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Cooperative Spectrum Sensing With
Location Information
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Abstract—In this paper, we address the problem of coopera-
tively detecting a primary user (PU) among multiple cognitive
users (CUs) when their location information is available at a CU
base station. For fast detection, each CU reports a power estimate,
based on one-snapshot observation of the radio environment, to
the CU base station. A generalized likelihood ratio test (GLRT)
is developed at the CU base station to first estimate the transmit
power of the PU and then form a test variable for detection. The
maximum likelihood estimator (MLE) of the unknown transmit
power is discussed and analyzed to offer insight into the proposed
cooperative spectrum-sensing scheme. In addition, a weighted
average estimator (WAE) is proposed, which is computationally
more efficient than the MLE. Asymptotic analysis for the pro-
posed GLRT is presented. Performance of the MLE and WAE
is examined along with the corresponding Cramer–Rao bound
(CRB). Extensive comparisons between the proposed GLRTs and
the hard- and soft-decision based spectrum sensing methods are
provided, which show the effectiveness of the proposed detector.

Index Terms—Cognitive radio, cooperative spectrum sensing,
generalized likelihood ratio test (GLRT), location information,
maximum likelihood estimation.

I. INTRODUCTION

COGNITIVE radio [1] is considered a promising technol-
ogy for efficient spectrum utilization by allowing sec-

ondary users to share the spectrum with licensed users (also
called primary users (PUs)) without causing harmful inter-
ference. A cognitive radio system is an intelligent wireless
communication system that is aware of its surrounding envi-
ronment, learns from the environment, and adapts its operating
parameters in real-time [2]. One fundamental requirement of
this system is the ability to identify spectrum holes (also
known as white space) in the spectrum of interest to provide
opportunistic spectrum access. Spectrum sensing should be
periodically performed to recognize the operation of the PU
systems and other cognitive radio systems [3].

Generally, spectrum sensing techniques are classified into
two categories, namely local sensing and cooperative sensing.
For local sensing, each cognitive user (CU) performs spectrum
sensing based on its local observations. These techniques in-
clude matched filter detection [4], energy detection [5]–[7], and
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cyclostationary feature detection [8] techniques. Each has its
advantages and disadvantages. Cyclostationary detection and
matched filter based detection require a priori knowledge of
the PU, e.g., modulation type, pulse shaping, and/or timing/
carrier synchronization. Moreover, they both have high imple-
mentation complexity [9]. In contrast, energy detection does not
require any information of the PU signal and is robust to the
unknown channels. However, the detection performance of the
energy detection degrades when the signal-to-noise ratio (SNR)
is low.

To detect a hidden PU and reduce the sensing time, co-
operation among multiple CUs are very useful [10], [11]. In
[12], Quan et al. developed a linear cooperation framework
for spectrum sensing, where the global decision is based on a
linear combination of the local statistics from individual nodes.
The threshold at the fusion center is jointly determined with
the linear combining weights to maximize the probability of
detection while satisfying a requirement on the probability of
false alarm. In [13], the solutions are given in both the PU’s
perspective (minimize the false alarm probability for a fixed
detection probability) and the CU’s perspective (maximize the
detection probability for a fixed false alarm probability) using
AND and OR fusion rules. In [14], an optimum soft combin-
ing (OSC) scheme is developed by maximizing the detection
probability for a given false alarm probability. The method is
computationally involved and, moreover requires knowledge of
the SNR at each CU, which needs to be estimated from local
measurements.

