Target Detection

No uniformly most powerful (UMP) testing exists for the
hypothesis testing problem (1), since the parameters α =
[α11 , · · · ,αmn ] and λ = [λ11 , · · · , λmn ] are unknown. We con-
sider a GLRT approach. The KA-GLRT for range-spread target
detection can be expressed as

max
α,λ

∏
m,n

∫
f1(Xmn |αmn ,Rmn )f(Rmn |λmn )dRmn

max
λ

∏
m,n

∫
f0(Xmn |Rmn )f(Rmn |λmn )dRmn

H1
≷
H0

ξ1 ,

(6)
where

f0(Xmn |Rmn ) =
π−LH

|Rmn |H
etr(−R−1

mnXmnX†
mn ) (7)

and

f1(Xmn |αmn ,Rmn ) =
π−LH

|Rmn |H
etr(−R−1

mnYmnY†
mn ) (8)

are the the conditional PDF under H0 and H1 , respectively,
with Ymn = Xmn − pmnαT

mn , and ξ1 denotes the detection
threshold.

Due to the independent assumption on the test data, the
maximization of the left-hand side of (6) can be performed

term by term. Thus, (6) can be rewritten as

∏

m,n

max
αm n ,λm n

∫
f1(Xmn |αmn ,Rmn )f(Rmn |λmn )dRmn

max
λm n

∫
f0(Xmn |Rmn )f(Rmn |λmn )dRmn

H1
≷
H0

ξ1 .

(9)
For each Tx-Rx pair, it follows from (4), (7) and (8) that

Λmn =
max

αm n ,λm n

∫
f1(Xmn |αmn ,Rmn )f(Rmn |λmn )dRmn

max
λm n

∫
f0(Xmn |Rmn )f(Rmn |λmn )dRmn

=
max

αm n ,λm n

λLv
mn |YmnY†

mn + λmn (v − L)R̄|−(v+H )

max
λm n

λLv
mn |XmnX†

mn + λmn (v − L)R̄|−(v+H )
.

(10)

The final test statistics is given by (see Appendix A for details)

∏

m,n

λ̂
− L v

v + H

mn,0 |XmnX†
mn + λ̂mn,0(v − L)R̄|

λ̂
− L v

v + H

mn,1 |ŶmnŶ†
mn + λ̂mn,1(v − L)R̄|

H1
≷
H0

ξm1 , (11)

where

Ŷmn = Xmn − pmnp†
mnR̄−1Xmn

p†
mnR̄−1pmn

, (12)

ξm1 denotes the modified threshold, λ̂mn,1 and λ̂mn,0 are the
maximum likihood estimate (MLE) of λmn under H1 and H0 ,
respectively, which can be obtained by solving equation (A5)
in the Appendix A.

B. Point-Like Target Detection

In this sub-section, we provide a simplified solution for detect-
ing a point-like target (H = 1) under the same KA framework.
In such a case, the hypothesis testing problem (1) reduces to

H1 : xmn = βmnpmn + nmn ,

H0 : xmn = nmn ,

m = 1, · · · ,M, n = 1, · · · , N, (13)

where βmn is the unknown amplitude of the target observed by
the mth transmit and nth receive antenna.

Denote β = [β11 , · · · , βmn ] and ymn = xmn − βmnpmn .
The KA-GLRT for the detection problem (13) can be formu-
lated as follows

max
β,λ

∏
m,n

∫
f1(xmn |βmn ,Rmn )f(Rmn |λmn )dRmn

max
λ

∏
m,n

∫
f0(xmn |Rmn )f(Rmn |λmn )dRmn

H1
≷
H0

ξ2 ,

(14)
where

f1(xmn |βmn ,Rmn ) =
π−L

|Rmn |
etr[−R−1

mnymny†
mn ], (15)

f0(xmn |Rmn ) =
π−L

|Rmn |
etr(−R−1

mnxmnx†
mn ), (16)
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and ξ2 denotes the detection threshold. Inserting (4), (15) and
(16) into (14) yields

∏

m,n

max
βm n ,λm n

λLv
mn |ymny†

mn + λmn (v − L)R̄|−(v+1)

max
λm n

λLv
mn |xmnx†

mn + λmn (v − L)R̄|−(v+1)

H1
≷
H0

ξ2 .

