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The parametric adaptive matched filter (PAMF) detector for

space-time adaptive processing (STAP) detection is reexamined

in this paper. Originally, the PAMF detector was introduced

by using a multichannel autoregressive (AR) parametric

model for the disturbance signal in STAP detection. While

the parametric approach brings in benefits such as reduced

training and computational requirements as compared with

fully adaptive STAP detectors, the PAMF detector as a

reduced-dimensional solution remains unclear. This paper

employs the conjugate-gradient (CG) algorithm to solve the

linear prediction problem arising in the PAMF detector. It is

shown that CG yields not only a new computationally efficient

implementation of the PAMF detector, a new and efficient AR

model order selection method that can naturally be integrated

with CG iterations, but it also offers new perspectives of PAMF

as a reduced-rank subspace detector. We first consider the

integration of the CG algorithm with the matched filter (MF)

and parametric matched filter (PMF) when the covariance matrix

of the disturbance signal is known. It is then extended to the

adaptive case where the covariance matrix is estimated from

training data. Important issues such as computational complexity

and convergence rate are discussed. Performance of the proposed

CG-PAMF detector is examined by using the KASSPER and

other computer generated data.
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I. INTRODUCTION

This paper is concerned with a multichannel

signal detection problem frequently encountered in

phased-array radars and many other applications.

With extra spatial information provided by multiple

sensors, higher performance of signal detection can

be achieved (than a single-sensor system), especially

in detection of signals buried in a background of

directional jammers and space-time correlated clutter.

A widely explored technology for multichannel signal

detection is space-time adaptive processing (STAP)

[1], first proposed by Brennan, Reed, and Mallett

[2]. Most STAP-based methods, such as the adaptive

matched filter (AMF) [3] and Kelly’s generalized

likelihood ratio test (GLRT) [4], need to invert a large

space-time covariance matrix. These methods require

not only a large number of independent, identically

distributed, signal-free training data to estimate the

matrix, but they also incur a high computational cost

for matrix estimation and inversion.

A parametric STAP detector based on a

multichannel autoregressive (AR) disturbance model

has been proposed for airborne radar applications

[5, 6] to reduce both the training data requirement

and computation load. This method is called the

parametric adaptive matched filter (PAMF) [6].

While the PAMF detector has been found to yield

exceptional performance with significantly reduced

training and computational requirements when

compared with fully adaptive STAP detectors,

the connections between the PAMF and other

reduced-dimensional or partially adaptive STAP

detectors [1], which have similar benefits in training

and complexity, remain unclear.

This paper aims to provide some insights into

this problem by employing the conjugate-gradient

(CG) method to solve the linear prediction problem

underlying the temporal whitening phase of the PAMF

detector. Our choice of the CG method is motivated

by several factors. First, as will be shown, the CG

algorithm naturally leads to a subspace interpretation

of the PAMF detector, and offers a connection to

the other reduced-rank STAP detectors. Second, the

CG method is a computationally efficient algorithm

to solve the linear prediction problem underlying

the PAMF detector. In particular, for airborne radar

applications, due to an inherent structure of the

disturbance covariance matrix, the CG algorithm

can usually achieve convergence using only a few

iterations, thus providing significant computational

saving. Third, since the disturbance covariance

matrix has a block-Toeplitz (BT) matrix structure,

preconditioning methods (e.g., [7], [8], [9]) can be

employed, which are very effective in further speeding

up the convergence rate in CG iterations, while adding

up only a modest computational overhead per iteration

(due to the BT structure). Finally, as a by-product,
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we show that the CG algorithm also yields a new and

computationally efficient AR model order selection

method that can be integrated with the CG iterations.

