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Abstract—This paper deals with the problem of detecting a sub-
space signal in the presence of spatially and temporally colored
disturbance. A new subspace parametric signal model that takes
into account a multi-rank subspace structure for the target signal
and employs a multi-channel auto-regressive process for the dis-
turbance signal is proposed. Following this model, a new subspace
parametric Rao detector (SP-Rao) is developed for training-limited
scenarios. Unlike conventional parametric detectors that are de-
signed for only rank-one signal detection, the SP-Rao has a new
multi-rank structure with a pairwise successive spatio-temporal
whitening and cross-correlation process between the observed sig-
nal and each subspace basis vector. Additionally, a non-parametric
subspace detector (NSD) is derived based upon a frequency-domain
representation of the SP-Rao test statistic. The NSD is distinctively
different from conventional subspace detectors, in which the for-
mer involves pairwise whitening and cross-correlation between the
test signal and each subspace basis vector but the latter employs
the whole subspace matrix. Numerical results are presented to il-
lustrate the performance of the proposed subspace detectors in
comparison with several leading existing methods, especially in the
case of limited data.

Index Terms—Adaptive signal detection, subspace signal de-
tection, Rao test, multi-channel auto-regressive model, space-time
adaptive processing.

I. INTRODUCTION

MULTI-CHANNEL adaptive signal detection is a funda-
mental problem in radar, sonar, wireless communica-

tions, and other applications. Adaptive detection of a rank-one
signal has been extensively studied; see, e.g., [1]–[3] and refer-
ences therein. One limitation of rank-one signal detection tech-
niques is that they rely on knowledge of the exact steering vector
or the rank-one structure of the target signal. In practical appli-
cations, mismatches of the signal steering vector may exist due
to imperfect antenna shape, calibration and pointing errors, and
wavefront distortions [4], [5]. Besides, the signal of interest is
inherently multi-rank in some practical applications, such as
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target detection using data collected from multiple polarimetric
channels [6], multiuser detection [7], and signal estimation in
multipath environments [8]. Therefore, it is necessary to con-
sider subspace signal detection by accounting for uncertainties
of the actual signal steering vector as well as multi-rank targets.

Here, a subspace signal refers to a multichannel signal that lies
in a subspace with unknown coordinates. The rank of a subspace
signal is the dimension of the subspace that the signal belongs
to. A subspace signal can be used to model the uncertainty of
the actual signal steering vector as well as natural multi-rank
targets. A number of detection problems may be formulated by
using the subspace signal model. Taking space-time adaptive
processing (STAP) as an example, the detection of a target at
a given bearing and with a radial velocity within a prescribed
set of values to account either for target acceleration during
the coherent observation interval or for uncertainty in the target
Doppler, may be formulated as a subspace detection problem
[9]. A multitude of subspace signal detection algorithms have
been introduced, including the generalized likelihood ratio test
(GLRT) [10], the adaptive matched filter (AMF) [6], the Rao
test [11], and others [12]–[14].

Typically, a large amount of training data is required for adap-
tive detection to estimate the unknown correlation of the dis-
turbance signal. Specifically, the number of training samples
required for estimating the disturbance covariance matrix for
an acceptable performance needs be at least twice the system
spatio-temporal dimensionality to ensure acceptable detection
performance [15]. Such a large training requirement cannot be
met in some applications due to the presence of strong discrete
scatterers, terrain type variations, and system configurations [2].
As a result, the lack of adequate training support limits the per-
formance of conventional receivers.

To alleviate the problem of excessive training data require-
ment, a number of techniques have been investigated. The
knowledge-aided approach, which incorporates a priori infor-
mation of the disturbance for adaptive processing, can reduce
the sample support, either by directly exploiting the a priori
knowledge [16], or by indirectly modeling the covariance ma-
trix as a random matrix with some prior distribution using a
Bayesian framework [17]–[19]. Additionally, the persymmetric
structure of the disturbance covariance matrix has been em-
ployed for performance improvements in training-limited sce-
narios [20]–[24]. Specifically, when the radar system utilizes
an antenna array with linear symmetrically spaced elements
and/or uniformly spaced pulse trains, the covariance matrix ex-
hibits a persymmetric structure, which can be utilized to reduce
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the training requirement [20]. Also, several recent studies have
explored the clutter symmetry for training reduction [25]–[27].
For instance, ground clutter observed by a stationary monostatic
radar often exhibits a symmetric power spectral density struc-
ture around the zero-Doppler frequency. Exploiting the clutter
symmetry can reduce the number of nuisance parameters that
need to be estimated at the design stage.

The parametric approach is another way to reduce training re-
quirements. Parametric methods that model the disturbance sig-
nal as a multi-channel auto-regressive (AR) process have been
considered for airborne radar detection with proven success us-
ing measured STAP datasets [28], [29]. Examples of parametric
detectors are the parametric AMF (PAMF) [28], [29], the para-
metric Rao (PRao) test [30], and the parametric GLRT (PGLRT)
[31]. Variants of parametric detection are also examined in [32]–
[34].