(17)
As shown in Appendix B, the MLE of λmn under H1 and H0 is
given by

λ̂mn,1 =
v + 1 − L

L
y†

mn ((v − L)R̄)−1ymn ,

λ̂mn,0 =
v + 1 − L

L
x†

mn ((v − L)R̄)−1xmn . (18)

Inserting (18) into (17) yields

∏

m,n

max
βm n

λ̂
−L v
v + 1
mn,0 |xmnx†

mn + λ̂mn,0(v − L)R̄|

λ
−L v
v + 1
mn,1 |ymny†

mn + λmn,1(v − L)R̄|

H1
≷
H0

ξm2 . (19)

where ξm2 denotes the modified threshold. From (19), the esti-
mate of βmn can be obtained as follows

β̂mn =
p†

mnR̄−1xmn

p†
mnR̄−1pmn

. (20)

Substituting (18) and (20) into (17) yields the final test statistic
of the knowledge-aided MIMO detector, given by (21) shown
at the bottom of this page, where

ŷmn = xmn − p†
mnR̄−1xmnpmn

p†
mnR̄−1pmn

, (22)

and

c =
v + 1 − L

L
. (23)

IV. KA DETECTION WITH RANGE TRAINING

When training data is available, we attempt to exploit it to im-
prove the detection performance. In this section, we assume the
availability of non-homogeneous sample support and develop
a KA MIMO detector for range-spread target detection in dis-
tributed MIMO radar. In this case, the problem (1) is modified
as ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0 :

{
Xmn = pmnαT

mn + Nmn ,

x(t)
mn = n(t)

mn ,

H1 :

{
Xmn = pmnαT

mn + Nmn ,

x(t)
mn = n(t)

mn ,
m = 1, · · · ,M, n = 1, · · · , N,

t = 1, · · · , T,

(24)

where x(t)
mn , t = 1, · · · , T , denotes the training data and T is the

number of training data. In (24), the disturbance in the primary

data Xmn is modeled as a compound-Gaussian process that can
be interpreted as the product of a complex, zero-mean, possibly
correlated Gaussian process and a real, non-negative component
(referred to as texture) to depict the non-homogeneity, namely,
nmn,h ∼ CN (0, τmn,hRmn ), h = 1, · · · ,H , where τmn,h de-
notes the texture.

As the joint ML estimation for the problem (24) using both
the primary and training data is computationally intractable, we
resort to an ad-hoc two-step procedure to solve the problem
(24). More precisely, we first derive the test statistic under the
assumption that the covariance matrix Rmn is known. Then,
Rmn is replaced by a KA-based estimate using both the prior
knowledge and the training data to obtain the final test statistic.

In step 1, the disturbance covariance matrix Rmn is as-
sumed to be known. Let τ = [τ 11 , · · · , τmn , · · · , τMN ] with
τmn = [τmn,1 , · · · , τmn,H ]. The GLRT using only the primary
data Xmn is given by

max
α,τ

∏
m,n

f1(xmn,1 , · · · ,xmn,H |αmn , τmn )

max
τ

∏
m,n

f0(xmn,1 , · · · ,xmn,H |τmn )

H1
≷
H0

ξ3 , (25)

where

f1(xmn,1 , · · · ,xmn,H |αmn , τmn ) =
H∏

h=1

1
(τmn,hπ)L |Rmn |

×exp
[
− (xmn − αmn,hpmn )†R−1

mn (xmn − αmn,hpmn )
τmn,h

]
,

(26)

f0(xmn,1 , · · · ,xmn,H |τmn ) =
H∏

h=1

1
(τmn,hπ)L |Rmn |

×exp

(
−x†

mnR−1
mnxmn

τmn,h

)
, (27)

and ξ3 denotes the threshold. The MLEs of α and τ are easy
to obtain and omitted for simplicity. Using these MLEs in (25),
we can show that the detector reduces to

∏

m,n

H∏

h=1

(
1−

||x†
mn,hR

−1
mnpmn ||2

p†
mnR−1

mnpmn

H∑
h=1

x†
mn,hR−1

mnxmn,h

)−LH1
≷
H0

ξm3 ,

(28)
where ξm3 denotes the modified threshold.