The remainder of this paper is organized as

follows. The signal detection problem is introduced

in Section II. A brief review of the matched filter

(MF) and parametric matched filter (PMF) detectors is

provided in Section III. In Section IV the CG versions

of MF (CG-MF) and PMF (CG-PMF) and a CG-based

model order selection method are proposed. The

convergence rate of CG in airborne radar applications,

along with a preconditioned CG-PMF (PCG-PMF)

detector, are also discussed there. In Section V we

consider the adaptive case and present a new model

order-selection CG-PAMF (OSCG-PAMF) detector,

when both the AR model order and coefficients are

unknown. The performance of the proposed class

of CG-PMF and CG-PAMF detectors is illustrated

by numerical results in Section VI. Conclusions are

summarized in Section VII.

Vectors and matrices are denoted by boldface

lower-case and upper-case letters, respectively.

Transpose, complex conjugate and complex conjugate

transpose are, respectively, represented by (¢)T,
(¢)¤ and (¢)H. C and R denote the complex and
real number fields. CN (¹,R) denotes an additive
multivariate Gaussian random variable with mean

vector ¹ and covariance matrix R.

II. DATA MODEL

Consider a received J-channel sequence fx(n) j n=
1,2, : : : ,Ng corrupted by a space-time correlated
disturbance random process c(n). The detection

problem involves the following binary hypotheses:

H0 : x(n) = c(n)

H1 : x(n) = as(n)+ c(n)
(1)

where s(n) is a known J-channel signal and a is its

deterministic but unknown complex amplitude. All

vectors in (1) are J £1 vectors. For convenience
of later discussions, define the following vectors in

descending order: s= [sT(N),sT(N ¡ 1), : : : ,sT(1)]T,
c= [cT(N),cT(N ¡ 1), : : : ,cT(1)]T, x= [xT(N),
xT(N ¡1), : : : ,xT(1)]T. It is standard to assume that
the disturbance c is a Gaussian random vector with

zero-mean and space-time covariance matrix Rc 2
CJN£JN , while the signal vector s(n) is deterministic
(Swerling 0 target). Based on these assumptions,

x» CN (as,Rc), where a= 0 under H0 and a 6= 0
under H1.

In STAP, the signal s is known as the space-time

steering vector:

s= st− ss (2)

where st and ss denote the temporal steering

vector and spatial steering vector, respectively,

and − denotes the Kronecker product. For a

side-looking uniform linear array (ULA), we

have st = (1=
p
N)[ei2¼(N¡1)fd , : : : ,ei2¼fd ,1]T with

a normalized Doppler frequency fd and ss =

(1=
p
J)[ei2¼(J¡1)fs , : : : ,ei2¼fs ,1]T with a normalized

spatial frequency fs. Practically, the true disturbance

covariance matrix Rc is unknown, and often an

estimate can be obtained from the secondary data:

R̂c =
1

K

KX
k=1

ckc
H
k (3)

where ck, k = 1,2, : : : ,K, denote the secondary

data vectors assumed to be signal free. According

to the well-known “RMB” rule [10], we

need K ¸ 2JN ¡ 3 so that the average output
signal-to-interference-plus-noise ratio (SINR) loss

caused by covariance estimation error is less than

3 dB. Detectors with an estimated covariance matrix

are often called adaptive methods.

III. MF AND PMF

Assuming a known Rc, the MF is obtained by

maximizing the output SINR of a linear receiver or

the generalized likelihood ratio (GLR). The test is

given by (e.g., [3]):

jsHR¡1c xj2
sHR¡1c s

H1
7
H0

´MF (4)

where ´MF is the threshold of the MF. Equation (4)

is the well-known matched subspace detector for a

rank-1 signal in colored noise. Consequently, it offers

unbeatable performance for the detection problem

considered in (1).

