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Abstract—Eigenvalue-based methods have been widely investi-
gated for multiantenna blind spectrum sensing in cognitive radio
(CR). However, most of them are formulated in the framework
of maximum likelihood (ML) estimation, which is optimal only
when the number of samples is much larger than the number of
antennas. In relatively small-sample scenarios where the number
of antennas is comparable in magnitude to the number of samples,
their optimality cannot be guaranteed. Based on the random ma-
trix theory (RMT), an eigenvalue moment ratio (EMR) approach
is proposed for spectrum sensing. As the distribution of the EMR
statistic in the absence of signals can be precisely determined by
the RMT, this approach is able to reliably predict the theoretical
threshold. Moreover, as the EMR detector is developed from the
RMT perspective and utilizes all the signal eigenvalues for detec-
tion, it can be superior to state-of-the-art detection algorithms,
particularly for relatively small samples. Furthermore, we derive
the asymptotic distribution of the EMR statistic in the presence
of signals and analyze the theoretical detection probability of the
EMR approach. Additionally, the EMR statistic is calculated via
the Frobenius inner product and matrix trace operations instead
of the eigenvalue decomposition (EVD), which offers computa-
tional efficiency. Simulation results are presented to illustrate the
superiority of the EMR approach and confirm our theoretical
calculation.

Index Terms—Cognitive radio (CR), moment of eigenvalues,
random matrix theory (RMT), spectrum sensing.
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I. INTRODUCTION

INCREASING demand of high-data-rate communication
has aggravated the severe situation of spectrum deficiency,

which results from the policies of fixed spectrum allocation [1].
To alleviate the spectrum deficiency, cognitive radio (CR) [2]
has been deemed as a potential paradigm for future commu-
nications. In a CR network, a secondary user (SU) is allowed
to borrow the frequency channels preassigned to the primary
users (PUs) by the government when they are inactive. Once
the PUs become active again, the SU is required to vacate its
occupied channels to the PUs as soon as possible. This scheme
of dynamic spectrum access is able to dramatically enhance
the spectral usage. To maximize the spectral utilization and
minimize the harmful interference to the PUs, the SU needs to
reliably detect the PUs.

In traditional techniques for spectrum sensing, such as cy-
clostationary detection [3], matched filtering [4], and energy
detection [5], it is assumed that full or partial knowledge of
the PU signal characteristics, the channel responses of the
PUs, and/or the noise power are available at the CR receiver.
However, such knowledge might be unavailable in a realistic
CR network.

Numerous blind spectrum sensing methodologies that re-
quire no primary signal information or noise variance have been
proposed in the literature. Usually, they utilize the correlation
structure inherent in the received data for detection, which
results from the multipath propagation and/or oversampling of
the primary signals for a single-antenna receiver or the deter-
ministic channel during the sensing period for a multiantenna
receiver. In [6], the covariance absolute value (CAV) detector
is heuristically derived from the test of the identity structure
of covariance matrix against its general correlated alternative.
As a matter of fact, the correlation structure among the sample
covariance matrix (SCM) leads to the significant spread out
of eigenspectrum, providing a good indicator for the primary
signals. Consequently, eigenvalue-based sensing schemes have
received much attention [7]–[14]. Derived in the framework
of a generalized likelihood ratio (GLR) test, the eigenvalue
arithmetic-to-geometric mean (AGM) [13], [15], [16] and GLR
[9], [17] detectors are able to reliably identify correlated signals
embedded in additive independent and identically distributed
(i.i.d.) noise. Unlike the AGM algorithm, the variants of the
GLR method, i.e., the rank-1 GLR [9] and rank-d GLR [17],
rely on the a priori knowledge of the primary signal number
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and, hence, are more accurate than the AGM approach. Here,
d is the number of primary signals. Moreover, it has been
shown in [12] that the rank-1 GLR method asymptotically out-
performs the maximum–minimum eigenvalue (MME) detector
[8], which is heuristically derived for single-source detection.
However, the number of primary signals may be unknown to the
CR receiver in practice. This in turn may considerably degrade
the performance of the GLR detectors.

To achieve communications and enhance spectrum utiliza-
tion, the SU needs to reliably detect unoccupied channels within
a short sensing period. In such a situation, the stationary sam-
ples available for spectrum sensing are usually quite limited.
This motivates us to develop efficient approaches that can work
in data-limited scenarios, e.g., where the number of samples is
comparable with the number of antennas. It should be pointed
out that the AGM and GLR algorithms have their root in
the maximum likelihood (ML) estimation theory and therefore
are asymptotically optimal only in the large-sample-size limit.
For relatively small-sample scenarios whereby the number of
antennas is comparable to the number of samples in magnitude,
however, they suffer from performance degradation to various
extents. Therefore, it is of considerable interest to develop
efficient algorithms for spectrum sensing in the sample-starving
situations. As a locally most powerful test, John’s detector [18]
has been shown in [19] to be superior to the spherical test
(ST) [20] at small samples in the community of multivariate
statistics. Note that the ST approach has been used in [15] and
analyzed in [21] for spectrum sensing, which in fact is equiva-
lent to the AGM algorithm. Later on, John’s detector is heuristi-
cally applied to spectrum sensing in [22] and [23]. Recently, its
sensing performance is accurately analyzed in [24]. For large
numbers of samples and antennas, nevertheless, the calculation
of the first and second moments of John’s test statistic in [24],
which are needed to determine the cumulative distribution
function (CDF) of the approximate beta distribution, is compu-
tationally intensive. Moreover, note that the CDF varies with the
number of antennas m and number of samples n, requiring ad-
ditional storage and computations. Thus, the overhead renders
real-time sensing difficulty. This will be further deliberated in
Section IV.

In this paper, an eigenvalue moment ratio (EMR) algorithm
is devised for spectrum sensing from the perspective of the
random matrix theory (RMT) [25]–[27], i.e., the ratio of the jth
moment of the sample eigenvalues calculated from an m× n
signal-free observation matrix to the jth power of the first mo-
ment of the sample eigenvalues almost surely (a.s.) converges to
a deterministic value as m,n → ∞ with m/n → c ∈ (0,∞).
Here, j is an integer larger than or equal to 2. It is worth
noting that, although the EMR approach with j = 2 offers the
same expression as John’s detector [18], they are developed
from different perspectives because the latter is derived by
maximizing the power function. Meanwhile, it should also be
pointed out that John’s detector is originally developed from
the assumption of n → ∞ with m being fixed. In contrast to
John’s approach, the EMR detector is devised in the regime
of m,n → ∞ and m/n → c. Indeed, John’s detector turns out
to be the simplest case among the EMR schemes with j ≥ 2
since the former only utilizes the first and second moments of

the sample eigenvalues, i.e., j = 2. The simulation results in
Section IV will also verify that the EMR approach has different
behaviors from John’s scheme.