For step 2, we consider using the maximum a posteriori
(MAP) estimate of Rmn :

R̂mn,MAP =arg max
Rm n ,λm n

f(xmn,1 , · · · ,xmn,T |Rmn )f(Rmn ),

(29)
where f(x(1)

mn , · · · ,x(T )
mn |Rmn ) denotes the multivariate Gaus-

sian PDF conditioned on Rmn for the training data. Thus,

∏

m,n

(p†
mnR̄−1pmn )(x†

mnR̄−1xmn )

(p†
mnR̄−1pmn )(x†

mnR̄−1xmn ) − |p†
mnR̄−1xmn |2

|xmnx†
mn + cx†

mnR̄−1xmnR̄|
|ŷmn ŷ†

mn + cŷ†
mnR̄−1 ŷmnR̄|

H1
≷
H0

ξm2 , (21)
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we have

f(x(1)
mn , · · · ,x(T )

mn |Rmn )f(Rmn )

∝ λLv

|Rmn |T +v+L
etr

{
− R−1

mn

[
Smn + (v − N)λmnR̄

]}
, (30)

where Smn =
∑T

t=1 x(t)
mnx(t)†

mn . It follows from (30) that

max
Rm n ,λm n

(T + v + L)log(|R−1
mn |)

− tr{R−1
mn [pmn + (v − N)λmnR̄]}. (31)

Using the following algebraic inequalities,

1/n

n∑

i=1

xi ≥
( n∏

i=1

xi

)1/n
,

alog(x) − Nx1/N � a(N log(a) − N),

tr(A) =
∑

i

ςi ,

|A| =
∏

i

ςi , (32)

where ςi denotes the ith eigen value of a matrix A, we have

(T + v + L)log(|R−1
mn |) − tr{R−1

mn [Smn + (v − N)λmnR̄]}
� (T + v + L)[N log(T + v + L) − L

− log(|Smn + (v − L)λmnR̄|)]. (33)

Equation (33) reduces to an equality when

R̂mn,MAP(λmn ) =
1

T + v + L
[Smn + (v − N)λmnR̄]. (34)

Then, the estimate of λ can be obtained as follows

λ̂mn = arg max
λm n

λLv
mn

|(v − N)λmnR̄|T +v+L
. (35)

Similar to (A4), λ̂mn can be obtained as the unique positive
solution of the equation

r∑

i=1

γi

γi + λmn
= L − Lv

v + L + T
, (36)

where γi is the eigen-value of
∑T

t=1 x(t)†
mn ((v − L)R̄)−1x(t)

mn .
Thus, we have

R̂mn,MAP =
1

T + v + L
[Smn + (v − N)λ̂mnR̄]. (37)

Substituting R̂mn,map into (28) yields the proposed detector

∏

m,n

H∏

h=1

⎛

⎜⎜⎜⎝1 −
||x†

mn,hR̂
−1
mn,MAPpmn ||2

p†
mnR̂−1

mn,MAPpmn

H∑
h=1

x†
mn,hR̂

−1
mn,MAPxmn,h

⎞

⎟⎟⎟⎠

H1
≷
H0

ξm3 . (38)

Fig. 1. Distributed MIMO radar configuration.

V. PERFORMANCE ASSESSMENT

A. Extensions of Conventional Covariance Matrix-Based
Detectors

For comparison purposes, we consider extended versions of
the covariance matrix-based detectors [10], [12], which were
originally introduced for point-like target detection, to detect a
range-spread target in distributed MIMO radar. IfRmn is known,
the matched filter (MF) for range-spread target detection is
given by

max
α

∏
m,n

f(xmn,1 , · · · ,xmn,H |αmn )
∏

m,n
f(xmn,1 , · · · ,xmn,H )

, (39)

where f(xmn,1 , · · · ,xmn,H |αmn ) and f(xmn,1 , · · · ,xmn,H )
are the multivariate Gaussian density functions under under H0
and H1 , respectively. It is not difficult to derive (39). The MF
test statistic is given by (see [29])

