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Range-Doppler Resolution of the Linear-FM Noise
Radar Waveform

This research considers the linear-FM (LFM) of a noise radar

waveform for resolving targets when channel noise and four

popular radar sidelobe weighting functions are considered. By

using large time-bandwidth products and systematically varying

the phase scaling factor ·, results from the digital matched filter

output provide evidence that the LFM noise waveform 1) has

range-Doppler resolution similar to conventional chirp waveforms

and 2) has a low probability of intercept (LPI) similar to random

noise waveforms. We acquire the results using a computer-based

simulation and verify the location of target peaks using the chirp

waveform output for both stationary and moving target cases.

I. INTRODUCTION

The chirp waveform serves as the preferred radar

waveform because the resultant time-bandwidth

product is much larger than unity [1]. By using digital

signal processing, a large bandwidth ¯ is realized

without having to transmit an extremely short pulse

duration ¿ . The idea of realizing large bandwidths

with even larger pulse durations results in a pulse

compression gain defined by the time-bandwidth

product. Furthermore, the matched filter process

achieves correlation with target returns that have

Doppler shifts 6= 0. As a result the chirp waveform
is said be “Doppler tolerant” despite the subsequent

range measurement error ±R =¡cfD=2¹, where c is
the speed of light, fD is the Doppler frequency, and ¹

is the chirp rate.

The use of random noise and/or random signals

for radar-based applications has been pursued by

several research institutions [2—8]. One of the main

appeals behind these types of radar waveforms is that

they are inherently immune to cochannel interference

(CCI) [9, 10]. In theory the random noise waveform

produces a “thumbtack” radar ambiguity function

with a single central peak and no energy in the

range-Doppler plane [11]. The central peak suggests

excellent range and Doppler resolution, but very poor

Doppler tolerance. As a result the receive process for

the random noise waveform must be set to a specific

delay and, therefore, would be limited for a practical

moving target indication (MTI) application [12].

Manuscript received August 18, 2011; revised January 4, 2012;

released for publication July 3, 2012.

IEEE Log No. T-AES/49/1/944380.

Refereeing of this contribution was handled by R. Narayanan.

0018-9251/13/$26.00 c° 2013 IEEE

658 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 49, NO. 1 JANUARY 2013



The purpose of this paper is to demonstrate how

linear FM (LFM) and the phase scaling factor enable

the random noise waveform to serve as a suitable

MTI waveform for both stationary and moving

targets in the presence of channel noise. The phase

scaling factor plays a critical role in ensuring that

the resulting waveform is optimized for the radar

application. We analyze the matched filter output

for an LFM noise radar waveform when non-zero,

Doppler-shifted delays are considered. In Section II

we define the signal set and evaluate the ambiguity

function of the LFM noise waveform. We briefly

discuss some of the ambiguity function characteristics

and draw comparisons to the chirp and random noise

waveforms. In Section III we analyze the matched

filter output and demonstrate the range-Doppler

resolution of the LFM noise waveform. We conclude

that the LFM noise waveform offers advantages over

the random noise waveform and performs comparable

with the conventional chirp waveform.

II. LINEAR-FM OF NOISE RADAR WAVEFORM

The baseband, discrete-time equivalent of the

complex chirp is defined as

s[n] = ej¼¹n
2

for ¡N · n·N (1)

where ¹ is the chirp rate, n= t=Ts is the discrete-time

index, Ts = ¿=N is the sampling period with pulse

duration ¿ , and s[n] is one of N = 2dlog2(¿¯)e time
samples. By discretizing the chirp and appreciating

the fact that it has constant envelope with quadratic

phase, we can conveniently represent (1) using vector

notation as

s=

266666664

ej¼¹N
2

ej¼¹(¡N+1)
2

...

ej¼¹(N¡1)
2

ej¼¹N
2

377777775
: (2)

The noise waveform is also defined using vector

notation and has Rayleigh-distributed amplitude

and uniformly-distributed phase U(0,2¼). The phase
is even by design. This ensures that the matched

filter process is successfully realized using Fourier

symmetry properties. We represent the amplitude a

and phase p of the LFM noise waveform as

a=

266666664

a¡N
a¡N+1
...

aN¡1
aN

377777775
, p=

266666664

ej·p¡N

ej·p¡N+1

...

ej·pN¡1

ej·pN

377777775
(3)

where · is a phase scaling factor discussed shortly. By

imposing LFM on the noise waveform, we can define

the transmit waveform as

v= a ±p ± s=

266666664

a¡N exp[j(·p¡N +¼¹N
2)]

a¡N+1 exp[j(·p¡N+1 +¼¹(¡N +1)2)]
...

aN¡1 exp[j(·pN¡1 +¼¹(N ¡1)2)]
aN exp[j(·pN +¼¹N

2)]

377777775
(4)

where (±) represents the Hadamard (element-wise)
product.