In addition to the derivation of the EMR algorithm from
the RMT perspective, the contributions of this paper include
1) calculation of the theoretical decision threshold for the EMR
method, which turns out to be very accurate for finite numbers
of samples and antennas; 2) derivation of the asymptotic dis-
tribution of the EMR statistic in the presence of signals, which
enables us to correctly analyze the detection performance; and
3) reformulation of the EMR detector in terms of the Frobenius
inner product and matrix trace operations, avoiding the eigen-
value decomposition (EVD) of the SCM and thereby saving
the computational cost. Note that all signal eigenvalues are
exploited in the EMR algorithm, whereas only the largest signal
eigenvalue is employed in the rank-1 GLR and MME methods.
As a result, the EMR method is superior to the rank-1 GLR and
MME detectors in the situation of multiple PUs, particularly
under low SNR and relatively small-sample environment.

The remainder of this paper is organized as follows. In
Section II, the signal model is described, and conventional
spectrum sensing algorithms are reviewed. In Section III, the
theoretical threshold of the EMR detector is computed, and its
detection probability is derived. Simulation results are provided
in Section IV. Finally, conclusions are drawn in Section V.

II. PROBLEM FORMULATION

A. Signal Model

Consider a multiple-input–multiple-output (MIMO) CR net-
work where the SU has m antennas to receive the signals
emitted by d(d < m) PUs with a single antenna. The output of
the SU, xk(k = 1, . . . , n), under two hypotheses [H0 (signal
absence) and H1 (signal presence)] can be written as1

xk =

{
wk, H0

Hsk +wk, H1
(1)

where H ∈ C
m×d contains the MIMO channel coefficients

between the PUs and SU, which are deterministic unknown dur-
ing the sensing period, and xk = [x1(k), . . . , xm(k)]T , sk =
[s1(k), . . . , sd(k)]

T , and wk = [w1(k), . . . , wm(k)]T stand for
the observation, signal, and noise vectors at the kth sampling
instant, respectively. Here, (·)T is the transpose, xi(k)(i =
1, . . . ,m) stands for the output of the ith antenna, si(k)(i =
1, . . . , d) is the ith primary signal following an i.i.d. complex
Gaussian distribution with zero mean and unknown variance
σ2
si

, and wi(k)(i = 1, . . . ,m) is the additive noise at the ith
antenna, modeled as an i.i.d. complex Gaussian random process
with zero mean and unknown variance τ . Furthermore, the
noises are assumed uncorrelated with the signals. Since xk is
zero-mean Gaussian distributed, only the covariance matrix is
needed to characterize its statistical behavior. The population

1For the situation of single-antenna sensing, the oversampled model can be
exactly written as (1) but with different structures in the channel matrix H and
signals sk , which has been widely discussed in the literature [8], [14]. As a
result, this case is not discussed here.
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covariance matrix is calculated as R
Δ
= E[xkx

H
k ], which, under

the two hypotheses, can be written as

R =

{
τIm, H0

HRsH
H + τIm, H1

(2)

where (·)H denotes the conjugate transpose, Im is the m×m
identity matrix, Rs = E[sks

H
k ] is the primary signal covariance

matrix, and E[·] is the mathematical expectation.

B. Conventional Sensing Solutions

The popular detector employing signal magnitude informa-
tion is the energy detector (ED) [5], which is given as

ξED
Δ
=

∑n
k=1 x

H
k xk

τ

H1

≷
H0

γED (3)

where γED is its decision threshold. If ξED > γED, the signal
is present; otherwise, the signal is absent. Given the noise
variance, the ED is the optimal detector for i.i.d. observed data
[28]. When it is unknown, its estimate τ̂ is used instead. In this
case, the performance of the ED usually degrades dramatically
since it is quite sensitive to the error in τ̂ , which is also known
as noise uncertainty [29]. To improve the robustness against the
noise uncertainty, the blind detection methods using the signal
correlation structure have been developed.

Due to the deterministic channel over the sensing interval
and/or correlation among the signal samples, the signal-plus-
noise covariance matrix loses the identity structure. Utilizing
this nonidentity structure, the CAV scheme [6] is heuristically
devised as

ξCAV
Δ
=

∑m
i=1

∑m
j=1 |r̂i,j |

1
m |r̂i,i|

H1

≷
H0

γCAV (4)

where r̂i,j is the (i, j) entry of the SCM R̂
Δ
= (1/n)∑n

k=1 xkx
H
k , and γCAV is the threshold of the CAV method.

Indeed, the nonidentity structure of R leads to the significant
spread out of eigenspectrum, providing a good indication for
the primary signals. Consequently, the eigenvalues have been
employed in numerous approaches for spectrum sensing, such
as the AGM [13], [15], [16], and GLR [9], [17], [30], all of
which are derived in the framework of the GLR test. A variant
of the AGM detector is given by [31]

ξAGM
Δ
= 2(n− 1) log

(
1
m

∑m
i=1 �i

(
∏m

i=1 �i)
1
m

)m
H1

≷
H0

γAGM (5)

where �1 ≥ · · · ≥ �m are the decreasing sample eigenvalues of
R̂ and γAGM is the decision threshold of the AGM approach. If
the number of PUs (or rank) is a priori known, accurate variants
of the GLR approach are devised in [9], [10], [17], and [30].
In the presence of a single PU, the rank-1 GLR detector [9]
employs the scaled largest eigenvalue (SLE) [9], [10], [30] as
its test statistic, which is also called the SLE detector and is
expressed as

ξSLE
Δ
=

�1
1/m

∑m
i=1 �i

H1

≷
H0

γSLE (6)

where γSLE is the decision threshold of the SLE approach.
In the presence of d primary signals with 1 < d < m, never-
theless, the rank-d GLR scheme [17] has a more complicated
form, i.e.,

ξGLR
Δ
=

1/m
∑m

i=1 �i

(
∏m

i=1 �i)
1/m

/
1/(m− d)

∑m
i=d+1 �i(∏m

i=d+1 �i
)1/(m−d)

H1

≷
H0

γGLR

(7)

where γGLR is the threshold of the GLR algorithm. As another
single-source detector, the MME detector [8] exploits the con-
dition number as the test statistics

ξMME
Δ
=

�1
�m

H1

≷
H0

γMME (8)

where γMME is the decision threshold. Nevertheless, it is hard
to justify the assumption that the number of primary signals is
a priori known to the receiver in practice. As a result, the SLE,
rank-d GLR, and MME suffer from performance degradation
when d is unknown and changes in different situations.