TMF =
∏

m,n

H∑

h=1

|x†
mn,hR

−1
mnpmn |2

p†
mnR−1

mnpmn

. (40)

The SCM range-spread target detector is obtained by replacing
Rmn in (40) by the sample covariance matrix

R̂mn =
1
T

T∑

t=1

x(t)
mnx(t)†

mn , (41)

which yields

TSCM =
∏

m,n

H∑

h=1

|x†
mn,hR̂

−1
mnpmn |2

p†
mnR̂−1

mnpmn

. (42)

The RSCM detector for range-spread target detection can be
described by the following two-step procedure. First, the test
statistics with a known Rmn is obtained in the same way as
(28). Second, replacing Rmn in (28) by the robust covariance
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Fig. 2. Probability of detection versus SNR with a non-fluctuating range-spread target. (a) H = 4; (b) H = 6; (c) H = 8; (d) H = 10.

matrix estimate M̂mn yields the RSCM detector

TRSCM =
∏

m,n

H∏

h=1

(
1−

||x†
mn,hM̂

−1
mnpmn ||2

p†
mnM̂−1

mnpmn

∑H
h=1x

†
mn,hM̂−1

mnxmn,h

)−L

,

(43)
where M̂mn is a fixed point estimate (FPE) of the covariance
matrix by solving [35]

M̂mn =
L

T

T∑

t=1

x(t)
mnx(t)†

mn

x(t)†
mn M−1

mnx(t)
mn

. (44)

B. Numerical Results

In this section, numerical examples are provided to assess
the performance of the proposed detectors, referred to as the
KA detectors, which are compared with the SCM detector (42)
and the RSCM (43), for range-spread target detection. For point-
like target detection, the proposed KA detector (21) is compared
with the SCM detector in [10] and the RSCM detector in [12].

We consider two cases without and, respectively, with range
training. When training is available, the training signals are
non-homogeneous and is compound-Gaussian distribution with
a scaling factor of 5 and a shape factor of 0.2. The configuration
of the distributed MIMO is shown in Fig. 1, which consists of
two transmitters at 0◦ and 65◦ relative to the target and two
receivers at −30◦ and 40◦. It is noted that the configuration is
the same as the one in [2], [10]. The pulse repetition frequency
is 500 Hz, the carrier frequency is 1 GHz, the target velocity
is 108 km/h. The above parameters lead to a normalized target
Doppler frequency 0.2. In all simulations, we set L = 20 and
v = 24, λ11 = 1, λ12 = 2, λ21 = 3, λ22 = 4, unless stated oth-
erwise. For simplicity, αmn,h is set to the same value among
all the H range cells cells but αmn is different for different
Tx-Rx pairs. As to R̄, we assume an exponentially correlation
covariance matrix with one-lag correlation coefficient ρ = 0.9,
namely, the (i, j)th element of R̄ is given by ρ|i−j |. To decrease
the computational load, the probability of false alarm Pf a is cho-
sen to be 10−2 and the number of independent trials is 100/Pf a .
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Fig. 3. Probability of detection versus SNR with a non-fluctuating range-
spread target and different numbers of training data.

First, we consider a non-fluctuating target model with fixed
target amplitudes from trial to trial. In this case, the signal-to-
noise ratio (SNR) is defined as

SNR = L
∑

mn

∑H
h=1 |αmn,h |2

λmn
. (45)

The detection probability versus SNR is shown in Fig. 2, where
H = 4, 6, 8 and 10, respectively. The number of training data
for each Tx-Rx pair of the covariance matrix-based detectors is
22. KA (T = 0) represents the proposed detector (11) without
range training, whereas KA (T = 22) represents the proposed
detector (38) with 22 training data samples. As shown in Fig. 2,
the proposed KA detector with training performs the best due to
the exploitation of both the a priori knowledge and the training
data. Without training, the KA detector experiences some degra-
dation but still significantly outperforms the other conventional
detectors. It is also observed that increasing the radar resolution
capabilities, which corresponding to increasing H , can produce
a significant detection gain.