In this paper, a CU base station collects sensing information
from CUs and performs spectrum sensing. We assume that
CUs can employ some positioning mechanisms to acquire their
positions, e.g., by using the global positioning system (GPS)
[15]. Meanwhile, the PU is a fixed base station, including a
TV broadcasting station or cellular base station, etc., whose
position is known to the CU base station. As a result, the relative
position information of each CU to the PU is also available at
the cognitive radio base station. Since most modern wireless
communication systems employ power control to adaptively
adjust their transmit power [16], the transmit power of the
PU is unknown to the cognitive radio system. We develop a
generalized likelihood ratio test (GLRT) detector based on the
one snapshot measurements of the radio environment obtained
by the cooperative CUs. The underlying maximum likelihood
estimator (MLE) for the PU’s transmit power involves rooting
of a high-order polynomial. To avoid the computational burden
of the MLE, a simple weighted average estimator (WAE) is in-
troduced. We examine the properties of the estimators including
the bias and variance, as well as the associated Cramer–Rao
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Fig. 1. System model of location-based cooperative spectrum sensing.

bound (CRB). We show that the proposed cooperative detection
approach is able to achieve better detection performance than
the conventional hard- and soft-decision based cooperative
sensing methods.

The rest of this paper is organized as follows: The signal
model of the cognitive radio system is presented in Section II.
Several conventional cooperative sensing techniques are briefly
discussed in Section III. Our proposed location based tech-
niques are presented in Section IV. Numerical results are given
in Section V. Conclusions are drawn in Section VI.

II. SIGNAL MODEL

As shown in Fig. 1, a cognitive radio network with M
CUs is employed to detect the presence of the PU. For fast
detection, a decision is made using only one snapshot of the
radio environment. Each CU uses Km antennas (we may have
Km = 1) to collect samples, calculates the local energy, and
reports to the CU base station, where a final decision is made.
The binary hypothesis test is

H0 : xm(k) = vm(k)

H1 : xm(k) =
√
αLmsm(k) + vm(k)

where xm(k) denotes the received sample at antenna k of the
mth CU, α is the unknown transmitted signal energy, Lm is
the path loss factor, and vm(k) is the complex Gaussian noise
with zero mean and variance σ2, i.e., vm(k) ∼ CN (0, σ2). We
assume the standard path loss model [17]

Lm = cD−r
m

where r and c denote the path loss exponent and path loss unit
constant, respectively, whereas Dm is the distance from CU m
to the PU, which are all assumed to be known. The unknown
PU signal sm(k) is

sm(k) = hm(k) d

where d is a sample of signal transmitted by the PU (assuming
without loss of generality that d has unit energy), and hm(k) is

the complex fading coefficient of the channel from the PU to the
kth antenna of CU m. Following the standard Rayleigh fading
model, hm(k) ∼ CN (0, 1), and sm(k) for different m and k are
independent and identically distributed (i.i.d.) Gaussian random
variables with zero mean and unit variance. The SNR at CU m
is defined as

ρm = Lmα/σ2.

The PU signal energy α is, in general, unknown. However, we
assume that Dm is known at the CU base station. This is the
case when the PU is a high transmit power base station such as a
TV broadcasting station or cellular base station whose location
is known; meanwhile, CUs can acquire their positions by using
a positioning device, such as the GPS [15].

Let xm = [xm(1), . . . , xm(Km)]T . The local averaged sig-
nal energy for user m is

um =
1

Km
xH
mxm. (1)

As shown in Appendix A, um is a scaled central chi-square
random variable under both hypotheses. As a result, the binary
hypothesis test at the CU base station translates to

H0 : um ∼ σ2

2Km
χ2
2Km

H1 : um ∼ σ2 + αLm

2Km
χ2
2Km

where χ2
2Km

denotes a chi-square probability density function
(pdf) with 2Km degrees of freedom.

III. CONVENTIONAL COOPERATIVE SPECTRUM SENSING

A number of cooperative solutions have been introduced
without location information. These techniques involve either
hard or soft combining. Hard combining schemes such as the
OR- and AND-rule based methods are easy to implement [13].
Specifically, each CU makes a local decision (0 or 1) by com-
paring the averaged received signal energy with a threshold τ
and reports this decision to the CU base station. The probability
of false alarm [18] and detection at CU m are

Pf,m =
Γ̄
(
Km, Kmτ

σ2

)
Γ(Km)

(2)

Pd,m =
Γ̄
(
Km, Kmτ

Lmα+σ2

)
Γ(Km)

(3)

where

Γ̄(s, x) =

∫ x

0

ts−1e−t dt (4)