The decision threshold γ can be determined by solving
F (γ) = 1 − Pfa, where Pfa denotes the false-alarm probability
and F (x) is the CDF of the statistic under H0. The CDF can be
determined via theoretical derivation or Monte Carlo simula-
tion. The analytical threshold expressions of various detectors
for Pfa = ε and complex-valued observations are tabulated in
Table I. The threshold formulas in the second column are
derived from the asymptotic distribution of the test statistic.
Specifically, the thresholds of the SLE and MME are derived in
the regime where m,n → ∞ and m/n → c, whereas those of
the CAV and AGM are computed in the regime of fixed m and
n → ∞. These thresholds are asymptotically optimal but suffer
from an error for finite numbers of antennas and samples.

The exact analytical CDF formulas have been developed for
the SLE and MME statistics in [11], [32], and [33], allowing
us to obtain the exact thresholds for finite numbers of antennas
and samples, as shown in the third column of Table I. However,
their evaluation is much more computationally intensive than
the calculation of the asymptotic thresholds. Moreover, the
dynamic range (DR) of the summands of the analytical CDF
expression is so high particularly for large numbers of antennas
and samples that extremely high numerical precision and wide
range of values are required for accurate evaluation of the CDF
expression without numeric overflow.

To find the decision threshold by the Monte Carlo simulation,
we vary the threshold within a certain range, and for each
threshold value, we repeatedly perform binary decision on a
large number of random Gaussian noise realizations. A Pfa

curve as a function of decision threshold is thus obtained.
From this curve, the threshold is then identified as the one that
corresponds to a desired Pfa.

III. EIGENVALUE-MOMENT-RATIO DETECTOR AND

PERFORMANCE ANALYSIS

Here, we first derive the blind EMR algorithm from the RMT
perspective, in which the channels, primary signal number,
signal power, and noise power are all unknown. Then, we
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TABLE I
FORMULA FOR THEORETICAL THRESHOLD COMPUTATION WITH COMPLEX-VALUED OBSERVATIONS

analyze its performance in terms of detection probability Pd

and false-alarm probability Pfa. Since both Pd and Pfa vary
with the threshold, a common practice is to evaluate Pd for a
fixed Pfa. Employing the existing RMT results, the theoretical
threshold of the EMR approach is determined. To compute Pd,
we need the distribution of ξEMR under H1, which, however,
is unavailable in the literature. To address this, we derive the
asymptotic distribution of ξEMR under H1 based on the RMT
[35] and then use it to obtain an approximate analytical formula
for the detection probability.

A. EMR Algorithm

To derive the EMR statistic, we need the following results.
Proposition 1: Let R̂ be the SCM of the signal-free obser-

vation matrix X = [x1, . . . ,xn] ∈ C
m×n whose elements are

i.i.d. Gaussian variables with zero mean and variance τ . Then,
the ratio of the jth moment of the sample eigenvalues {�i}mi=1,
denoted by M̂j , to the jth power of the first moment of �i a.s.
converges to a constant independent of τ as m,n → ∞ and
m/n → c ∈ (0,∞), i.e.,

ξ
(j)
EMR

Δ
=

M̂j

(M̂1)j
=

1
m

∑m
i=1 �

j
i(

1
m

∑m
i=1 �i

)j a.s.−→ η(j) (9)

where η(j) =
∑j−1

k=0(c
k/(k + 1))Ck

j C
k
j−1, and Ck

j denotes the
total number of k-combinations of j numbers.

Proof: It is shown in [26] and [27] that M̂j a.s. converges
to the jth moment of the population eigenvalues associated with
R as m,n → ∞ and m/n → c, i.e.,

M̂j
a.s.−→ Mj

Δ
=

∫
tjdFR(t). (10)

Note that this result was first verified in [36], later on proved
in [26] by using a method of moment, and well summarized in
[27]. Here, dFR(t) is the Marčenko–Pastur density, and Mj is
calculated as

Mj = τ j
j−1∑
k=0

ck

k + 1
Ck

j C
k
j−1

Δ
= τ jη(j). (11)

As a result, substituting M̂j = (1/m)
∑m

i=1 �
j
i along with (11)

into (10), we obtain

(
1
m

m∑
i=1

�i

)j

a.s.−→ τ j (12a)

1
m

m∑
i=1

�ji
a.s.−→ τ jη(j) (12b)

whose ratio leads to the proof of Proposition 1. �
It is indicated in Proposition 1 that, as m,n → ∞ and

m/n → c, the EMR statistic, i.e., ξ(j)EMR(j ≥ 2), a.s. converges
to a constant independent of the noise variance. The simplest
case among them is j = 2, i.e.,

ξ
(2)
EMR =

M̂2

(M̂1)2
=

1
m

∑m
i=1 �

2
i(

1
m

∑m
i=1 �i

)2 a.s.−→ 1 + c. (13)

Obviously, the presence of primary signals violates the limiting
behavior of ξ(2)EMR, thereby providing a good indication for the
primary signals.

Recall that

M̂1 =
1
m

m∑
i=1

�i =
1
m
tr(R̂) (14)

where tr(·) denotes the matrix trace, and

M̂2 =
1
m

m∑
i=1

�2i =
1
m
tr(R̂R̂

H
). (15)

On the other hand, notice that

tr(R̂R̂
H
) =

m∑
i=1

m∑
j=1

|r̂i,j |2 = ‖R̂‖2F (16)
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TABLE II
EMR DETECTION ALGORITHM

TABLE III
NUMBER OF FLOPS REQUIRED IN EMR AND STATE-OF-THE-ART

DETECTORS

where ‖ · ‖F denotes the Frobenius norm. Thus, the EMR
decision rule can be expressed as

ξEMR
Δ
=

M̂2

(M̂1)2
=

1
m‖R̂‖2F(
1
m tr(R̂)

)2

H1

≷
H0

γEMR (17)

where γEMR is the threshold of the EMR method, which will
be determined using the asymptotic distribution of ξEMR under
H0 in the following. The proposed EMR method for spectrum
sensing is summarized in Table II.