Next, we study the effect of different numbers of training data
on the detection performance. Fig. 3 shows the detection prob-
ability of the KA detector (38), RSCM, and SCM for different
training sizes, where H = 8. It is seen that the larger the number
of training data, the better the detection performance. Addition-
ally, the performance of the proposed KA-MIMO significantly
outperforms the RSCM and SCM, especially when the number
of training signals is small.

Fig. 4 shows the detection probability curves for detecting
a point-like target when the training size for each Tx-Rx pair
is 22. The proposed KA-MIMO (21) does not use any training
data, but for the SCM and RSCM detectors, the total amount of
training data is 4 × 22 = 88. As shown in Fig. 4, the proposed
KA-MIMO significantly outperforms the traditional solutions.

We now examine the case of detecting a fluctuating tar-
get, where the target amplitude αmn,h is generated as a com-
plex Gaussian random variable with zero mean and variance

Fig. 4. Probability of detection versus SNR with a non-fluctuating point-like
target.

σ2
αm n , h

= 1. In this case, the SNR is defined as

SNR = L
∑

mn

∑H
h=1 |σαm n , h

|2
λmn

. (46)

All other parameters remain the same as before.
The detection performance for detecting a fluctuating range-

spread target are illustrated in Fig. 5. It is seen that the rela-
tionships among the different detectors are similar to those in
Fig. 2. The performances of the proposed KA detector without
training (11) and KA detector with training (38) are better than
the RSCM and the SCM detectors. Comparing these results with
different H , we see that increasing the radar resolution capa-
bilities also improves the detection performance. In addition,
a comparison between Fig. 2 and Fig. 5 reveals that with the
fluctuating target model, all detectors experience some loss in
detection performance.

The influence of different numbers of training data on the
detection performance is illustrated in Fig. 6. This figure implies
that increasing the number of training data yields a better the
detection performance. A comparison between Fig. 6 and Fig. 3
shows that the fluctuating target model also leads to some loss
in detection performance.

The detection performance for a point-like fluctuating target
is shown in Fig. 7. It is seen that the proposed KA detector
without any training significantly outperforms the conventional
SCM and RSCM detectors.

We now consider a case when the powers λmn are Gamma
distributed random variables. Note that in our data model [e.g.,
(3)], λmn is treated as a deterministic unknown parameter, and
our detectors were developed based on this assumption. Nev-
ertheless, for performance evaluation, it is standard to test the
detectors with random powers, which are widely employed to
model spatial power heterogeneity. For fair comparison with the
fixed-valued case, e.g., Fig. 2(a), the shape and scale parameters
of the Gamma distributed λmn are set to appropriate values such
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Fig. 5. Probability of detection versus SNR for fluctuating range-spread target. (a) H = 4; (b) H = 6; (c) H = 8; (d) H = 10.

Fig. 6. Probability of detection versus SNR with a fluctuating range-spread
target and different numbers of training data.

Fig. 7. Probability of detection versus SNR with a fluctuating point-like target.
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Fig. 8. Probability of detection versus SNR with random powers.

Fig. 9. Probability of detection versus SNR with a mismatch in v.

that its mean equals the fixed λmn in Fig. 2(a). Other parameters
remain the same as Fig. 2(a). The results are shown in Fig. 8.
It is seen that there is some degradation for all detectors with
random powers compared with the fixed power case.

So far, we have assumed that the degree of freedom v in the
proposed statistical model (4) for the disturbance covariance ma-
trix Rmn is known. In practice, v has to be estimated from prior
observations, and there can be a mismatch between the estimated
v and its actual value. The impact of such a mismatch between
the estimated and the actual v is now examined. We consider a
case where the target is non-fluctuating and H = 4. Specifically,
the actual value used for data generation is v = 32, while the
detectors use two different values, v′ = 22 or 42 to simulate an
underestimated and, respectively, overestimated scenario. The
results of the simulation are shown in Fig. 9. Based on the
simulation results, we see that the proposed methods are in gen-
eral not very sensitive to the mismatch, although the proposed

Fig. 10. Threshold versus the power.

KA-MIMO without training appears to be slightly more sensi-
tive to an overestimated v than using an underestimated value.

The CFAR property of the proposed detectors with respect to
the power is examined in Fig. 10, where SNR = −5 dB, T = 24,
H = 4, and λ11 = λ12 = λ21 = λ22 = λ. The simulation result
indicates that the proposed methods are approximately CFAR
with respect to the disturbance power.