Γ(s) =

∫ ∞

0

ts−1e−t dt (5)

represent the upper incomplete Gamma function and the
Gamma function, respectively [19]. In the OR-rule, when at
least one out of M CUs detect the PU, a final decision
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declares that the PU is present. The detection probability is
Pd = 1 −

∏M
m=1(1 − Pd,m), and the false alarm probability is

Pf = 1 −
∏M

m=1(1 − Pf,m). In the AND-rule, a final decision
declares that the PU is present only when all the M CUs detect
the PU. The detection probability is Pd =

∏M
m=1 Pd,m, and the

false alarm probability is Pf =
∏M

m=1 Pf,m.
A soft combing scheme, which is referred to here as the OSC,

was recently introduced in [14], whereby local unquantized
energy measurements are sent to the CU base station, i.e.,

T =
1
σ2

M∑
m=1

Kmwmum.

The combining weights wm are selected by maximizing the
probability of detection, given a probability false alarm Pfa, i.e.,

Pd = Q

⎛
⎜⎝Q−1(Pfa)

√∑M
m=1 w

2
m −

√
K
2

∑M
m=1 wmρm√∑M

m=1 w
2
m(1 + 2ρm)

⎞
⎟⎠

where Q−1(x) is the inverse function of Q(y) =∫∞
y 1/

√
2πe−t2/2dt. Finding the optimum combining weights

requires multidimensional searches over the parameter space.
Furthermore, the OSC requires the local SNRs ρm, which
need to be estimated from local measurements. When the local
SNRs are unknown, a simplified strategy is to use equal gain
combining (EGC): wm = 1/

√
M . It is known that EGC yields

inferior performance, compared with the OSC [14].

IV. PROPOSED METHOD

In this section, a GLRT for cooperative spectrum sensing is
developed by exploiting location information of the PU and
CUs. We first outline the cooperative GLRT. Then, the under-
lying maximum likelihood parameter estimation is discussed
along with the CRB. Moreover, a computationally efficient
WAE is proposed and compared with the MLE. Finally, the
test statistic of the proposed GLRT is given, and its asymptotic
performance is provided as a baseline to benchmark the perfor-
mance of the proposed spectrum sensing technique.

The general form of the GLRT for our problem is given by

TGLR =
max
α

p1(u1, . . . , uM |α)
p0(u1, . . . , uM )

(6)

where p1(u1, . . . , uM |α) and p0(u1, . . . , uM ) denote the joint
pdfs under H1 and H0, respectively. Since the CUs are
independent

p1(u1, . . . , uM |α) =
M∏

m=1

p1(um|α) (7)

p0(u1, . . . , uM ) =

M∏
m=1

p0(um) (8)

where p1(um|α) and p0(um) are given in (23) and (26), re-
spectively. The GLRT requires the MLE of α of the PU, which
is examined next.

A. MLE

From (7), the log-likelihood function under H1 is

−
M∑

m=1

Km ln(σ2 + αLm)−
M∑

m=1

Kmum

σ2 + αLm
+A

where A includes terms independent of α. Taking the derivative
of the log-likelihood function with respect to α and equating it
to zero, we have

M∑
m=1

KmLm(um − σ2 − αLm)

(σ2 + αLm)2
= 0. (9)

Note that α denotes the power of the PU and has to be
nonnegative. The MLE of α is a positive solution to the afore-
mentioned equation. In general, (9) is a high-order equation
whose solutions cannot be found in closed form. However, a
searching process can be employed to find the real nonnegative
solution. To gain more insight of the MLE of α, we consider
several cases of interest.

1) Case 1—Single CU: The MLE in this case is

α̂ = max{0, α∗} (10)

where

α∗ =
1
L
(u− σ2). (11)

Proof of (10): Clearly, α∗ is the unique solution to

d ln p1(u|α)
dα

=
KL(u− σ2 − αL)

(σ2 + αL)2
= 0.

Furthermore, we have d ln p1(u|α)/dα ≤ 0 for α ≥ α∗, which
implies that the log-likelihood is a nonincreasing function for
α ≥ α∗. Hence, (10) follows. �

The statistical behaviors of α̂ are examined next. Let P0

denote the probability that α̂ = 0. From Appendix B, we have

P0 =
γ̄
(
K, K

1+ρ

)
Γ(K)

.