In this paper, we consider subspace detection when the
correlation structure of the disturbance can be captured by
a multichannel AR process, and develop two new subspace
detectors, both of which are suitable for multi-rank subspace
signal detection in training-limited scenarios. First, we propose
a new subspace parametric signal model that takes into account
the multi-rank subspace structure of the signal of interest and
the spatio-temporal correlation of the disturbance using a multi-
channel AR process. Following this model, we propose a sub-
space parametric Rao detector (SP-Rao) that is distinctively dif-
ferent from conventional parametric detectors that are designed
for rank-one only signal detection. Specifically, the test statistic
of the SP-Rao has a new multi-rank structure that involves
a pairwise successive spatio-temporal whitening and cross-
correlation between the observed signal and each subspace basis
vector. The second detector, referred to as the non-parametric
subspace detector (NSD), is derived via a frequency-domain
representation of the SP-Rao test variable. Unlike traditional
subspace detectors that perform matched filtering using the com-
plete subspace matrix, the NSD performs pairwise whitening
and cross-correlation using individual subspace basis vectors.
Numerical results show that the proposed subspace detectors can
achieve significantly enhanced detection performance over con-
ventional detectors when the amount of training data is limited.

The remainder of this paper is organized as follows. The signal
model is presented in Section II. The proposed detectors for
subspace signal detection are derived in Section III. Numerical
results are provided in Section IV. Finally, conclusions are given
in Section V.

Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters. Superscripts (·)∗, (·)T , and (·)† denote con-
jugate, transpose, and conjugate transpose, respectively. tr(·) in-
dicates the trace of a matrix. | · | with a square matrix argument
represents the determinant of that matrix, and | · |with a complex
number represents the modulus. E{·} denotes the expectation
operator and j =

√−1. ⊗ denotes the Kronecker product, and
vec(·) denotes the operation of stacking the columns of a ma-
trix on top of each other. 〈·〉 denotes the subspace spanned by
columns of a matrix. �{·} denotes the real part and �{·} de-
notes the imaginary part. The notation CN denotes the complex
Gaussian distribution.

II. SIGNAL MODEL

Consider detecting a target signal that lies in a subspace
spanned by the columns of an NJ × r full-rank matrix H,
where H = [h1 , . . . ,hr ], J denotes the number of spatial chan-
nels, N is the number of temporal observations, and r denotes
the rank of the subspace signal. The test signal x0(n) under the
alternative hypothesis is

x0(n) =
r∑

i=1

αihi(n) + d0(n), n = 0, . . . , N − 1, (1)

where αi is the ith element of the unknown target amplitude α =
[α1 , . . . , αr ]T , d0(n) is the disturbance signal that is assumed
to be correlated in space and time, and hi(n) denotes the nth
J × 1 subvector of the ith column vector hi . In practice, the
covariance matrix of the disturbance signal is usually unknown.
A standard assumption is the availability of a set of target-free
training data

xk (n) = dk (n), k = 1, . . . ,K, (2)

where K is the size of training samples.
Denote the null hypothesis (H0) as the case where the test

data is target-free and the alternative hypothesis (H1) as the
case where the test data contains the target signal. The problem
of detecting a subspace signal in the presence of spatially and
temporally correlated disturbance can then be formulated as the
following binary hypothesis testing problem:

H0 :

{
x0(n) = d0(n), n = 0, . . . , N − 1

xk (n) = dk (n), k = 1, . . . ,K;

H1 :

{
x0(n) =

∑r
i=1αihi(n) + d0(n), n = 0, . . . , N − 1

xk (n) = dk (n), k = 1, . . . ,K.
(3)

Denote the columns of the subspace matrix, disturbance sig-
nals, and the received signals as

hi = [hT
i (0),hT

i (1), . . . ,hT
i (N − 1)]T

dk = [dT
k (0),dT

k (1), . . . ,dT
k (N − 1)]T

xk = [xT
k (0),xT

k (1), . . . ,xT
k (N − 1)]T . (4)

Then, the adaptive detection problem (3) can be rewritten in the
following compact form

H0 :

{
x0 = d0

xk = dk , k = 1, . . . ,K;

H1 :

{
x0 = Hα + d0

xk = dk , k = 1, . . . ,K.

(5)

It is assumed that the disturbance signals dk , k = 0, . . . ,K are
independent and identically distributed (i.i.d.) with the complex
Gaussian distribution; i.e., dk ∼ CN (0,R), where R is the
unknown space-time covariance matrix.

Under the parametric framework, the disturbance sig-
nals dk (n), k = 0, . . . , K are further assumed to follow the
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J-channel AR process

dk (n) = −
P∑

p=1

A†(p)dk (n − p) + εk (n), (6)

where
{
A†(p)P

p=1

}
denote the unknown J × J AR coefficient

matrices, P is the model order, and εk (n) denotes the J × 1 spa-
tial noise vectors that are temporally white but spatially colored,
namely, εk (n) ∼ CN (0,Q), k = 0, . . . , K, with an unknown
J × J spatial covariance matrix Q.