VI. CONCLUSION

In this paper, we investigated the problem of detecting a
range-spread target in distributed MIMO radar. A stochastic
KA model involving random matrices with complex inverse
Wishart distribution was introduced, where the disturbance co-
variance matrix exhibits non-homogeneity across different Tx-
Rx antenna pairs. Moreover, the power level for each stochastic
covariance matrix is also different across different Tx-Rx pairs.
Under this framework, we adopted the GLRT approach and
developed several KA detectors for two cases with either no
training or a limited number of training data. Simulation results
showed that the proposed detectors offer significant improve-
ment over the conventional detectors in non-homogeneous and
training-deficient environments. A number of future directions
may be pursued, including development of the Rao or Wald test
based detectors, and subspace processing based detectors.

APPENDIX A
PROOF OF (11)

From the numerator of (10), the ML estimate of αmn can be
derived by

α̂mn = arg max
αm n

|YmnY†
mn + λmn (v − L)R̄|−(v+H )

= arg min
αm n

|λmn (v − L)R̄||Y†
mn (λmn (v − L)R̄)−1Ymn + IL|

= arg min
αm n

|(Xmn − pmnαmn )†(λmn (v − L)R̄)−1

× (Xmn − pmnαmn ) + IL |. (A1)
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Unlike many authors who use several equations to solve the
minimum of the determinant of the sum of two matrix, we
preset a simpler way. Let Gθ denotes a full-rank non-zero matrix
function of θ. If G−1

θ exists, |Gθ |G−1
θ 	= 0 holds. Then, from

d|Gθ |
dθ

= |Gθ |tr
(
G−1

θ

dG
dθ

)
= tr

(
|Gθ |G−1

θ

dGθ

dθ

)
= 0,

(A2)

we have dG θ

dθ = 0.
Thus, taking the derivative of (Xmn − pmnαmn )†(λmn (v −

L)R̄)−1(Xmn − pmnαmn ) with respect to αmn yields

α̂mn =
p†

mnR̄−1Xmn

p†
mnR̄−1pmn

. (A3)

Applying α̂mn into (10) results in

Λmn =
min
λm n

λ
− L v

v + H
mn |XmnX†

mn + λmn (v − L)R̄|

min
λm n

λ
− L v

v + H
mn |ŶmnŶ†

mn + λmn (v − L)R̄|
, (A4)

where Ŷmn = Xmn − pm n p†
m n R̄−1 Xm n

p†
m n R̄−1 pm n

. As shown in [20], the

minimum of the function f(λ) = λa |A + λB| in (A4) has the
unique positive solution of the following equation

r∑

i=1

γi

γi + λmn
= L − Lv

v + H
, (A5)

where γi is the eigen-value of Ŷ†
mn (λmn (v − L)R̄)−1Ŷmn

for λ̂mn,1 under H1 or the eigen-value of X†
mn (λmn (v −

L)R̄)−1Xmn for λ̂mn,0 under H0 . Therefore, we have (11) as
the test statistic for the proposed KA detector for range-spread
target detection.

APPENDIX B
THE ML ESTIMATE OF λmn

From (17), the ML estimate of λmn under H1 is obtained by

min
λm n

λ−vL
mn |ymny†

mn + λmn (v − L)R̄|v+1

= min
λm n

λ
L

v + 1
mn |λ−1

mnymny†
mn + (v − L)R̄|

= min
λm n

λ
L

v + 1
mn (1 + λ−1

mnymn ((v − L)R̄)−1y†
mn ), (B1)

where in the second equality, we used the following equation
[36]

|C − zz†| = |C|(1 − z†C−1z). (B2)

Taking the derivative of the log of the right-side of (B1) with
respect to λmn and equating the results to zero, we obtain the
MLE the ML estimate of λmn

λ̂mn,1 =
v + 1 − L

L
y†

mn ((v − L)R̄)−1ymn . (B3)

Similarly, the ML estimate of λmn under H0 can be shown
to be

λ̂mn,0 =
v + 1 − L

L
x†

mn ((v − L)R̄)−1xmn . (B4)
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