As shown in Fig. 2, P0 exponentially decreases as the SNR
increases. α∗ is unbiased, i.e.,

E[α∗] =
(σ2 + Lα− σ2)

L
= α.

The variance of α∗ is [see (24) and (25)]

Var(α∗) = E

[
(α∗ − E(α∗))2

]
=

α2

K

(
1
ρ
+ 1

)2

(12)

where ρ = αL/σ2 is the SNR at the CU. Using the aforemen-
tioned results, it is shown in (27) and (28) in Appendix B that
the mean and variance of the ML estimate α̂ are given by

E(α̂)=α(1−P0)

Var(α̂)=
α2

K

(
1
ρ
+1

)2

+ α2P0

[
(1−P0)−

1
K

(
1
ρ
+1

)2
]
.
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Fig. 2. P0 versus SNR for different K.

Fig. 3. Roots of the MLE cost function with two CUs at different distances to
the PU.

Thus, the MLE α̂ is biased; however, the bias αP0 vanishes as
the SNR increases. The variance of α̂ is a function of SNR ρ
and the number of antennas K and approaches 0 when both ρ
and K are large. For finite ρ and K, particularly when ρ is small
(the SU is far from the PU), the single CU estimate is inaccu-
rate, and user cooperation is needed to reduce the estimation
error.

2) Case 2—Two CUs at Different Distances to the PU:
Another case of interest is that two CUs are located at different
distances to the PU. The MLE α̂ is the nonnegative solution to
the following third-order equation:

K1L1(u1 − σ2 − αL1)

(σ2 + αL1)2
+

K2L2(u2 − σ2 − αL2)

(σ2 + αL2)2
= 0.

As an illustration, the roots are shown in Fig. 3 when D1 =
150 m, D2 = 180 m, K1 = 2, K2 = 4, and SNR = 0 dB.
In general, we usually have one real root and two complex
conjugate roots. However, for small Km, the real root is not

guaranteed to be positive (although a negative estimate rarely
happens in our simulations).

B. WAE

Since the multi-user MLE requires rooting a high-order poly-
nomial, which may be computationally intensive, a more effi-
cient estimator is of interest. By exploiting the single-user MLE
of Section IV-A1, a simple solution is developed following
the framework of the best linear unbiased estimation (BLUE).
Specifically, let α̂m denote the single-user MLE corresponding
to CU m, α can be estimated by linearly combining α̂m

α̃ =

M∑
m=1

amα̂m. (13)

The BLUE combining coefficients are obtained in
Appendix C, i.e.,

a∗m =
Km

(
1
ρm

+ 1
)−2

M∑
i=1

Ki

(
1
ρi

+ 1
)−2

which, however, depend on the unknown α and are infeasible.
In a low SNR environment where collaboration is needed,

1/ρm � 1. Thus, the weights are approximated as

am =
KmL2

m

M∑
i=1

KiL2
i

.

Using these weights in (13), we obtain our WAE of α, i.e.,

α̃ =

M∑
m=1

KmL2
mα̂m

M∑
m=1

KmL2
m

. (14)

Remark: Even though the WAE was derived based on a low
SNR assumption, it can be applied in any SNR regime, as
considered in Section V, where its performance is numerically
examined. It is noted that the WAE is in closed form and is
computationally much more efficient than the multi-user MLE.

The single-user MLEs α̂m are independent. The mean and
variance of the WAE α̃ are easy to determine, i.e.,

E(α̂)=

α
M∑

m=1
Kmρ2m(1−P0m)

M∑
m=1

Kmρ2m

Var(α̃)=

α2
M∑

m=1
K2

mρ4m

[
1

Km

(
1+ 1

ρm

)2
+P0m

]
(1−P0m)

(
M∑

m=1
Kmρ2m

)2 .