Note that, unlike the existing eigenvalue-based methods, the
EMR detector does not rely on the EVD of R̂ to calculate the
test statistic. Instead, it uses the Frobenius norm and the trace
of R̂, which is similar to the CAV detector. As the EVD of
R̂ requires O(m3) floating-point operations (flops), whereas
the Frobenius norm and trace of R̂ only involve m2 flops,
the EMR detector is more computationally efficient than the
eigenvalue-based methods [7]–[13], [15], [31]. The computa-
tional complexity of the EMR and those of the other methods
are summarized in Table III.

Remark 1: As should be pointed out, the EMR ξ
(j)
EMR for

j > 2 can also be exploited for spectrum sensing, and its behav-
ior will be numerically investigated in Section IV. Nevertheless,
since it relies on the jth moment of the sample eigenvalues
whose asymptotic fluctuation is very difficult to determine, its
performance cannot yet be theoretically analyzed. This will be
addressed in our future work. On the other hand, note that,
for j = 2, the EMR algorithm is reduced to John’s method,
although the former is devised from the RMT perspective in
the regime where m,n → ∞ and m/n → c, whereas the latter
is developed from the perspective of maximizing the power
function in the situation where n → ∞ and m is fixed. Thus,
the EMR detector is different from John’s approach in the
derivation regimes and perspectives.

B. Theoretical Decision Threshold

To obtain the constant false-alarm rate property, we need to
find a threshold for decision reference, which must be deter-
ministic and independent of τ . Such a theoretical threshold is
determined here. The asymptotical fluctuation of ξEMR under
H0 is described by the following lemma.

Lemma 1: Assume R̂ satisfies the hypotheses of
Proposition 1. The statistic

ζ
Δ
= m [ξEMR − (1 + c)] (18)

converges in distribution to a Gaussian process with mean zero
and variance 2c2 as m,n → ∞, m/n → c ∈ (0,∞), i.e.,

ζ
D−→ N (0, 2c2) (19)

where
D−→ denotes the convergence in distribution, and

N (0, σ2) is the real Gaussian distribution with zero mean and
variance σ2.

Proof: Based on the joint distribution of M̂1 and M̂2 in
[26] for the real case and in [37] for the complex situation, (19)
is proved in [27] using the Delta method [38]. �

The false-alarm probability for the EMR is calculated as

Pfa =P (ξEMR > γEMR|H0)

=P

(
m [ξEMR − (1 + c)]√

2c
>

m [γEMR − (1 + c)]√
2c

∣∣∣∣H0

)

=

∞∫
m[γEMR−(1+c)]√

2c

1√
2π

exp

(
−1

2
t2
)
dt

=Q

(
m [γEMR − (1 + c)]√

2c

)
(20)

where

Q(x) =
1√
2π

∫ ∞

x

exp

(
− t2

2

)
dt. (21)

For a desired false-alarm rate ε, the associated threshold should
be chosen such that

γEMR = 1 + c+

√
2cQ−1(ε)

m
. (22)

The relative errors (REs) between the asymptotically derived
and simulated thresholds are plotted in Fig. 1 for the EMR and
other algorithms. Here, n varies from 5 up to 150 with m/n =
0.8 and Pfa = 0.01. The RE is defined as |γthe − γsim|/γsim ×
100% with γthe and γsim being the theoretical and simulated
thresholds, respectively. The simulated thresholds are obtained
using 106 Monte Carlo trials. In the ED(τ̂), L = n signal-free
samples are assumed available to estimate the noise variance.

Fig. 1 implies that the CAV has the largest error in threshold
prediction. This is because its theoretical threshold is deter-
mined in the framework of the central limit theorem (CLT),
according to which, the entries of the noise-only SCM are
approximately Gaussian distributed when the sample size is
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Fig. 1. Relative error of asymptotic theoretical threshold versus number of
samples for various methods. m/n = 0.08, and Pfa = 0.01.

sufficiently large [6].2 For small-sample scenarios, the theoreti-
cal threshold is not accurate. For the ED(τ̂), accurate threshold
prediction relies on the condition that sufficient independent
noise-only samples are available for noise variance estima-
tion, whereby the estimated noise variance is approximated by
Gaussian distribution [31]. Although the error of theoretical
threshold of the AGM is relatively small, it increases with m
or n when n ≥ 10. This is due to the fact that, similar to the
CAV detector, its theoretical threshold is also determined in
the fixed m large n limit. In contrast, the threshold formulas
for the EMR/SLE/MME are derived based on the large m
relatively large n asymptotics, and their errors are thereby
relatively small and gradually decrease with m or n. Note that
the MME carries much larger error in threshold prediction than
the EMR and SLE. It is because, in the theoretical threshold
computation, the minimum eigenvalue in the denominator of
the MME statistic is replaced by its limiting value τ(1 −√

c)2,
and its fluctuation is ignored. This can lead to a large error
particularly when c approaches 1. Similarly, the fluctuation of
the summation of the noise eigenvalues is also ignored in [9]
for the threshold calculation, incurring a large error for the
SLE. Unlike the MME and SLE, the EMR does not ignore
any fluctuation in its theoretical threshold computation, thereby
providing the smallest threshold prediction error. It is equal to
3.64% for n = 5 and 0.71% for n = 10 and drops below 0.1%
when n > 45. This implies that the asymptotic fluctuation of
the EMR statistic provides a good approximation for finite m
and n. In Table IV, we fix m = 12 and n = 15, and vary Pfa

from 10−4 up to 0.1. It is seen that the REs of the EMR are
below 4% and consistently less than those of all other detectors.

Remark 2: One potential advantage of the EMR test is that
it might be able to better match the false-alarm specifications
imposed in modern communication systems. For example, with
regard to the required sensing sensitivity according to the IEEE
802.22 standard [4], [39], the SNR is as low as −21 dB for

2Note that, although the CAV detector is generally applicable for both large-
and small-sample scenarios, its theoretical threshold [6] is derived based on
the CLT and is only accurate for large-sample scenarios but not accurate for
small-sample situations.