For ease of exposition, the MF can also be

represented by using a structure of temporal whitening

cascaded with spatial whitening arising from a block

LDU decomposition of the disturbance covariance

matrix [6]. This form of MF is given by

j(Q¡1=2L¡1s)H(Q¡1=2")j2
(Q¡1=2L¡1s)H(Q¡1=2L¡1s)

=
js̃Hºj2
s̃Hs̃

H1
7
H0

´MF (5)

where Q 2 CJN£JN is a block-diagonal matrix with
Hermitian matrices Q(n),n= 1,2, : : : ,N, along the

main block diagonal, and L 2 CJN£JN is a lower
block-triangular matrix with J £ J identity matrices
along the main block diagonal. Both L and Q come

from a block LDU decomposition of the disturbance

covariance matrix Rc = LQL
H. Finally,

"(n) = x(n)¡
(n¡1)X
p=1

AHn (p)x(n¡p) (6)

º(n) =Q¡1=2(n)"(n) (7)

s̃(n) =Q¡1=2(n)

24s(n)¡ (n¡1)X
p=1

AHn (p)s(n¡p)
35 (8)
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where AHn (p) 2CJ£J is a block element of L¡1 located
at the (n¡p)th block column and the nth block row.
Due to the fact that there is no performance penalty

for the prewhitening of the interference [11, ch. 6], (5)

is equivalent to (4).

If the disturbance c(n) is stationary in time, the
MF can be simplified. A PMF was introduced in [6]

by modeling the disturbance as a stationary Pth-order

multichannel AR process. Specifically,

c(n) =

PX
p=1

AH(p)c(n¡p)+ "P(n) (9)

where AH(p), p= 1,2, : : : ,P, is the pth AR matrix
coefficient of linear prediction, and "P(n) is the
temporally white noise with a spatial covariance

matrix QP . The PMF test is given by [6]¯̄̄PN
n=P+1 s̃

H
P (n)ºP(n)

¯̄̄2
PN
n=P+1 s̃

H
P (n)s̃P(n)

H1
7
H0

´PMF (10)

where ºP(n) =Q
¡1=2
P "P(n) and

s̃P(n) =Q
¡1=2
P

24s(n)¡ PX
p=1

AH(p)s(n¡p)
35 (11)

for n= P+1, : : : ,N. In practice, the model order P

and the AR coefficients fA(p)g are unknown and
hence estimated from the secondary data and/or

primary data. Different estimators lead to different

versions and implementations of the PAMF detector

[6, 12].

IV. CG-MF AND CG-PMF

In this section we discuss alternative

implementations of the MF and PMF via the CG

algorithm. The resulting detectors are referred to as

the CG-MF and CG-PMF detectors, respectively,

for brevity. We start from the CG-MF, which

also sets the basis for the CG-PMF. The latter, by

assuming that the disturbance c(n) is temporally
stationary, is a computationally simplified version

of the CG-MF. The link between the PMF and CG

as developed in the sequel reveals the PMF as a

reduced-dimensional subspace detector. In this section

we assume knowledge of the covariance matrix of

the disturbance signal. An adaptive versions of the

CG-PMF (i.e., CG-PAMF) is discussed in Section V.

A. Conjugate-Gradient MF

The MF detector, as shown in Section III, can

be derived from a time-varying linear prediction

process. Specifically, consider the problem of linearly

predicting the nth sample x(n) under H0 from all prior

received samples x(n¡ 1),x(n¡ 2), : : : ,x(1) (cf. (9))
x(n) = BH(n)y(n) +"(n) (12)

where B(n) = [AHn (1),A
H
n (2), : : : ,A

H
n (n¡ 1)]H =

[B1(n),B2(n), : : : ,BJ (n)] 2CJ(n¡1)£J denotes the
(n¡1)st-order time-varying multichannel linear
prediction filter, and y(n) = [yn(1),yn(2), : : : ,
yn(J(n¡ 1)]T = [xT(n¡ 1),xT(n¡ 2), : : : ,xT(1)]T
contains all n¡1 previously received data vectors.
It is noted that the above time-varying linear

predictor grows in its filter order or size with n. The

multichannel linear predictor is equivalent to J linear

predictors:

xj(n) = B
H
j (n)y(n) + "j(n), j = 1,2, : : : ,J (13)

where Bj(n) is a J(n¡1)-dimensional vector which
contains the cross-channel correlation information

associated with the jth channel. The optimum linear

predictor can be obtained by solving the Wiener-Hopf

equations:

Ry(n)Bj(n) =Rj(n), j = 1,2, : : : ,J (14)

where Ry(n) = E[y(n)y
H(n)] 2CJ(n¡1)£J(n¡1) and

Rj(n) = E[y(n)x
¤
j (n)] 2CJ(n¡1)£1. Again, note that the

size of the Wiener-Hopf equation grows with n.

To obtain a temporally whitened sequence "(n)
for MF detection (cf. (6)), the above linear prediction

process has to be performed multiple times, starting

from n= 2 to n=N. For each n, we need to solve

a Wiener-Hopf equation of the form of (14). While

there are various solvers to the linear Wiener-Hopf

equation, we consider using the CG method, which

has several properties such as fast convergence, a

direct link to the Krylov subspace [7], and a built-in

model order selection capability. Additional remarks

on such aspects are provided shortly.

The recursive procedure involved for the

determination of the linear predictors is described as

follows (also see (9)).

ALGORITHM

for n= 2 to N do
for j = 1 to J do
Initialization. Initialize the conjugate-direction

vector D0,j(n), gradient vector °1,j(n) and initial
solution B0,j(n):

D1,j(n) =¡°1,j(n) =Rj(n) (15)

B0,j(n) = 0: (16)

for k = 1,2, : : :, until convergence (k · J(n¡ 1)) do
Update the step size ®k,j:

®k,j(n) =
k°k,j(n)k2

DHk,j(n)Ry(n)Dk,j(n)
: (17)

Update the solution Bk,j:

Bk,j(n) = Bk¡1,j(n)+®k,j(n)Dk,j(n): (18)

Update the gradient vector °k+1,j:

°k+1,j(n) = °k,j(n) +®k,j(n)Ry(n)Dk,j(n): (19)

JIANG, ET AL.: CONJUGATE GRADIENT PARAMETRIC DETECTION OF MULTICHANNEL SIGNALS 1523



Fig. 1. Time-varying linear prediction in the CG MF detector.

Update the conjugate-direction vector Dk+1,j:

Dk+1,j(n) =Dk,j(n)
k°k+1,j(n)k2
k°k,j(n)k2

¡°k+1,j(n):

(20)
end for

end for

end for

Let B(n) be the multichannel linear predictor

formed from Bk,j after convergence. Then, B(n) can be

used to whiten x(n) to produce a temporally whitened

sequence "(n). The spatial covariance matrix Q(n) of
"(n) is given by (cf. (15))

Q(n) = E["(n)"H(n)]

=Rx(n)¡BH(n)Ryx(n) (21)

where Rx(n) = E[x(n)x
H(n)] 2 CJ£J , and Ryx(n) =

E[y(n)xH(n)] 2CJ(n¡1)£J , which is used for further
spatial whitening [6].

Fig. 1 depicts the CG-MF detector that

produces the nth sample of the temporally whitened

sequence "j(n) for the jth channel, where Dk,j(n) =

[D1,j(n),D2,j(n), : : : ,Dk,j(n)] is the conjugate-direction

matrix. CG iterations lead to a set of linearly

independent vectors D1,j(n), : : : ,Dk,j(n) that are

conjugate orthogonal, i.e.,

DHk,j(n)Ry(n)Dl,j(n) = 0, k 6= l: (22)

The output of the kth iteration is given by

Bk,j(n) =

kX
m=1

®m,j(n)Dm,j(n) (23)

which is a vector in the k-dimensional vector

space spanned by the conjugate-direction vectors

fDm,j(n),m= 1,2, : : : ,kg. The iterative procedure for
the prediction of the nth sample xj(n), which involves

a J(n¡ 1)st-order linear predictor, converges after at
most J(n¡ 1) iterations. The final solution Bj(n) lies
in a J(n¡1)-dimensional vector space.