Fig. 4 shows the bias and standard deviation of the WAE.
The single-user case (the WAE and MLE are identical) is also
shown. It is seen that the bias is more than one magnitude
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Fig. 4. Bias and standard deviation of the WAE versus the SNR of CU1 when
K = 8 for each CU.

smaller than the standard deviation, and the WAE can be
considered as unbiased.

C. CRB

The CRB specifies a lower bound on the variance of any
unbiased estimator, thus offering a baseline for comparison.
The CRB for α is derived in Appendix D, which is given by

Var(α̂) ≥ α2

⎡
⎢⎣ M∑
m=1

Km(
1
ρm

+ 1
)2
⎤
⎥⎦
−1

. (15)

1) Case 1—Single CU: For M = 1, the CRB becomes

CRBm =
α2

Km

(
1
ρm

+ 1

)2

which is identical to the variance of the MLE α̂.
2) Case 2—Multiple CUs: Let CRBc denote the CRB of the

estimation using M cooperative CUs. We have

1
CRBc

=

M∑
m=1

1
CRBm

≥ 1
CRBm

∀m.

As a result, CRBc ≤ CRBm ∀m, meaning that cooperation
helps all CUs, regardless of their distances to the PU.

When the distances from the CUs to the PU are identical, the
CRB reduces to

CRBc =
α2

M∑
m=1

Km

(
1
ρ
+ 1

)2

which can be shown to be identical to the MSE of the MLE for
the equal-distance case.

D. GLRT Test Statistic and Asymptotic Analysis

By using the MLE or WAE of α in (7), it is easy to show that
the GLRT (6) can be expressed as

Tlog−GLR =

M∑
m=1

Kmα̂Lmum

σ2(σ2 + α̂Lm)
+

M∑
m=1

Km ln
σ2

σ2 + α̂Lm
.

(16)

An exact analysis of the GLRT test variable (16) is too in-
volved due to the nonlinear nature. We provide an asymptotic
expression of the test statistic here. As shown in Appendix E,
the asymptotic distribution of the GLRT statistic in (16) is
given by

Tlog−GLR
a∼
{
χ2
1, under H0

χ′2
1 (λ), under H1

(17)

where χ′2
1 denotes the noncentral chi-squared distribution with

1 degree of freedom and noncentrality parameter λ given by

λ =

M∑
m=1

Kmρ2m.

As a result, we can write the asymptotic detection and false
alarm probabilities as

Pd =Q0.5(
√
λ,

√
τGLR) (18)

Pf =
γ̄ (0.5, τGLR)

Γ(0.5)
(19)

where Qm(a, b) is the generalized Marcum-Q function, and
γ̄(s, x) is the lower incomplete Gamma function [19].

V. NUMERICAL EXAMPLES

In this section, simulation results are presented to illustrate
the performance of the proposed cooperative spectrum sensing
techniques and to compare them with conventional cooperative
methods. In our simulation, the path loss exponent c is set to
2, and the PU transmits independent binary phase-shift keying
(BPSK) signals with α = 2.

A. Estimation Performance

The MLE and WAE, along with the CRB (15), are examined
in Figs. 5 and 6 for both the single-user and multiple-CU cases.
Fig. 5 considers a case when the CUs have different distances
to the PU. Specifically, CU1 has K1 = 4 antennas and is D1 =
100 m from the PU, and for CU2, K2 = 2 D2 = 150 m. As a
result, the SNR of CU1 is approximately 6 dB lower than the
SNR of CU2. The horizontal axis shows the SNR for CU1. For
comparison, we include the single-user MLE for CU1 or CU2,
along with the cooperative MLE and WAE schemes by using
both CU1 and CU2 observations. It is seen that, by cooperating,
the estimation accuracy is improved by using either MLE or
WAE. Although the improvement for CU1 is limited, it is
important to note that cooperation is not jeopardizing the more
advantageous user. Furthermore, we note that the cooperative
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Fig. 5. MSE for a single-user noncooperative and proposed two-user cooper-
ative estimators with K1 = 4 and K2 = 2.

Fig. 6. MSE with SNR = 5 dB and identical distances Dm from the CUs to
the PU.