TABLE IV
RELATIVE ERROR OF ASYMPTOTIC THEORETICAL THRESHOLD FOR

VARIOUS METHODS. m = 12, AND n = 15

digital TV signal and −12 dB for wireless microphone signal,
whereas the false-alarm probability must be not over 0.1. The
EMR test enjoys the advantage of better matching such a false-
alarm requirement.

C. Detection Probability

To predict the detection probability, we need to know the dis-
tribution of ξEMR under H1. To this end, we derive an approx-
imate analytical expression for the distribution of ξEMR based
on the RMT [35]. First, we have the following proposition for
the distribution of ξEMR in the presence of d “asymptotically
identifiable” signals whose population eigenvalues are above
the asymptotic limit of detection.

Proposition 2: Denote the signal population eigenvalues of

Ψ = HRsH
H (23)

by λ1 ≥ λ2 ≥ · · · ≥ λd > 0. Assume

λd > λDET
Δ
=

√
cτ (24)

where λDET is the asymptotic limit of detection. As m,n → ∞
and m/n → c ∈ (0,∞), we have

ξEMR
D−→ N

(
μξ, σ

2
ξ

)
(25)

where

μξ =
m

[
ν2 + (m− d)τ2(1 + c)

]
[ν1 + (m− d)τ ]2

(26)

σ2
ξ =∇TD∇ (27)

with

ν1 =
d∑

i=1

(λi + τ)

(
1 +

cτ

λi

)
(28a)

ν2 =

d∑
i=1

(λi + τ)2
(

1 +
cτ

λi

)2

(28b)

D = τ2c

[
1 2τ(1 + c)

2τ(1 + c) 2τ2(2c2 + 5c+ 2)

]
(29a)

∇ =
m

[ν1+(m−d)τ ]3

[
−1

[
ν2+(m−d)τ2(1+c)

]
ν1 + (m− d)τ

]
. (29b)
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Proof: The proof of Proposition 2 is provided in
Appendix A. �

According to Proposition 2, the detection probability is

Pd =P (ξEMR > γEMR|H1)

=P

(
ξEMR − μξ

σξ
>

γEMR − μξ

σξ

∣∣∣∣H1

)
=Q

(
γEMR − μξ

σξ

)
(30)

where μξ and σ2
ξ are given by (26) and (27), respectively.

In Proposition 2, we assume that all the d signals are identi-
fiable in the sense that their population eigenvalues are above
λDET. In what follows, we consider a mixture of q (q < d)
identifiable signals whose signal eigenvalues are greater than
λDET and (d− q) unidentifiable signals whose signal eigen-
values are less than or equal to λDET.

Proposition 3: Assume the ordered signal population eigen-
values satisfy

λ1 ≥ · · · ≥ λq > λDET > λq+1 ≥ · · · ≥ λd. (31)

As m,n → ∞ and m/n → c ∈ (0,∞), we have

ξEMR
D−→ N

(
μ̃ξ, σ̃

2
ξ

)
(32)

where

μ̃ξ =
m

(
ν̃2 + (m− q)τ2(1 + c)

)
(ν̃1 + (m− q)τ)2

(33)

σ̃2
ξ = ∇̃T

D∇̃ (34)

with

∇̃ =
m

[ν̃1 + (m− q)τ ]3

[−2
[
ν̃2 + (m− q)τ2(1 + c)

]
ν̃1 + (m− q)τ

]
(35a)

ν̃1 =

q∑
i=1

(λi + τ)

(
1 +

cτ

λi

)
+

d∑
i=q+1

λi (35b)

ν̃2 =

q∑
i=1

(λi + τ)2
(

1 +
cτ

λi

)2

+
d∑

i=q+1

(
λ2
i + 2τλi

)
. (35c)

Proof: The proof is given in Appendix B. �
Consequently, for λ1 ≥ · · · ≥ λq > λDET > λq+1 ≥ · · · ≥

λd and as m,n → ∞ with m/n → c, the detection probability
can be computed as (30) by replacing μξ and σξ with μ̃ξ and
σ̃ξ, respectively.

IV. SIMULATION RESULTS

A. Detection Performance

Here, we present simulation results to evaluate the perfor-
mance of the EMR detector. Each result represents an average
of 20000 independent Monte Carlo trials. At each run, the
channel coefficients of H are randomly generated from a
zero-mean circularly symmetric complex Gaussian (ZMCSCG)
distribution and then fixed during the sensing time. Moreover,

the column vectors of H are normalized to unit norm so that
the SNR is defined as (1/d)

∑d
i=1 σ

2
si
/τ . For the purpose of

comparison, the simulation results of the detectors shown in
Table I are presented as well. Nevertheless, since the MME is
inferior to the SLE in detecting a single source [12] (as well as
in detecting multiple sources according to our simulations), its
simulation results are not included for clarity. The ED is also
excluded due to its sensitivity to noise uncertainty [29], [40].
For fair comparison, the simulated decision thresholds of the
algorithms are used in signal detection.

First, we consider a CR network where each PU employs
a single antenna and carries equal-power and independent data
stream. A CR array of m = 7 antennas is employed to detect the
primary signals using n = 8 collected samples at each antenna.
The detection probability versus SNR for various numbers of
PUs at Pfa = 10−2 is shown in Fig. 2. It is shown in Fig. 2(a)
that, in the presence of a single primary signal, the SLE has
the best performance among all blind detectors. Moreover, the
EMR performs almost the same as the SLE. Recall that the
AGM algorithm is derived in the framework of the GLR test,
which depends on the ML estimate. Although it is optimal in
the small-antenna and large-sample limit, for large-antenna and
large-sample limit, its optimality cannot be guaranteed. Instead,
the EMR is more efficient for relatively small-sample scenarios.

In the situations of more than one primary signals, the EMR
outperforms the SLE, and the improvement is more significant
with the increase in the primary signal number, as shown in
Fig. 2(b)–(d). This is because the former is able to utilize all the
signal eigenvalues for signal detection, whereas the latter only
exploits the largest signal eigenvalue. The rank-d GLR [17],
which relies on the signal number information, does not suffer
the performance loss and performs comparably to or even better
than the EMR, particularly for medium SNRs in which the
signal power values are in the middle or upper half of [0, λDET)
[41]. When the numbers of antennas and samples are increased
to m = 12 and n = 15, however, the rank-d GLR is inferior to
the EMR, as shown in Fig. 3. Indeed, similar to the AGM, the
rank-d GLR is also developed in the framework of GLR test
using the ML estimate. Consequently, its optimality is attained
in the fixed m large n limit but cannot be guaranteed for the
sample-starving case when m is comparable in magnitude with
n. On the contrary, the EMR is developed from the RMT
perspective in which the numbers of antennas and samples are
comparable. Moreover, all the signal eigenvalues have been
used for signal detection in the EMR. Thus, the EMR sur-
passes other detectors, particularly when m is comparable to n
and d ≥ 2.