Some discussions on the multichannel AR model for the dis-
turbance signal are in order. In radar systems, the disturbance
typically includes clutter and noise, which are known to exhibit
spatial and temporal correlation [15]. The correlation is usually
described by the NJ × NJ space-time covariance R that needs
to be estimated from training data. When N and J are large, the
estimation entails a large amount of training data that may be
difficult to obtain in practice. To address this issue, multichan-
nel AR models have been identified as useful tools to represent
radar disturbance signals [35]. Such models have been exten-
sively tested using experimentally collected data and success-
fully employed to model, e.g., ground [36] and sea clutter [37] in
ground based radar systems, as well as disturbances in airborne
radar systems [29], [38]. The model order P , which is usually
unknown, can be estimated by standard model order selection
techniques, such as the Akaike information criterion (AIC) and
the minimum description length (MDL) criterion [39]. A po-
tential downside of the model-based approach is model mis-
match, i.e., when the model order P is incorrectly estimated.
Fortunately, for most real-world radar clutter representation, the
model order P is small [29], which implies that the mismatch
is likely to be small. It was found in [40] that a small model
mismatch, especially with an over-estimated the model order,
has only minor impact on the radar detection performance.

Following the parametric model, we have

x0(n) −
r∑

i=1

αihi(n)

= −
P∑

p=1

A†(p)

[
x0(n − p) −

r∑

i=1

αihi(n − p)

]
+ ε0(n).

(7)

Let h̃i(n) denote a regression on hi(n) and x̃0 a regression
on x0 under H1 as follows, which represent the temporally
whitened steering vector and test signal, respectively

h̃i(n) = hi(n) +
P∑

p=1

A†(p)hi(n − p), (8)

x̃0(n) = x0(n) +
P∑

p=1

A†(p)x0(n − p). (9)

Note that for r > 1 the target signal in the test datax0(n) belongs
to the subspace 〈H〉, and this multi-rank subspace model can
account for uncertainties in the signal steering vector as well
as natural multi-rank signal structures that are found in, e.g.,
polarization radar returns. On the other hand, the parametric

detectors developed in [28]–[31] cannot be applied to the multi-
rank subspace detection problem (3), since they are designed
for rank-one signal detection.

III. THE PROPOSED DETECTORS

The optimum solution to the hypothesis testing problem (3)
is the likelihood ratio test in terms of the Neyman-Pearson cri-
terion. However, this procedure does not lead to a uniformly
most powerful (UMP) test and a possible alternative is to resort
to the GLRT, which is tantamount to replacing the unknown
parameters by their maximum likelihood (ML) estimates under
each hypothesis. Unfortunately, the decision statistic based on
the GLRT for the problem (3) does not generally admit a closed-
form expression. Thus, we consider instead the Rao test. In the
following, we will devise two adaptive subspace detectors.

A. Adaptive Subspace Parametric Rao Test (SP-Rao)

Denote all unknown parameters as

θ =
[

θr

θs

]
, (10)

where θr = [�(αT ),�(αT )]T denotes the signal parameter
vector, θs = [qT

R ,qT
I ,aT

R ,aT
I ]T denotes the nuisance parameter

vector. Here, aR = vec(�(A)), aI = vec(�(A)), qT
R contains

the diagonal elements and the real part of the elements on and
below the diagonal in Q, and qT

I contains the imaginary part
of the elements below the diagonal in Q. Moreover, we use
θ̂0 = [θ̂r0 , θ̂s0 ] to denote the ML estimate of θ under H0 .

The Rao test is given by [41]

∂lnf(θ)
∂θr

∣∣∣∣
T

θ= θ̂0

[I−1(θ̂0)]θr ,θr

∂lnf(θ)
∂θr

∣∣∣∣
θ= θ̂0

H1
≷
H0

ξ, (11)

where
� the Fisher information matrix I(θ) is expressed as

I(θ) =

[
Iθr ,θr

(θ) Iθr ,θs
(θ)

Iθs ,θr
(θ) Iθs ,θs

(θ)

]
(12)

with

[I−1(θ)]θr ,θr
= [Iθr ,θr

(θ) − Iθr ,θs
(θ)I−1

θs ,θs

(θ)Iθs ,θr
(θ)]−1 ; (13)

� the joint probability density function (PDF) of the test and
training data f(θ) is

f(θ) =
{

1
πJ |Q|exp

{− tr
[
Q−1T(α,A)

]}}(K +1)(N −P )

(14)
with

T(α,A) =
∑N −1

n=P ε0(n)ε†
0(n) +

∑K
k=1

∑N −1
n=P εk (n)ε†

k (n)
(K + 1)(N − P )

, (15)

ε0(n) = x̃0(n) −
r∑

i=1

αih̃i(n), (16)
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and

εk (n) = xk (n) +
P∑

p=1

A†(p)xk (n − p); (17)

� ξ denotes the threshold.
To derive the test (11), we first evaluate the first partial deriva-

tives of the log likelihood and [I−1(θ)]θr ,θr
for the nuisance pa-

rameters. The first partial derivative of the log likelihood func-
tion with respect to (w.r.t.) θr is

∂lnf(θ)
∂θr

=

⎡

⎢⎢⎣

∂lnf(θ)
∂αR

∂lnf(θ)
∂αI

⎤

⎥⎥⎦

.