MLE is close to the CRB and that the performance of the WAE
is slightly worse. As shown in Fig. 6, the MLE becomes more
accurate when either the number of cooperative CUs or the
number of antennas increases.

B. Comparison With Other Cooperative Detectors

In this section, the proposed GLRT with the MLE and WAE
are compared with the hard decision (OR-rule and AND-rule)
[13] and soft decision OSC [14] based cooperative detectors.
The OSC detector requires the local SNR. We consider two
cases when the SNR is exactly known and estimated from the
received signal, respectively.

Figure 7 shows the detection performance in the case of
8 CUs with different distances to the PU. Each CU employs
1 antenna. The SNR for the CU located at 100 m is used
as the reference and shown as the horizontal axis. We see that
the AND-rule detector is the worst, whereas the GLRT provides
the best detection performance. The GLRT and the OSC detec-

Fig. 7. Detection probability with Pfa = 0.01 when Km = 1 ∀m and the
distances Dm between the CUs and the PU are [100, 80, 110, 70, 115, 120,
100, 105] m.

Fig. 8. Comparison with the asymptotic detection probability with Pfa =
0.01 and Dm = 100 m.

tor with exact SNR are almost identical and better than that of
the OSC with estimated SNR. It should be note that the pro-
posed WAE-GLRT as given by (14) and (16) is in closed form,
whereas the OSC detector requires a multidimensional search to
find the optimum combining weights and is significantly more
involved. Fig. 7 also includes the performance of a single-user
detector using energy detection for a reference CU located at
100 m, which is considerably worse than everything, except for
the AND-rule cooperative detectors.

Fig. 8 further shows the detection performance of the pro-
posed detectors when the CU number is large. It is noted that, as
the number of CUs increases, the proposed detector approaches
the asymptotic performance given in (15).

C. Effect of Diverse Path-Loss Exponents

For simplicity, we assumed that the path loss exponents are
identical. The proposed detector can deal with the case when
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Fig. 9. Detection performance with eight users and diverse path loss expo-
nents: c = [2, 2.5, 1.5, 2.5, 2, 2.5, 3, 2.5], Km = 2, and Dm = 100 m ∀m.

the path loss exponent of the link from the PU to each CU is
different, as shown in Fig. 9. It is seen that the WAE-GLRT
outperforms the OSC with estimated SNR and also achieves
similar detection performance as that of the MLE-GLRT and
the OSC with known SNR, whereas the OCS with estimated
SNR experiences noticeable degradation.

D. Effect of Quantization

The GLRT assumes that local energy measurements {um}
are sent to the CU base station in analog format (without quanti-
zation). Here, we consider the case when the local transmission
is quantized via a uniform quantizer. Since {um} have different
dynamic ranges (because of the difference in locations), it is not
appropriate to use an identical quantizer for all {um}. Instead,
each local CU can quantize the local estimate of the power α
of the PU, which is identical to all CU, and send the quantized
estimate.

Specifically, first, each CU calculates um by (1). Then, it
forms a local estimate α̂m by (10), quantizes α̂m to several
bits based on a given bandwidth constraint, and forwards the
quantized version, denoted by ¯̂αm, to the CU base station. The
cognitive radio base station uses the WAE to form an estimate
of α, i.e.,

¯̂α =

M∑
m=1

KmL2
m
¯̂αm

M∑
m=1

KmL2
m

. (20)

Finally, ¯̂α is compared with a threshold corresponding to a
given probability of false alarm. The aforementioned detector,
which is a modified version of the GLRT to facilitate quantized
transmission, is referred to as the α-test.

Figure 10 compares the GLRT and α-test with and without
quantization. When quantization is applied, we consider the
case when ¯̂αm are obtained with 1-, 2-, and 3-bit quantizer,
respectively. The quantization thresholds are uniformly spaced

Fig. 10. Effect of quantization when SNR = 0 dB, Km = 2, and Dm =
100 m ∀m. The α-test is a modified version of the GLRT to facilitate quantized
transmission.

across a dynamic range [0,8] (α = 2). We see from Fig. 10 that,
without quantization, the GLRT and α-test are identical. As
expected, 1-bit quantization is not adequate to recover a good
estimate of α. However, even with 2- or 3-bit quantization, the
performance loss incurred by quantization is relatively small.