Next, we consider a point target of arbitrary

reflectivity ³, whose radar cross section (RCS) is

constant over time and frequency and is moving with

radial velocity v relative to the radar. The resultant

delay is d = t0¡ (2v=c)t, where t0 is the target initial
delay, v is the radial velocity, c is the speed of light,

and t is continuous-time. After discretization of the

receive signal, the target delay d will correspond

to a discrete-time sample that will, most likely, not

be an integer value. A quantizer implements the

rounding operation, but in doing so, it causes a

range measurement error since the precision of the

quantizer is limited. The receive signal plus noise

x[n] = ³ ¢ v[n¡ ´] + ², where ´ = d=Ts is rounded to the
nearest integer such that ´ 2 Z[¡N,N]. The receive
signal can be defined as

x= ³ ±

266666664

a¡N exp[j(·p¡N +¼¹[N ¡ ´]2)]
a¡N+1 exp[j(·p¡N+1 +¼¹[(¡N +1)¡ ´]2)]

...

aN¡1 exp[j(·pN¡1 +¼¹[(N ¡ 1)¡ ´]2)]
aN exp[

j(·p
N
+¼¹[N¡´]2)]

377777775
+ ²:

(5)

We revisit the significance of the phase scaling

factor introduced in (3). It has been determined that

this value enables us to control the identity of the

LFM noise waveform in a unique manner and that it

is primarily used to improve the contribution of the

random phase component. If randomizing the phase

is not essential, the scaling factor can be throttled to

fully preserve the quadratic phase. The scaling factor

is chosen from a set of values 0· ·· 1.
We evaluate the ambiguity function of the LFM

noise waveform as a function of time-delay and

Doppler shift using the continuous-time equivalent

of the LFM noise waveform. We define it as

−(d,fD) =

Z 1

¡1
v(t)v¤(t¡ d)ej2¼fDtdt

= P(t,fD +¹t) (6)

where −(d,fD) is the notation used to represent the

ambiguity function for the LFM noise waveform
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Fig. 1. Ambiguity function for LFM noise waveform having

¿ = 2 ¹s, ¯ = 30 MHz, and ·= 0.

and P(d,fD) is the classic chirp pulse ambiguity

function [13].

By setting ·= 0, the random phase of the LFM

noise waveform is removed such that v= a ± ej0p ± s´
a ± s. As a result the LFM noise waveform reduces

to a nonconventional waveform that has random

amplitude, but with Doppler tolerance comparable

with a conventional chirp waveform. This is evident

from Fig. 1, where the ambiguity function of the LFM

noise waveform is similar to that of the conventional

chirp [13]. When comparing these we notice the

presence of a sloped ridge across the range-Doppler

plane. The ridge represents the area of the matched

filter output where target signal strengths will peak.

The sloped nature suggests that the matched filter

output will correlate with various delayed replicas

despite range measurement error. Setting ·= 0

maximizes the ability of the LFM noise waveform to

unambiguously resolve targets in range and Doppler.

By setting ·= 1, the random phase component

of the LFM noise waveform is improved such that

v= a ± ej1p ± s´ a ±p. As a result the peak output of
the matched filter process lies at the center of the

plot, and the LFM noise waveform behaves entirely

like a random noise waveform where low probability

of intercept (LPI) is achieved [13]. This is evident

from Fig. 2, where the ambiguity function of the

LFM noise waveform is a thumbtack and is only able

to autocorrelate with zero-delayed replicas. Setting

·= 1 improves the random phase component, which

maximizes the LPI and CCI-adverse characteristics of

the LFM noise waveform [14].

By setting ·= 0:5, the phase of the LFM noise

waveform is random but with a small enough variance

to still preserve a partially quadratic shape. This is

evident from Fig. 3, where the ambiguity function

of the LFM noise waveform is similar to the chirp

waveform [13]. Setting ·= 0:5 ensures some Doppler

tolerance, LPI, and immunity to CCI [14]. As a result

Fig. 2. Ambiguity function for LFM noise waveform having

¿ = 2 ¹s, ¯ = 30 MHz, and ·= 1.

Fig. 3. Ambiguity function for LFM noise waveform having

¿ = 2 ¹s, ¯ = 30 MHz, and ·= 0:5.

the LFM noise waveform embodies characteristics

from both the chirp and random noise waveforms.