(18)

where

∂lnf(θ)
∂αR

=
[

∂lnf

∂αR,1
, . . . ,

∂lnf

∂αR,r

]T

,

∂lnf(θ)
∂αI

=
[

∂lnf

∂αI ,1
, . . . ,

∂lnf

∂αI ,r

]T

(19)

with

∂lnf

∂αR,i
=

N −1∑

n=P

h̃†
i (n)Q−1ε0(n) +

N −1∑

n=P

ε†
0(n)Q−1 h̃i(n)

=
N −1∑

n=P

h̃†
i (n)Q−1

[
x̃0(n) −

r∑

m=1

αm h̃m (n)

]

+
N −1∑

n=P

[
x̃0(n) −

r∑

m=1

αm h̃m (n)

]†
Q−1 h̃i(n) (20)

and

∂lnf

∂αI ,i
= j

N −1∑

n=P

h̃†
i (n)Q−1ε0(n) −

N −1∑

n=P

ε†
0(n)Q−1 h̃i(n).

(21)
The derivation of I(θ)θr ,θr

is shown in Appendix A. Therefore,
[I−1(θ)]θr ,θr

is given by (22) shown at the bottom of this page.
Then, substituting (18) and (22) into (11) yields (23) as shown
at the bottom of this page.

Now we find the ML estimates of the nuisance parameters
under H0 , which are needed by the test (11). The ML estimates

of Q and A are given by (see Appendix B for details)

Â = −R̂−1
yy R̂yx (24)

and

Q̂ =
R̂xx − R̂†

yxR̂
−1
yy R̂yx

(K + 1)(N − P )
, (25)

where R̂xx , R̂yy , and R̂yx are defined in (62), (63), and (64) of
Appendix A.

Finally, substituting (24) and (25) into (23) yields the sub-
space parametric Rao detector

Λ =
r∑

�=1

r∑

i=1
(∑N −1

n=P
ˆ̃x0(n)†Q̂−1 ˆ̃hi(n)

)(∑N −1
n=P

ˆ̃h�(n)†Q̂−1 ˆ̃x0(n)
)

∑N −1
n=P

ˆ̃hi(n)†Q̂−1 ˆ̃h�(n)
(26)

where

ˆ̃hi(n) = hi(n) +
P∑

p=1

Â†(p)hi(n − p), (27)

ˆ̃x0(n) = x0(n) +
P∑

p=1

Â†(p)x0(n − p). (28)

It should be noted that each individual term inside the sum of
(26)

t�,i =

(∑N −1
n=P

ˆ̃x0(n)†Q̂−1 ˆ̃hi(n)
)(∑N −1

n=P
ˆ̃h�(n)†Q̂−1 ˆ̃x0(n)

)

∑N −1
n=P

ˆ̃hi(n)†Q̂−1 ˆ̃h�(n)
(29)

is not necessarily real. It is real-valued for � = i, and complex-
valued for � 
= i. Recall that the test statistics Λ is real-valued
and compared with a real-valued threshold. Thus, it is helpful
to rewrite (26) in a real form. To this end, we divide the index
matrix for (�, i) into three groups depending on the relative
values of the indices � and i: � = i, � < i, and � > i. Then, let

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t
(1)
i =

∑N −1
n=P

ˆ̃x0(n)†Q̂−1 ˆ̃hi(n)

t
(2)
� =

∑N −1
n=P

ˆ̃h�(n)†Q̂−1 ˆ̃x0(n)

t
(3)
i� =

∑N −1
n=P

ˆ̃hi(n)†Q̂−1 ˆ̃h�(n).

(30)

[
I−1(θ)

]
θr ,θr

= diag

⎛

⎝
[

N −1∑

n=P

h̃†
1(n)Q−1 h̃1(n)

]−1

,

[
N −1∑

n=P

h̃†
1(n)Q−1 h̃1(n)

]−1

, . . . ,

[
N −1∑

n=P

h̃†
r (n)Q−1 h̃r (n)

]−1

,

[
N −1∑

n=P

h̃†
r (n)Q−1 h̃r (n)

]−1 ⎞

⎠ .