B. CG-PMF with Known AR Model Order

If the disturbance signal can be approximated as a

temporally wide-sense stationary (WSS) multichannel

AR process, the linear prediction problem of the

previous subsection can be significantly simplified.

Specifically, suppose the disturbance is an AR(P)

Fig. 2. Time-invariant linear prediction in the CG-PMF detector.

process with model order P. In this case the optimum
linear predictor for the nth sample x(n) requires only
P most recently received samples (as opposed to all
past samples) and the prediction filter is time invariant
with a fixed size (as opposed to time varying with a
growing size) [13]:

x(n) = BHyP(n) + "P(n) (24)

where the fixed Pth-order linear predictor B=
[AH(1),AH(2), : : : ,AH(P)]H = [B1,B2, : : : ,BJ ] 2
CJP£J is composed of the AR coefficient matrices
fAH(p)g (cf. (9)), yP(n) = [yn(1),yn(2), : : : ,yn(JP)]T =
[xT(n¡ 1),xT(n¡ 2), : : : ,xT(n¡P)]T denotes the
regression data vector, and n > P. Again, it is
convenient to express the above multichannel linear
predictor as J scalar linear predictors:

xj(n) = B
H
j yP(n) + "P,j(n), j = 1,2, : : : ,J: (25)

The structure of temporal whitening via linear
prediction for the PMF detector is shown in Fig. 2.
The solution to the scalar linear prediction problem

can be obtained by solving the following Wiener-Hopf
equation

RyBj =Rj , j = 1,2, : : : ,J (26)

where Ry = E[yP(n)y
H
P (n)] 2 CJP£JP and Rj =

E[yP(n)x
¤
j (n)] 2 CJP£1. It should be noted that unlike

the MF detector, the above Wiener-Hopf is time
invariant, has a fixed size, and needs to be solved
only once. The resulting solution Bj can be used to
whiten the entire received signal x(n) for n > P. The
CG algorithm can also be applied to solve (26), and
the resulting detector is referred to as the CG-PMF
detector. Since only one fixed-sized Wiener-Hopf
equation needs to be solved, the CG-PMF detector
is computationally much simpler. Specifically, the
outer loop for varying n as discussed in Section IVA
vanishes, and only the conjugate-gradient processing
with n= P+1 is needed.

REMARK The iterative procedure of CG converges
after at most JP iterations for the CG-PMF. As a
result, the final solution Bj lies in a JP-dimensional
vector space spanned by the conjugate-direction
vectors Dk,j , k = 1,2, : : : ,JP, or equivalently, the
JP-dimensional Krylov subspace [7]:

K(Rj ,Ry,JP) = spanfRj ,RyRj , : : : ,RJP¡1y Rjg:
(27)
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This shows that the PMF is a reduced JP-dimensional

solution, as opposed to the full JN-dimensional MF

detector. The same conclusion applies to the adaptive

version CG-PAMF detector discussed in Section V.

C. Model Order Selection by CG

In practice, the AR model order P of the

disturbance is often unknown and has to be estimated.

A practical approach is to choose an upper bound

P̄ for P, and use the CG algorithm to solve the

following Wiener-Hopf equation

R(P̄)y B
(P̄)
j =R(P̄)j , j = 1,2, : : : ,J (28)

where R(P̄)y = E[y
P̄
(n)yH

P̄
(n)] 2 CJP̄£JP̄ and R(P̄)j =

E[y
P̄
(n)x¤j (n)] 2CJP̄£1. The CG iterative procedure

will converge after at most JP̄ iterations with B(P̄)j =

[BTj ,0
T

J(P̄¡P)£1]
T. However, with a loosely determined

upper bound P̄, it is often necessary for the sake of

reducing computational complexity to stop the CG

iterations before it reaches the maximum number of

iterations. In this section, we propose a model order

selection method for use with the CG algorithm,

which is based on the following result.