III. ANALYSIS OF THE MATCHED FILTER OUTPUT

We analyze how well the LFM noise waveform

can resolve targets. Results are compared with

the chirp waveform. In our analysis we consider

stationary targets for the first case and moving

targets for the second. In both cases we assume a

channel noise figure of 4 dB, a typical value for radar.

We synthesize an array consisting of three targets

staggered in range. The signal processing involves

the analysis of the matched filter output using four

popular radar sidelobe weighting functions [1]. For

the stationary target case the times corresponding to

positive initial range offsets are calculated by 2R0=c,

and once quantized, they show up as negative shifts

in the receive signal plus noise x[n] = ³ ¢ v[n¡ ´]+ ².
The range offsets chosen are R0 = [0,50,100] m,

and their corresponding delays are calculated to be

[0,0:33,0:67] ¹s, respectively. Therefore, targets with
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Fig. 4. Matched filter output of chirp waveform for three

stationary targets having ³ = [5,5,5] m2 and R0 = [0,50,100] m

for ¿¯ = 1500.

sufficient peak-to-sidelobe level (PSL) are expected to

exist at these times in the matched filter output.

The complementary subplots shown in the figures

are of the matched filter output when different

sidelobe weighting functions are used. The weighting

functions were chosen based on common radar

practice, and the intent for selecting these was to

understand how different weighting functions could

affect the matched filter output. The first window

incorporates a uniform weighting (w = 1) and

essentially imposes no weighting on the matched filter

output. The other functions used are Hamming, Taylor

(¡30 dB PSL), and triangular [1].
Figure 4 plots the matched filter output for the

chirp waveform for ¯ = 750 MHz and ¿ = 2 ¹s

which equate to a time-bandwidth product of 1500.

This figure is used as a reference. Typically, pulse

compression ratios on the order of 103 are realized,

but it is not uncommon to see ratios well in excess of

this [1]. As evidenced by Fig. 4, three distinct targets

are resolved at the calculated ranges (times).

Using the LFM noise waveform for the same

time-bandwidth product and setting the phase scaling

factor to ·= 0, we see, from Fig. 5, that the matched

filter output is able to resolve and correctly range to

the same three targets as the chirp despite marginal

differences in PSL. Measurements of the matched

filter output for a single target that has zero-time

delay have been conducted [14]. Results from the

experimental measurements quantified the sidelobe

levels for each of the window functions considered

in the simulation using different time-bandwidth

products and · values. It has been determined that

uniform weighting offers the best PSL given moderate

time-bandwidth products. As the time-bandwidth

product increased, it was shown that the PSL for

the remaining weighting functions converged to

Fig. 5. Matched filter output of LFM noise waveform for three

stationary targets having ³ = [5,5,5] m2 and R0 = [0,50,100] m

for ¿¯ = 1500. ·= 0.

Fig. 6. Matched filter output of LFM noise waveform for three

stationary targets having ³ = [5,5,5] m2 and R0 = [0,50,100] m

for ¿¯ = 1500. ·= 1.

that of the chirp, while the integrated sidelobe level

(ISL) remained inferior regardless of increases to the

time-bandwidth product.

Using the LFM noise waveform for the same

time-bandwidth product and setting the phase scaling

factor to ·= 1, we see, from Fig. 6, that the matched

filter output is only able to resolve the zero-delayed

target. This outcome is due to the fact that the phase

is now completely random and that the LFM noise

waveform is essentially identical to a random noise

waveform. The correlator output of a random noise

waveform with d = 0 is shown in Fig. 8. As expected

correlation is only achieved for the target having no

range offset (d = 0). As is the case with any analog

random noise-based system, the receive process must

be tuned to correlate with the delay commensurate

with the particular range offset. This also applies to
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Fig. 7. Matched filter output of LFM noise waveform for three

stationary targets having ³ = [5,5,5] m2 and R0 = [0,50,100] m

for ¿¯ = 1500. ·= 0:5.

Doppler shift. However, this can only be achieved for

one target per processing interval. This limits practical

moving target indication (MTI) applications and is

certainly a disadvantage when compared with the

conventional and LFM noise waveforms as illustrated

in the previous example.

Using the LFM noise waveform for the same

time-bandwidth product and setting the phase

scaling factor to ·= 0:5, we see, from Fig. 7, that

the matched filter output is still able to resolve and

correctly range to the same three targets as the chirp.

We notice that the PSL is less than the chirp and ·= 0

cases. This result is in agreement with the ambiguity

function shown in Fig. 3. This reduction is due to the

fact that the phase of the LFM noise waveform is

partially randomized by the scaling factor. However,

the phase scaling preserves a somewhat quadratic

shape that allows the matched filter process to still

resolve the target set.