(22)

r∑

�=1

r∑

i=1

[
N −1∑

n=P

x̃0(n)†Q−1 h̃i(n)

][
N −1∑

n=P

h̃†
i (n)Q−1 h̃�(n)

]−1 [N −1∑

n=P

h̃�(n)†Q−1 x̃0(n)

] H1
≷
H0

ξ. (23)
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TABLE I
COMPLEXITY OF THE SP-RAO DETECTOR

Therefore, the final expression for Λ is given by

Λ =
∑

�=i

t�,i +
r−1∑

� = 1
( � < i )

r∑

i=�+1

2�(t(1)
i )�(t(2)

� )

�(t(3)
i� )

+
r−1∑

i = 1
( � > i )

r∑

�=i+1

2�(t(1)
i )�(t(2)

� )

�(t(3)
i� )

. (31)

Note that the above subspace parametric Rao detector em-
ploys a new multi-rank structure that involves pairwise succes-
sive spatio-temporal whitening and a cross-correlation process
between the test signal and each subspace basis vector. This
is different from traditional parametric rank-one signal detec-
tion, which performs the whitening and cross-correlation pro-
cess using only the signal steering vector. Moreover, note also
that the proposed subspace parametric detector (31) only re-
quires the estimation of the AR coefficient matrix A and the
J × J covariance matrix Q, instead of the NJ × NJ covari-
ance matrix R. Consequently, it is expected that the proposed
subspace parametric detector is well suited to training-limited
scenarios, where the number of training data is smaller than the
system dimension. This will be confirmed by numerical results
in Section IV.

We now briefly discuss the complexity of the proposed SP-
Rao. Suppose KN > JP for the parametric detection. Table I
contains a summary of the number of flops involved in the major
steps of the SP-Rao. It can be seen from Table I that the proposed
SP-Rao has an overall complexity of O((K + 1)NJ2P 2) +
O((N − P )r2J3), which mainly comes from the estimation of
spatial whitening matrix and the calculation of the test statistics.

B. A Non-Parametric Subspace Detector

After obtaining the adaptive subspace parametric Rao test
(31), weconsider the relationship between (31) and non-
parametric subspace detectors. In the sequel, we first derive
a new detector from (31), which takes a non-parametric form,
and then compare the proposed detectors with traditional ones.

By spatial whitening, (26) reduces to

Λ2 =
r∑

�=1

r∑

i=1

(∑N −1
n=P

ˆ̃x0(n)† ˆ̃hi(n)
)(∑N −1

n=P
ˆ̃h�(n)† ˆ̃x0(n)

)

∑N −1
n=P

ˆ̃hi(n)† ˆ̃h�(n)
,

(32)

where for notational convenience, we again use ˆ̃x0(n) and ˆ̃hi(n)
for i = 1, . . . , r instead of the corresponding whitened vector.

Denote A(f) as the reciprocal of the frequency response
of the AR processing, which is a J × J matrix function of
frequency f . Similarly, denote

Si(f) =
N −1∑

n=0

hi(n)exp(−j2πfn) (33)

as the Fourier transform of the J × 1 spatial vector hi(n), and

X(f) =
N −1∑

n=0

x0(n)exp(−j2πfn) (34)

as the Fourier transform of the J × 1 spatial vector x0(n). Thus,
using Parseval’s theorem, the (l, i)th term of the double sum in
(32) can be written as

∫ 1
2
− 1

2
S†

i (f)AT(f)A∗(f)X(f)df
∫ 1

2
− 1

2
S†

�(f)AT(f)A∗(f)X(f)df
∫ 1

2
− 1

2
S†

i (f)AT (f)A∗(f)S�(f)df
.

(35)
The cross-spectral matrix (CSM) of a multichannel AR pro-

cess is given by [39]

P(f) = A∗−1(f)AT −1(f). (36)

Substituting (36) into the double sum with the term (35) yields

r∑

�=1

r∑

i=1

∫ 1
2
− 1

2
S†

i (f)P−1(f)X(f)df
∫ 1

2
− 1

2
S†

�(f)P−1(f)X(f)df
∫ 1

2
− 1

2
S†

i (f)P−1(f)S�(f)df
.

(37)
Next, we use the fact that R can be asymptotically block

diagonalized. Here, “asympotic” relates to a large number of
temporal blocks, namely, N −→ ∞. Define the multichannel
sinusoidal matrix as

Vk =
1√
N

⎡

⎢⎢⎢⎣

IJ

IJ exp(j2πfk )
...

IJ exp[j2πfk (N − 1)]

⎤

⎥⎥⎥⎦ , (38)

wherefk = k/N for k = 0, . . . , N − 1, IJ is the J × J identity
matrix, and the size of Vk is JN × J . Let

V = [V0 V1 · · · VN −1 ] (39)

and

P̃T =

⎡

⎢⎢⎢⎣

PT (f0) 0 · · · 0

0 PT (f1) · · · 0
...

...
. . .