LEMMA 1 Suppose the disturbance in (1) is a

J-channel AR(P) process. Let B(P̄)k,j 2CJP̄£1 be the
solution to (28) obtained by CG at the kth iteration,

where k = Jp and p· P̄. Let B(p)j 2 CJp£1 be the
solution to R

(p)
y B

(p)
j =R

(p)
j . Then we have

B(P̄)k,j =Wk,jB
(p)
j when p= P (29)

where Wk,j =D
(P̄)
k,j D̄

H
k,j , D

(P̄)
k,j = [D

(P̄)
1,j ,D

(P̄)
2,j , : : : ,D

(P̄)
k,j ]

is the conjugate-direction matrix, and D̄k,j is a

k£ k matrix composed of the first k rows of D̃k,j =
[D̃1,j ,D̃2,j , : : : ,D̃k,j] with

D̃k,j =
R(P̄)y D

(P̄)
k,j

D(P̄)Hk,j R(P̄)y D
(P̄)
k,j

(30)

PROOF See Appendix I.

From (29), when p= P, the JP̄£ JP matrix WJP,j

transforms Bj in K(Rj ,Ry,JP), which is generated by
CG-PMF with a known P, to B(P̄)JP,j in K(Rj ,R(P̄)y ,JP),
which is generated by CG-PMF with an unknown P.

So the PMF AR coefficient vector Bj is completely

determined by the truncated solution B(P̄)JP,j of CG with
an unknown P after JP iterations.

We now explain how to use Lemma 1 for AR

model order selection in CG-PMF. Define the residue

vector

²k,j = B
(P̄)
k,j ¡D(P̄)k,j D̄Hk,jB(p)j for k = Jp: (31)

According to (29), ²k,j = 0 when k = JP, so the
norm of ²k,j can be used for model order selection.

However, since the Wiener solution B
(p)
j is practically

unknown, ²k,j cannot be directly computed from (31).

We propose an approach to replace B
(p)
j in (31) by the

truncated solution composed of the first k elements of

B(P̄)k,j , which can be considered as an approximation of

[BTj ,0
T

J(P̄¡P)£1]
T

²̂k,j = B
(P̄)
k,j ¡D(P̄)k,j D̄Hk,jB̄(P̄)k,j (32)

where B̄(P̄)k,j contains the first k = Jp elements of B
(P̄)
k,j .

Our CG-based model order selection procedure is

summarized as follows.

Step 1 Select an upper bound P̄ for the model

order. One such an upper bound suggested in [6] for

STAP detection is

P̄ =max

($
3
p
N

J

%)
(33)

where b¢c rounds a real-valued number towards zero.
Step 2 Use the CG algorithm to solve the

Wiener-Hopf equation (28).

Step 2.1 Following every J iterations of the

CG algorithm, compute the average residue over J

channels:

¯̂²
2

k =
1

J

JX
j=1

k²̂k,jk2, k = J ,2J , : : : (34)

Step 2.2 If ¯̂²
2

Jp is smaller than a specified

tolerance level, then stop the CG iteration, and the

estimated AR model order is P̂ = p.

The advantage of the above CG-based model

order selection method is that it does not require

full iterations of the CG algorithm and is efficient.