E. Effect of Noisy Report Channel

So far, the results are based on the assumption that the
transmission of the local energy measurements to the CU base
station is lossless. Our final result considers the effect when the
report channel is lossy. In particular, the energy measurement
um submitted by each CU is subject to fading. The signal
received at the CU base station is

zm = hmum + wm, m = 1, . . . ,M (21)

where hm is the fading coefficient of the channel between CU
m and the CU base station, and wm is the noise with zero mean
and variance σ2

1 . We assume that the CU base station knows the
fading channel coefficients with sufficient accuracy via channel
estimation. Error in channel estimation is not considered since
it can be absolved in the channel noise wn. For simplicity, we
use a simple estimate of um by channel inversion, i.e.,

ûm =

∣∣∣∣ zmhm

∣∣∣∣ . (22)

The estimated energy from each CU are used to calculate
the test variable of the detector. Fig. 11 shows the effect of the
report channel, where the average SNR is 10 dB and the
channels are changing independently from one trial to another.
It is observed that, compared with the case when the report
channel is lossless, both our proposed GLRT and the OSC
detector suffer some degradation caused by the noisy report
channel. It is also noted that our GLRT still outperforms the
OSC detector with lossy report channel.
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Fig. 11. Detection performance with noisy reporting channels when reporting
channel SNR = 10 dB, observation SNR ρ = 0 dB, Km = 2, and Dm =
100 m ∀m.

VI. CONCLUSION

A GLRT for cooperative spectrum sensing among multiple
CUs has been proposed by utilizing the location information.
The underlying estimation problem of the GLRT has been
studied. We have first derived the MLE, which involves high-
order polynomial rooting. To simplify implementation, a WAE
has also been introduced. The estimation performance of both
estimators has been analyzed. Moreover, the asymptotic per-
formance of the proposed GLRT detector has been provided.
Simulation results have verified that the proposed GLRT with
either estimators yields competitive performance, compared to
several conventional hard and soft decision based cooperative
spectrum sensing. The WAE-GLRT is particularly appealing
due to its computational efficiency, with all calculations in-
volved in estimation and detection in closed form.

APPENDIX A
STATISTICS OF um UNDER H1 AND H0

The first and second moments of um are calculated here.
Under H1, um, as defined in (1), can be expressed as

um =
σ2 + Lmα

2Km

Km∑
k=1

∣∣∣∣∣
√

2xm(k)√
σ2 + Lmα

∣∣∣∣∣
2

=
σ2 + Lmα

2Km
v′m

where v′m is the summation of 2Km normal random variables
with zero mean and unit variance and, thus, follows a central
chi-square distribution with 2Km degrees of freedom. As a
result, the pdf of um under H1 can be expressed as

p1(um|α) = 1

2KmΓ(Km)
uKm−1
m

(
2Km

σ2 + Lmα

)Km

× exp

(
− Kmum

σ2 + Lmα

)
. (23)

The mean of um under H1 is (note that E[v′m] = 2Km)

E[um] = σ2 + Lmα. (24)

The second moment is (note that Var(v′m) = 4Km)

E
[
u2
m

]
= Var(um) + E

2[um] =
Km + 1
Km

(σ2 + Lmα)2.

(25)

Similarly, the energy under H0 is

um =
σ2

2Km

Km∑
k=1

∣∣∣∣∣
√

2wm(k)

σ

∣∣∣∣∣
2

=
σ2

2Km
v′m.

Its pdf is given by

p0(um)=
1

2KmΓ(Km)
uKm−1
m

(
2Km

σ2

)Km

exp

(
−Kmum

σ2

)
.