...
0 0 · · · PT (fN −1)

⎤

⎥⎥⎥⎦ . (40)

Note that V is a unitary matrix. For large N , we have [41]

VH RV = P̃T . (41)
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TABLE II
COMPLEXITY OF THE NSD DETECTOR

Using (41), we rewrite h†
iR

−1h� as

h†
i R

−1 h� = h†
i VP̃−T V† h�

=
1
N

N −1∑

n=0

S†
i (fn )P−1(fn )S�(fn )

=
∫ 1

2

− 1
2

S†
i (f)AT (f)A∗(f)S�(f)df, (42)

where the second equality is due to the fact that V†
kh� =

S�(fk ), k = 0, . . . , N − 1.
Similarly, we can obtain that

h†
�R

−1x0 =
∫ 1

2

− 1
2

S†
�(f)P−1(f)X(f)df. (43)

Substituting (42) and (43) into (37) yields

Λ2 =
r∑

i=1

r∑

�=1

x†
0R

−1hi

(
h†

iR
−1h�

)−1h†
�R

−1x0 . (44)

In order to make the detector (44) fully adaptive, we resort to the
sample covariance matrix estimation R̂ =

∑K
k=1 xkx

†
k . Thus,

replacing the covariance matrix in (44) with R̂ results in

Λ2 =
r∑

i=1

r∑

�=1

x†
0R̂

−1hi

(
h†

iR̂
−1h�

)−1h†
�R̂

−1x0 . (45)

Similarly, (45) can be expressed as

Λ2 =
∑

�=i

x†
0R̂

−1hi(h
†
iR̂

−1h�)−1h†
�R̂

−1x0

+
r−1∑

� = 1
( � < i )

r∑

i=�+1

2�(x†
0R̂

−1hi)�(h†
�R̂

−1x0)

�(h†
iR̂−1h�)

+
r−1∑

i = 1
( � > i )

r∑

�=i+1

2�(x†
0R̂

−1hi)�(h†
�R̂

−1x0)

�(h†
iR̂−1h�)

. (46)

Finally, a short analysis on the complexity of the proposed
NSD is presented. Suppose N > P 2 . Table II contains a sum-
mary of the number of flops involved in the major steps of the
NSD. It can be seen from Table II that the proposed NSD has an
overall complexity of O(KJ2N 2) + O(J3N 3) + O(r2J3N 3),
which mainly comes from the estimation of the sample covari-
ance matrix matrix and the calculation of the the test statistics.
It is higher than the complexity of the SP-Rao.

TABLE III
SUMMARY OF TEST STATISTICS

C. Summary of Relevant Tests

For comparison purposes, we compare the proposed detectors
with the GLRT [10] , the AMF [6], the Rao [11], the rank-one
PRao [30], and the rank-one ACE [2]. Their test statistics are
given in Table III, where

H̃ = R̂−1/2H, (47)

x̃0 = R̂−1/2x0 , (48)

PH̃ = H̃(H̃†H̃)−1H̃†, (49)

P⊥
H̃ = I − H̃(H̃†H̃)−1H̃†. (50)

Note that the conventional detectors such as the rank-one ACE
and the rank-one PRao are all designed for rank-one signal de-
tection. Thus, they cannot be applied to the multi-rank subspace
detection problem with r > 1 in (5) to account for uncertainties
of the signal steering vector. Unlike conventional detectors, the
SP-Rao has a new multi-rank structure, which helps improve its
performance when the number of training data is limited. This
prediction will be confirmed by simulation results in Section IV.
It is worth noting that conventional non-parametric subspace de-
tectors such as the GLRT, the Rao and the AMF (as a special
case, the AMF reduces to the rank-one ACE for r = 1), per-
form matched filtering using the entire subspace matrix. In con-
trast, our non-parametric NSD performs pairwise whitening and
cross-correlation using individual subspace basis vector. Addi-
tionally, for the special case r = 1, the rank-one PRao reduces
to the rank-one Rao [41] and the NSD reduces to the rank-one
ACE.



GAO et al.: ADAPTIVE SUBSPACE TESTS FOR MULTICHANNEL SIGNAL DETECTION IN AUTO-REGRESSIVE DISTURBANCE 5583

Fig. 1. Probability of detection versus SINR with different number of training data.

IV. NUMERICAL RESULTS

In this section, numerical examples are provided to assess
the performance of the proposed detectors. For comparison pur-
poses, we compare the proposed SP-Rao with the GLRT, the
AMF, the Rao, and the rank-one PRao, and compare the pro-
posed NSD with the rank-one ACE. The disturbance signal is
generated as a multichannel AR(2) process with AR coefficient
A and a spatial covariance matrix Q. These parameters are set
to ensure that the AR process is stable and Q is a valid covari-
ance matrix, but otherwise are randomly selected. As to R, it is
uniquely determined once A and Q are selected. To decrease the
computational load, the probability of false alarm Pf a is chosen
to be 10−2 , and the number of independent trials is 100/Pf a .
The signal vectors correspond to a uniform equispaced linear ar-
ray with J = 4 antenna elements and N = 16 temporal pulses.
The signal subspace 〈H〉 is spanned by a r = 3 matrix H, where
the column vector hi of subspace H is given by

hi = hit(fdi) ⊗ his(fsi), (51)

where hit(fdi) denotes the temporal steering vector with
Doppler frequency fdi :

hit(fdi) =
1
N

[1, e−j2πfd i , . . . , e−j2πfd i (N −1) ]T , (52)

and his(fsi) denotes the spatial steering vector with spatial
frequency fsi :

his(fsi) =
1
N

[1, e−j2πfs i , · · · , e−j2πfs i (J−1) ]T . (53)

The Doppler frequency and spatial frequency are assumed to
be identical. For the signal subspace, there is a mismatch
of Δ with respect to the nominal Doppler/spatial frequency
f0 = 0.1. Unless otherwise stated, we set Δ = 0.01. The spa-
tial/Doppler frequencies for the rank-3 matrix H are given by
[f0 − Δ, f0 , f0 + Δ].