Next, we examine the effect of the spread out of eigenspec-
trum, namely, the disparity of the eigenvalues of HRsH

H ,
on the detection performance. Under the i.i.d. assumption of
the channel coefficients, two factors can affect the spread out
of eigenspectrum, i.e., the DR of the signal power values and
signal correlation. Fig. 4(a) shows the detection probability
versus the DR of the signal power values, which is defined
as 10 log10(σ

2
s2
/σ2

s1
) in decibels. Here, we consider two PUs

and assume that their signals are uncorrelated with an average
SNR of 7.5 dB. It is observed that, with the increase in the
DR, all blind detectors improve in performance, among which
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Fig. 2. Probability of detection versus SNR for uncorrelated equal-power primary signals. m = 7, n = 8, and Pfa = 10−2. (a) d = 1. (b) d = 2. (c) d = 3.
(d) d = 5.

the improvement in the SLE detector is the most significant,
whereas the enhancement in the rank-2 GLR detector is the
least significant. Consequently, when the two signals have
close-to-equal power, the rank-2 GLR slightly outperforms the
EMR, as indicated in Fig. 2(b) at SNR = 7.5 dB. However,
as the difference of their power increases, the performance
advantage of the former diminishes, and when the DR of the
signal power values is larger than 3 dB, it is inferior to the EMR.
Likewise, although initially the EMR is superior to the SLE,
the performance gap decreases as the power DR widens until
it becomes unnoticeable. Fig. 4(b) shows the detection prob-
ability versus signal correlation, where the parameters are the
same as those in Fig. 2(d) with SNR = 10 dB. The correlated
signal samples are generated from a first-order autoregressive
process as si(k) = ρsi−1(k) +

√
1 − |ρ|2 · ei(k), i = 1, . . . , d,

k = 1, . . . , n, where ei(k) is the i.i.d. ZMCSCG noise with
variance σ2

s , and ρ is the correlation coefficient (CC). It is
observed that the signal correlation has similar effect on the
detection performance as the DR of the signal power values.

With the increase in the signal correlation, all detectors achieve
an improvement by various degrees: the SLE grows fastest,
followed by the EMR and CAV, and the rank-5 GLR and
AGM grow slowest. As a result, the initial advantage of rank-5
GLR over the EMR, as shown in Fig. 2(d) at SNR = 10 dB,
diminishes until it becomes negative for increasing signal cor-
relation. This is because, for strongly correlated signals, the
energy of multiple signals gradually concentrates on the largest
eigenvalue, in which sense multiple signals essentially merge
into one signal.

In Fig. 5, the signal power values are assumed to be different,
and in each Monte Carlo run, their ratio randomly varies
according to a Chi-squared distribution. The empirical receiver
operating characteristic (ROC) curves of the EMR are plotted
in Fig. 5(a) and (b), where the parameters are the same as those
in Figs. 2(c) and 3(b), with the SNR being fixed at 8 and 5 dB,
respectively. We see that, under such an unequal-signal-power
condition, the EMR consistently performs better or as good as
the rank-d GLR and other methods, regardless of Pfa. Note that
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Fig. 3. Probability of detection versus SNR for uncorrelated equal-power primary signals. m = 12, n = 15, and Pfa = 10−2. (a) d = 1. (b) d = 2. (c) d = 4.
(d) d = 10.

the EMR is slightly inferior to the rank-d GLR under the equal-
signal-power condition, but this has changed under the unequal-
signal-power condition (comparing Fig. 2(c) at SNR = 8 dB to
Fig. 5(a) at Pfa = 0.01). These observations are consistent with
that obtained in Fig. 4.

Note that the EMR detector also exhibits competitive per-
formance in large-sample cases, which are more commonly
encountered in the CR network. As shown in Fig. 6, for a low
SNR of −2.5 dB, the EMR performs comparably to the rank-
d GLR under both equal-power and Chi-squared distributed
power settings. Moreover, the EMR outperforms the AGM, as
is consistent with [24], verifying that the EMR is the locally
most powerful invariant approach for sphericity test [42].

The strengths and weaknesses for the detection approaches
are summarized in Table V. It is implied in Table V that the
EMR algorithm is superior to the SLE, CAV, and AGM in
detection performance at almost all the conditions. Moreover,
although the rank-d GLR approach utilizes the a priori infor-

mation of the primary signal number d, it is still inferior to or
comparable with the EMR detector.

As pointed out in Remark 1, in addition to the EMR with
j = 2, the variant of EMR with a higher moment order j, i.e.,
ξ
(j)
EMR(j ≥ 3), can also be employed for spectrum sensing. To

numerically evaluate the behavior of ξ(j)EMR(j ≥ 3), the empi-
rical ROCs of the EMR with different js are plotted in Figs. 7
and 8. More specifically, the results for small samples are shown
in Fig. 7, where the number of antennas is six and the number of
samples is ten. Moreover, Fig. 7(a) corresponds to the situation
of a single primary signal with power of 7 dB, whereas Fig. 7(b)
studies the scenario of four primary signals with equal power
values of 5 dB. The results for large samples are demonstrated
in Fig. 8, in which the number of antennas is six and the number
of samples is 100. In Fig. 8(a), there is one primary signal with
power of 0 dB. In Fig. 8(b), the number of primary signals is
four, and the power for each signal is −3 dB. It is shown in
Fig. 7(a) and Fig. 8(a) that the EMR improves as its moment
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Fig. 4. Probability of detection versus (a) DR of power of d = 2 uncorrelated
primary signals. (b) CC ρ for d = 5 equal-power primary signals. m = 7
and n = 8, and Pfa = 10−2. (a) d = 2 and SNR = 7.5 dB. (b) d = 5 and
SNR = 10 dB.

order j increases for the situation of a single primary signal.
For multiple primary signals, however, the EMR improves as
its moment order j decreases from 6 to 2, as shown in Fig. 7(b)
and Fig. 8(b). That is, the performance of the EMR depends on
the value of j and the number of primary sources. Thus, the
EMR approach has different behaviors from John’s detector.