(26)

APPENDIX B
MEAN AND VARIANCE OF THE MAXIMUM

LIKELIHOOD ESTIMATE OF α

The ML estimate of α takes the following form:

α̂ = max{0, α∗}

where α∗ is given by (11). Let P0 be the probability that α̂ = 0,
and the probability that α̂ = α∗ is 1 − P0. Then

E(α̂) = 0 · P0 + (1 − P0)E[α
∗] = (1 − P0)E[α

∗] (27)

and its variance is

Var(α̂) =E

[
(0 − E(α̂))2

]
P0 + E

[
(α∗ − E(α̂))2

]
(1 − P0)

=
[
Var(α∗) + P0E

2[α∗]
]
(1 − P0). (28)

The ML estimate α̂ is 0 when α∗ is less than 0. From (11)

P0 = Pr

(
u− σ2

L
< 0

)
=

∫ σ2

0

P (u) du =
γ̄
(
K, K

1+ρ

)
Γ(K)

where Γ(.) is the Gamma function (5), and γ̄(., .) is the lower
incomplete Gamma function: γ̄(s, x) =

∫ x

0 ts−1e−tdt.

APPENDIX C
BEST LINEAR UNBIASED ESTIMATE OF α

The BLUE of α in (13) can be expressed as

α̃ = aT α̂

where a = [a1, . . . , am]T is the weight vector, and α̂ =
[α̂1, . . . , α̂m]T is a vector containing the single-user ML esti-
mates. Since α̂m are independent, the mean of α̃ is

E[α̃] = aTE[α̂] = aTpα
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where p is a column vector with the mth element given by
pm = 1 − P0m. To ensure that α̃ is unbiased, we need

aTp = 1.

Moreover, the variance of α̃ is given by

Var(α̃) = aTCα̂a

where Cα̂ is the covariance matrix of α̂, which is diagonal,
with the mth diagonal element given by [see (12)]

Cm =

[
α2

Km

(
1
ρm

+ 1

)2

+ α2P0m

]
(1 − P0m).

The BLUE of α is obtained by solving

min
a

aTCα̂a s.t. aTp = 1

and the solution is

a∗ =
C−1

α̂ p

pTC−1
α̂ p

where the mth element of a∗ is given by

a∗m =
pmC−1

m

M∑
i=1

p2iC
−1
i

=

[
1

Km

(
1
ρm

+ 1
)2

+ P0m

]−1

M∑
i=1

[
1
Ki

(
1
ρi

+ 1
)2

+ P0i

]−1

(1 − P0i)

.

Assuming that P0m is negligible, the weights are approxi-
mated as

a∗m ≈
Km

(
1
ρm

+ 1
)−2

M∑
i=1

Ki

(
1
ρi

+ 1
)−2

. (29)

APPENDIX D
CRAMER–RAO BOUND OF α

The second derivative of the log pdf is

∂2 ln p1(u1, . . . , uM |α)
∂α2

=

M∑
m=1

KmL2
m(σ2 + αLm − 2um)

(σ2 + αLm)3
.

The Fisher information (FI) is [cf. (24)]

I(α) = −E

[
∂2 ln p1(u1, . . . , uM |α)

∂α2

]
=

M∑
m=1

KmL2
m

(Lmα+ σ2)2
.

Thus, the CRB can be expressed as

var(α̂) ≥ 1
I(α)

= α2

⎡
⎢⎣ M∑
m=1

Km(
1
ρm

+ 1
)2
⎤
⎥⎦
−1

. (30)

APPENDIX E
ASYMPTOTIC PERFORMANCE OF THE GENERALIZED

LIKELIHOOD RATIO TEST

The only unknown parameter is α under H1. Therefore, the
detection problem is a parametric testing problem, i.e.,

H0 : θr = θr0

H1 : θr = θr1

where θr1 = α, and θr0 = 0. From the aforementioned formu-
lation, the asymptotic distribution of the GLRT statistic is [20]

TGLRT
a∼
{
χ2
1, under H0

χ′2
1 (λ), under H1

where the noncentrality parameter λ is given by

λ = (θr1 − θr0)
2I(θr0)

with I(θ) denoting the FI, with θ = α = 0. Thus

λ =

M∑
m=1

KmL2
mα2

σ4
=

M∑
m=1

Kmρ2m.
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