The signal-to-interference-plus-noise ratio (SINR) is defined
as

SINR = α†H†R−1Hα. (54)

Fig. 1 shows the probability of detection versus SINR for the
proposed SP-Rao, where K = 4, 6, 8, and 10, respectively. The
number of training data for the conventional subspace detec-
tors (i.e., the GLRT, the AMF and the Rao) is K = 80, 100,
120, 128, respectively, since it needs to be more than the sys-
tem dimension to avoid the singularity of the sample covariance
matrix [15]. It is seen in Fig. 1 that the proposed SP-Rao, us-
ing much fewer training samples, significantly outperforms the
other detectors. This is as expected, since the SP-Rao involves
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Fig. 2. Probability of detection versus SINR with different amount of uncer-
tainty.

a smaller dimension estimation of the AR parameters instead
of a rather large spatial-temporal dimension estimation of the
covariance matrix. It is also observed that increasing the sample
size can produce a detection gain to all these detectors. But the
performance the SP-Rao is still the best.

We now examine the effect of different amount of uncertainty
on the detection performance, where the mismatch Δ is given by
0.005, 0.01 and 0.025, respectively. For comparison purposes,
the results of the proposed SP-Rao and the traditional rank-one
P-Rao with the same sample size K = 2 are presented. Note
that the simulation results for the conventional subspace detec-
tors are unavailable for this case, since they are not functional
for K < NJ . As shown in Fig. 2, the detection performance
improves with smaller uncertainty. On the other hand, it is seen
that the proposed SP-Rao performs notably better than the rank-
one P-Rao, although both are provided with the the same sample
support. It implies that SP-Rao can not only improve the detec-
tion performance in training-limited scenarios, but also produce
a detection gain in the case of signal mismatch.

The above results assume that the disturbance is an exact
multichannel AR process with a known model order. However,
model mismatch often occurs in practice. For example, the es-
timation procedure of the AR model order for the multichannel
AR process may experience a small estimation error. In addi-
tion, the disturbance in real world may not be an exact AR
process. Thus, we evaluate the detection performance of the
proposed SP-Rao when these assumptions are not met. First,
we consider the case when the disturbance is an AR Process,
but estimation error for the model order exists. Fig. 3 illustrates
the performance of the proposed SP-Rao when the model or-
der is underestimated (P = 1) and overestimated (P = 3, 4),
whereas the true order is P = 2. As shown in Fig. 3, the or-
der mismatch causes some performance degradation. However,
the degradation is not significant. It is also observed that the
larger the gap between the true and the estimated orders,
the larger the performance degradation. Second, we consider
the case when the disturbance is generated from a physical

Fig. 3. Probability of detection versus SINR with model order mismatch.

Fig. 4. Probability of detection versus SINR with non-AR disturbance.

clutter model described in [15], rather than a multichannel AR
process. Specifically, a uniform linear array with 11 elements
is used and the number of pulses is 16. The platform velocity
is 120 m/s and the wavelength is 0.32 m. The clutter-to-noise
ratio is 60 dB. The pulse repetition frequency is 1500 Hz. The
number of training samples for the proposed SP-Rao and for the
traditional detectors is 40 and 180, respectively. The results are
depicted in Fig. 4. As shown in Fig. 4, the performance of the
traditional detectors is still worse than the proposed SP-Rao in
this scenario. It indicates that the performance of the SP-Rao
appears not to be sensitive to the model mismatch.

We now examine the performance of the proposed NSD with
different sizes of training data, where K = 80, 100, and 120,
respectively. Note that the number of training data for the NSD
should be no less than the system dimension [15], since it is a
non-parametric detector. As a benchmark, the proposed SP-Rao
with K = 4 is also provided. The results of the probability of
detection versus the SNR are depicted in Fig. 5. It is seen that the
detection probability of the proposed NSD increases as the size
of training data becomes large. As K increase, the performance
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Fig. 5. Probability of detection versus SINR for the NSD.

Fig. 6. Comparision of the NSD with the ACE.

of the NSD is nearly identical to that of the SP-Rao; hence
highlighting the benefits of large training support.