The second case considers target movement

and the resulting Doppler frequency effect that

slowly displaces the target from its initial range. As

time passes the movement of the target causes the

measured range to change. By inspection of (6) the

partial argument in P(¢) is fD +¹t, which suggests that
the Doppler will affectively add to the ¹t term. By

normalizing this argument by ¹, we can represent the

result in the time domain and identify the expected

delays when Doppler is present. Therefore, if we

evaluate (fD=¹)+ t for positive Doppler cycles, kD =

[0,750,1250], and consider the range-offsets from the

stationary case where t= [0,0:33,0:67] ¹s, we can

determine the Doppler-shifted ranges (times) to be at

[0,¡0:67,¡1] ¹s, respectively.
Figure 9 plots the matched filter output for the

chirp waveform that has a time-bandwidth product of

1500. We observe that the three targets are displaced

Fig. 8. Correlator output of random noise waveform having

correlation delay = 0 for three moving targets having

³ = [5,5,5] m2, R0 = [0,50,100] m, and kD = [0,750,1250].

Fig. 9. Matched filter output of chirp waveform for three moving

targets having ³ = [5,5,5] m2, R0 = [0,50,100] m,

kD = [0,750,1250] for ¿¯ = 1500.

to the calculated Doppler-shifted times. The outputs

shown in Figs. 10—12 are compared with the chirp.

It can be observed that the matched filter outputs for

the LFM noise waveform with ·= 0 (Fig. 10) and

·= 0:5 (Fig. 12) are able to correctly resolve and

range to the three moving targets. The ·= 1 case

only correlates with the target that has zero range and

Doppler offset (d = 0, fD = 0). This result is expected

and is in agreement with the ambiguity function

shown in Fig. 2.

IV. CONCLUSIONS

We analyzed the range and Doppler resolution

of an LFM noise radar waveform that had

Rayleigh-distributed amplitude and uniform, evenly

distributed phase. It has been determined that the

value of the phase scaling factor directly affects
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Fig. 10. Matched filter output of LFM noise waveform for three

moving targets having ³ = [5,5,5] m2, R0 = [0,50,100] m,

kD = [0,750,1250] for ¿¯ = 1500. ·= 0.

Fig. 11. Matched filter output of LFM noise waveform for three

moving targets having ³ = [5,5,5] m2, R0 = [0,50,100] m,

kD = [0,750,1250] for ¿¯ = 1500. ·= 1.

the identity of the waveform in a unique manner.

By selectively choosing the value of the scaling

factor, one can ensure that the resulting waveform is

optimized for the radar application.

Results from the radar ambiguity function suggest

that we can maximize the Doppler tolerance of

the LFM noise waveform by setting ·= 0. This

would be ideal for an MTI application where

security and the risk of CCI are not a precedent.

Conversely, selecting ·= 1 maximizes the random

phase contribution and results in a random noise

waveform. This phase scaling factor would be

warranted when the threat of interception and/or CCI

is great. Lastly, we analyzed the radar ambiguity

function when ·= 0:5 and observed that features

from both the chirp and random noise waveforms

were embodied in the output. By choosing ·= 0:5,

Fig. 12. Matched filter output of LFM noise waveform for three

moving targets having ³ = [5,5,5] m2, R0 = [0,50,100] m,

kD = [0,750,1250] for ¿¯ = 1500. ·= 0:5.

the experimental simulation suggested the resulting

waveform could serve as an LPI waveform for an

MTI application.

Plots of the matched filter output demonstrated

that the LFM noise waveform was able to resolve

both stationary and moving targets with sufficient

PSL. This fact is contingent on both the phase

scaling factor and large time-bandwidth products.

Results were in agreement with those of the radar

ambiguity function, where it was shown that lower

phase scaling factors result in optimal performance.

Our inclusion of several conventional windows did not

adversely affect the matched filter output and offered

no processing advantages over uniform weighting

for the given target set. It should be noted, however,

that the matched filter for the LFM noise waveform

is more sensitive to increases in channel noise and

filter mismatch because of its inherently random

nature. This could be an issue given physically smaller

targets.

A select point not addressed in this paper pertains

to the comparative analysis involving the LPI aspects

of the LFM noise waveform in the presence of

a passive listening device. With this in mind the

LPI aspect of the LFM noise waveform can be

substantiated. Furthermore, future research will

focus on ways to adaptively select the appropriate

phase scaling factor as a function of the operational

environment.
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