B. Accuracy of Theoretical Pfa and Pd

Let us first test the goodness of fit between the theoretical
false-alarm probability in (20) and the simulated one. The Pfa

versus γEMR is plotted in Fig. 9. It is shown in [24] that
the approximate beta distribution based on moment matching
is able to yield accurate false-alarm probability. As a result,
the theoretical Pfa derived in [24] is also included for com-
parison. We observe that theoretical false-alarm probability in
(20) agrees well with the simulated one and is comparable to
the expression of [24] in accuracy. Nevertheless, neither the

Fig. 5. Empirical ROCs for uncorrelated signals, whose power ratio is
randomly drawn from Chi-squared distribution in each Monte Carlo trial.
(a) m = 7, n = 8, d = 3, and SNR = 8 dB. (b) m = 12, n = 15, d = 2, and
SNR = 5 dB.

false-alarm probability in (20) nor the expression in [24] can
accurately fit the empirical false-alarm probability for large
thresholds. At large thresholds, the false-alarm probability be-
comes very small, e.g., less than 10−3. Recall that the false-
alarm probability in (20) is based on the asymptotic Gaussian
distribution in (19), which has the convergence rate O(m−2).
This thereby prohibits the expression in (20) to accurately pre-
dict the false-alarm probability at large thresholds. On the other
hand, notice that the approximate beta distribution in [24] is
based on the first- and second-order moment matching, without
considering the higher order moments. Consequently, it cannot
provide accurate prediction for the false-alarm probability at
large thresholds either.

Indeed, for larger m and n, it may be difficult to accurately
calculate the CDF in [24] due to the high numerical precision
and large DR required to evaluate the moments in [24, eq. (13)].
Moreover, note that the CDF expression in [24] varies with m
and n. This implies that we have to store a large number of
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Fig. 6. Empirical ROCs for uncorrelated signals, whose power ratio is ran-
domly drawn from Chi-squared distribution in each Monte Carlo trial. m = 5,
n = 100, d = 4, and SNR = −3 dB. (a) Equal power. (b) Chi-squared
distributed power.

lookup tables (for finding the inverse of the CDF) for every
possible pair of m and n, which involves additional storage
and renders real-time sensing difficulty particularly when n
varies dynamically with time. In contrast, our derived false-
alarm probability in (20) is much simpler to evaluate and only
involves the Q-function, which is independent of m and n.
Therefore, only one lookup table needs to be established at the
receiver. Moreover, our expression is more suitable for applica-
tions with strict real-time or processing-delay requirements.

Now, let us examine the accuracy of the theoretical detection
probability. The theoretical ROCs of the EMR are plotted in
Fig. 10, which stands for the mapping between the theoretical
false-alarm probability and theoretical detection probability.
The empirical ROCs of the EMR are provided as well for the
purpose of comparison. For the situation with two PUs shown
in Fig. 10(a), the theoretical Pd agrees well with its simulated
counterpart when the signal power is well above λDET or well
below λDET. However, for an intermediate signal power that

is close to the λDET, which is referred to as the transition
region [43], an apparent deviation of the theoretical detection
probability from its simulated counterpart is observed. In this
transition region [43], the fluctuation of the sample eigenval-
ues becomes difficult to characterize due to the complicated
interactions between the noise and signal eigenvalues, which
feature the phase transition phenomenon [43]. The derivation
of a more accurate formula for the transition region deserves
further research and is left as our future work. Note that, for
large-sample scenarios, the derived Pd is still able to provide
an accurate prediction of the detection performance of the
EMR, as shown in Fig. 10(b). Note also that our expression of
the detection probability provides comparable accuracy to that
derived in [24],3 which has a more involved form and is hence
much more computationally expensive to evaluate.

C. Comparison of Computational Complexity

The computational times for various algorithms are shown
in Fig. 11, where the numbers of antennas and samples vary
at the same rate, namely, m/n = 0.8. Note that the SNR
and signal number have no effect on the computational time.
We observe that the SLE, rank-2 GLR, MME, and AGM
consume almost the same computational time, of which the
slight difference is caused by the different extra time required
to compute the statistics once the sample eigenvalues have
been obtained. Specifically, the rank-2 GLR, AGM, and SLE
require slightly more computational time than the MME since
they involve additional additions and multiplications of the
smallest sample eigenvalues. It is seen that the EMR and CAV
need similar computational time, with the slight difference
resulting from the extra square root operations in the CAV.
Moreover, as m and n increase, the computational times of the
AGM/MME/SLE/rank-2 GLR increase most rapidly, followed
by the CAV/EMR, and the ED increases the slowest. Thus, the
numerical results are consistent with the theoretical calculations
in Table III.

V. CONCLUSION

An EMR algorithm has been devised to handle the blind
spectrum sensing in sample-starving environments. In the
threshold calculation, the EMR approach is able to use the
RMT results on the moments of the noise sample eigenvalues
and does not ignore any fluctuation, significantly enhancing
the computation accuracy. Moreover, as the EMR detector is
derived from the RMT perspective and utilizes all the signal
eigenvalues for detection, it outperforms other blind detectors
particularly for relatively small-sample scenarios. Furthermore,
the detection probability of the EMR method is theoretically
produced based on our derived analytical distribution of the
EMR statistic in the presence of primary signals. The numerical
results agree well with our theoretical analysis.

3Note that, in [24, Prop. 4], the mean value μz in the denominator of the
right-hand side (RHS) of (23a) and (23b) is wrong and has been corrected as
the variance νz .
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TABLE V
SUMMARY OF STRENGTHS AND WEAKNESSES FOR VARIOUS DETECTORS IN TERMS OF DETECTION PERFORMANCE

Fig. 7. Empirical ROCs of EMR variants. m = 6, n = 10. (a) d = 1 and
SNR = 7 dB. (b) d = 4, SNR = 5 dB, and signals are uncorrelated.