It is also interesting to compare the proposed NSD approach
with the traditional rank-one ACE, since the NSD reduces to the
rank-one ACE for r = 1. However, it has to be emphasized here
that for r > 1 the rank-one ACE cannot be directly used in the
multi-rank subspace signal detection problem. Thus, its steering
vector is randomly selected from the r = 3 subspace columns
of the subspace. The probability of detection versus SNR for
N = 16,K = 64, r = 3 are presented in Fig. 6, where both the
true and the estimated covariance matrices are considered. As
seen in Fig. 6, the proposed NSD shows notably better detection
performance than the rank-one ACE. This is expected, as the
rank-one ACE is designed only for rank-one signal.

V. CONCLUSION

This paper considered a subspace signal detection problem
with spatially and temporally colored disturbance for STAP
applications, where the target signal belongs to a known sub-
space, but with unknown coordinates. We presented a subspace
parametric Rao detector, referred to as the SP-Rao, which in-
volves a new multi-rank structure with a pairwise successive

spatio-temporal whitening and cross-correlation between the
observed signal and each subspace basis vector. In addition, a
non-parametric subspace detector, referred to as the NSD, was
derived based on a frequency-domain representation of the SP-
Rao test statistic. The NSD involves pairwise whitening and
cross-correlation between the test signal and each subspace ba-
sis vector rather than the full subspace matrix employed by
conventional detectors. Interestingly, the SP-Rao and the NSD
reduced respectively to the conventional rank-one PRao and
rank-one ACE when the target is a rank-one signal. Simula-
tion results demonstrated that the proposed detectors yielded
enhanced performance in training-limited scenarios.

APPENDIX A
DERIVATION OF THE INVERSE OF THE FISHER

INFORMATION MATRIX

As the signal parameter θr is contained only in the mean of
x0 and the noise parameter θs only in the covariance matrix of
R, we have Iθr ,θs

(θ) = 0 according to [41, Eq.(3.31)]. Thus,
it follows from (13) that

[
I−1(θ)

]
θr ,θr

= I−1
θr ,θr

(θ). (55)

Now we compute I−1
θr ,θr

(θ) as follows. First, Iθr ,θr
(θ) is a

J × J matrix with the (i, �)th element

{
Iθr ,θr

(θ)
}

i,�
= −E

[
∂2 lnf

∂θr,i∂θr,�

]
, i, l = 1, . . . , r, (56)

where θr,i and θr,� are the ith and �th elements of θ, respectively.
The second partial derivative of the log likelihood function

w.r.t. θr is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ 2 lnf
∂αR , i ∂αR , �

= −2
∑N −1

n=P h̃†
i (n)Q−1 h̃�(n)

∂ 2 lnf
∂αI , i ∂αI , �

= −2
∑N −1

n=P h̃†
i (n)Q−1 h̃�(n)

∂ 2 lnf
∂αR , i ∂αI , �

= ∂ 2 lnf
∂αI , i ∂αR , �

= 0.

(57)

According to (56) and (57), Iθr ,θr
(θ) is given by

Iθr ,θr
(θ) = 2 diag

[
N −1∑

n=P

h̃†
1(n)Q

−1
h̃1(n),

N −1∑

n=P

h̃†
1(n)Q

−1
h̃1(n),

. . . ,

N −1∑

n=P

h̃†
r (n)Q

−1
h̃r (n),

N −1∑

n=P

h̃†
r (n)Q

−1
h̃r (n)

]
.

(58)

APPENDIX B
ML PARAMETER ESTIMATE UNDER H0

From (14), the joint PDF under H0 is f(θ) with α = 0. By
taking the derivative of the log likelihood lnf(θ) with α = 0
w.r.t. Q and equating it to zero yields the ML estimate of Q as

Q̂ = T(A) =
N −1∑

n=P

ε0(n)ε0(n)† +
K∑

k=1

N −1∑

n=P

εk (n)εk (n)†.

(59)
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Substituting Q̂ into lnf(θ) under H0 yields

f(A, Q̂) =
{

(eπ)−J

∣∣T(A)
∣∣

}(K +1)(N −P )

.

(60)

Thus, the ML estimate of A is obtained by minimizing |T(A)|.
As T(A) can be rewritten as

T(A) =
R̂xx + A†R̂yx + A†R̂yyA

(K + 1)(N − P )
, (61)

where

R̂xx =
N −1∑

n=P

x0(n)x0(n)† +
K∑

k=1

N −1∑

n=P

xk (n)xk (n)†, (62)

R̂yy =
N −1∑

n=P

y0(n)y0(n)† +
K∑

k=1

N −1∑

n=P

yk (n)yk (n)†, (63)

R̂yx =
N −1∑

n=P

y0(n)x0(n)† +
K∑

k=1

N −1∑

n=P

yk (n)xk (n)†, (64)

with

yk (n) =
[
yT

k (n − 1), · · · ,yT
k (n − P )

]T
. (65)

It can be shown that [30]

T(A) ≥ T(Â), (66)

where

Â = −R̂yxR̂−1
yy . (67)

Therefore, the ML estimate of Q is given by

Q̂ =
R̂xx − R̂†

yxR̂
−1
yy R̂yx

(K + 1)(N − P )
. (68)
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