APPENDIX A
PROOF OF PROPOSITION 2

Setting

�̄s
Δ
=

d∑
i=1

�i, �̄w
Δ
=

m∑
i=d+1

�i (36)

�̃s
Δ
=

d∑
i=1

�2i , �̃w
Δ
=

m∑
i=d+1

�2i (37)

Fig. 8. Empirical ROCs of EMR variants. m = 6, and n = 100. (a) d = 1
and SNR = 0 dB. (b) d = 4, SNR = −3 dB, and signals are uncorrelated.

it follows from (17) that

ξEMR = m
�̃s + �̃w

(�̄s + �̄w)2
. (38)

For fixed d and signal power values, �̃s � �̃w and �̄s � �̄w as
m,n → ∞ with m/n → c; hence, the fluctuation of ξEMR is
dominated by those of �̃w and �̄w. Therefore, we can replace
the expressions of �̃s and �̄s by their limiting values in the joint
limit m,n → ∞ with m/n → c.
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Fig. 9. Test of goodness of agreement between theoretical and simulated
false-alarm probabilities. (a) m = 7 and n = 8. (b) m = 12 and n = 15.

According to [44, Prop. 3.41], as m,n → ∞ and m/n →
c, the sample eigenvalue �i(i = 1, . . . , d), a.s. converges to its
limiting value, i.e.,

�i
a.s.−→ E[�i] = (λi + τ)

(
1 +

cτ

λi

)
(39)

�2i
a.s.−→ E[�2i ] = (λi + τ)2

(
1 +

cτ

λi

)2

. (40)

It follows that

�̄s
a.s.−→

d∑
i=1

(λi + τ)

(
1 +

cτ

λi

)
Δ
= ν1 (41)

�̃s
a.s.−→

d∑
i=1

(λi + τ)2
(

1 +
cτ

λi

)2
Δ
= ν2. (42)

Substituting (41) and (42) into (38) yields

ξEMR → m
ν2 + �̃w

(ν1 + �̄w)2
. (43)

Fig. 10. Test of goodness of agreement between theoretical and simulated
probabilities of detection. d = 2 PU signals are assumed present, and their
power values are expressed as σ2

si
= giλDET, i = 1, 2, where gi is the scaling

coefficient, and λDET is the asymptotic limit of detection. The dotted line with
cross markers corresponds to the simulated detection probability, the dashed
line with plus markers represents the theoretical detection probability derived
in [24] [see Propositions 3 and 4 and (19)–(24)], and the solid line with circle
markers denotes the derived theoretical detection probability of (30) that is
obtained from the analytical distribution function of ξEMR in (25) and (32).
(a) m = 12 and n = 15. (b) m = 4 and n = 60.

On the other hand, since λi >
√
cτ , i = 1, . . . , d, the inter-

action between the signal and noise eigenvalues are small
(See (3.23) and the interacting particle system interpretation
of the sample eigenvalues in [44]).4 Therefore, the limiting
distributions of �̄w and �̃w can be approximated by those in the

4When λi >
√
cτ , i = 1, . . . , d, it holds that �i � �j , i = 1, . . . , d, j =

d+ 1, . . . ,m; therefore LSpk(�1, . . . , �d|�d+1, . . . , �m) in [44, (3.23)] is
approximately independent of the noise eigenvalues �d+1, . . . , �m. It follows
that the marginal probability density function of the noise sample eigenvalues
�d+1 ≥ · · · ≥ �m, which is deduced by integrating out �1, . . . , �d from the
joint probability density, is approximately equal to LBulk(�d+1, . . . , �m).
LBulk(�d+1, . . . , �m) turns out to be the same form as the probability density
function of “noise” eigenvalues in the absence of signals.
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Fig. 11. Computational time versus the number of antennas m. m/n = 0.8.

absence of signals. According to [27] and [37], in the absence

of signals, the vector z
Δ
= [�̄w − (m− d)τ, �̃w − (m− d)τ2

(1 + c)]T tends to be Gaussian distributed, i.e.,

z
D−→ N (02,D) (44)

where 02 = [0, 0]T and D is defined in (29a). It is worth
pointing out that the proof of the limiting fluctuation of z in
(44) was first conducted in [26] for real-valued observation and
later on in [37] for complex-valued observation, and the results
were well summarized in [27].

To determine the distribution of ξEMR by means of the Delta
method, we set f(x, y) = m(ν2 + y)/(ν1 + x)2 with x = �̄w
and y = �̃w. Applying the first-order Taylor series expansion of
f(x, y) around (x0, y0) = ((m− d)τ, (m− d)τ2(1 + c)), we
obtain

f(x, y) 	 f(x0, y0) + ∂fx(x0, y0)(x− x0)

+ ∂fy(x0, y0)(y − y0)

	 f(x0, y0) +∇Tz (45)

where

∇ =

[
∂fx(x0, y0)

∂fy(x0, y0)

]
(46)

which, after being simplified, takes the form of (29b). Thus, it
follows from (44) and (45) that, as m,n → ∞ and m/n → c,

ξEMR − f(x0, y0)
D−→ N (0, σ2

ξ ), where σ2
ξ is shown in (27).

This completes the proof.

APPENDIX B
PROOF OF PROPOSITION 3

Here, we only outline the proof.
In the presence of unidentifiable (weak) signals λi ≤ λDET,

i = q + 1, . . . , d, the (d− q) smallest signal-plus-noise sample
eigenvalues, namely, �i, i = q + 1, . . . , d, can arbitrarily ap-
proach the largest noise-only sample eigenvalues as m,n → ∞
and m/n → c [45]. Due to the interaction between the signal

and noise eigenvalues [44], the limiting distributions of �̄w and
�̃w can no longer be well approximated by (44).

To handle that, by noticing that λ1 ≥ · · · ≥ λq > λDET and
hence the interaction between the largest q signal eigenvalues
and noise eigenvalues is small [44], the limiting distributions of

l̄w
Δ
=

m∑
i=q+1

�i, l̃w
Δ
=

m∑
i=q+1

�2i (47)

can still be well approximated by (44). Notice that l̄w and l̃w in-
clude contributions from the (d− q) weak signal components,
namely

l̄w 	
m∑

i=q+1

�̆i +

d∑
i=q+1

λi (48)

l̃w 	
m∑

i=q+1

�̆2i +
d∑

i=q+1

(
λ2
i + 2τλi

)
(49)

where {�̆i}
m

i=q+1 are the assumed (m− q) smallest “signal-

free” sample eigenvalues, and
∑d

i=q+1 λi and
∑d

i=q+1(λ
2
i +

2τλi) constitute the contributions of the (d− q) weak signal
components. As a result, we first subtract the signal components
from l̄w and l̃w and then use (44) to approximate the distribution
of the difference.
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