The complexity of the CG algorithm with full

iterations is in the same order as that of computing

the inverse of R(P̄)y , which is O(J3P̄3), while the
complexity of using the CG-based order selection

method, is O(J3PP̄2). This is because the latter only
requires JP iterations to determine the model order,

and the additional complexity in each J iterations

for (32) is the complexity of two matrix-vector

multiplications, which is 2(JP̄)2. So the total

complexity is O(JP(JP̄)2 +2P(JP̄)2)¼O(J3PP̄2).
Next, we compare the computational complexity of

the CG-PMF with an unknown P with the complexity

of the eigencanceler [14], which is a standard

eigen-subspace detector. The eigencanceler method,

has a complexity of 9J3N3 by using the symmetric

QR algorithm to obtain the eigen-subspace and its

corresponding eigenvalues [7]. Since P̄ ·N, and
generally P¿N, the complexity of CG-PMF is much

lower than eigencanceler.
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D. Convergence in Airborne Radar Applications

One important property of the CG algorithm is its

fast convergence. In general, it takes no more than

JP iterations to solve the linear equation (26) [7].

Even faster convergence is possible if the covariance

matrix of the disturbance has some specific structure.

In particular, if the covariance matrix is a rank-rc
correction of an identity matrix:

Ry =Ri +¾
2
nI (35)

where Ri is a rank-rc positive semidefinite matrix,

then the CG algorithm converges in at most rc +1

iterations [7].

In airborne radar applications, the disturbance

covariance matrix often consists of two components,

namely a low-rank Ri due to the clutter and jamming

and a scaled identity ¾2nI due to the white noise, where

¾2n denotes the noise variance. The rank rc is typically

much smaller than the joint spatio-temporal dimension

JN. Specifically, if the disturbance is primarily due

to ground clutter and thermal noise, then according to

Brennan’s rule [2], the rank of the clutter covariance

matrix for the full-dimensional MF is approximately

rc,full ¼ dJ +(N ¡ 1)¯e (36)

where ¯ = 2vgTr=d, vg is the platform velocity, Tr is

the pulse repetition period, d is the antenna element

spacing, and d¢e rounds a real-valued number towards
infinity.

Likewise, we can approximate the rank of the

disturbance covariance matrix for the PMF detector as

rc ¼ dJ +(P¡1)¯e: (37)

The smaller rank rc over (36) is due to the fact that

the disturbance covariance matrix is formed over P

pulses, which is sufficient for the reduced-dimensional

PMF detector due to the underlying AR(P) model.

Meanwhile, the space-time disturbance covariance

matrix for the full-dimensional MF detector is formed

over N (the entire number of) pulses. As such, the

PMF can benefit more from the fast convergence

property of the CG algorithm.

E. Preconditioned CG-PMF

In cases where the disturbance covariance does not

have a low-rank structure as in (35), preconditioning

is usually helpful in improving the convergence rate.

The idea is based on the fact that the convergence

rate of CG is determined mainly by the eigenvalue

structure of Ry. In particular, the residue between the

Wiener solution and kth-step CG result is bounded

by [7]

kBk,j ¡BjkRy · 2kB0,j ¡BjkRy
μp

·¡ 1p
·+1

¶k
(38)

where k!kRy =
q
!HRy! denotes the Ry norm and ·

is the condition number of Ry. It is clear that rapid

convergence can be achieved if · is near 1. In the

following we discuss the use of preconditioning with

the CG-PMF. For simplicity, the resulting detector is

referred to as the PCG-PMF detector.

Specifically, consider the modified Wiener-Hopf

equation (cf. (26))

R̃yB̃j = R̃j (39)

where R̃y =M
¡1=2RyM

¡1=2, B̃j =M
1=2Bj , R̃j =

M¡1=2Bj , and M is a Hermitian positive-definite

matrix that is called preconditioner [7]. The

preconditioner is used to yield a better conditioned

R̃y, which has a smaller condition number than Ry,

and thus a faster convergence rate. For PMF, the

disturbance covariance matrix is a BT matrix. For

such matrices, block-circulant (BC) preconditioners

are often recommended [8, 9]. Our BC preconditioner

can be directly computed from the disturbance

covariance matrix Ry which has the following BT

matrix structure:

Ry =

2664
Rx(0) ¢ ¢ ¢ Rx(P¡ 1)
...

. . .
...

Rx(1¡P) ¢ ¢ ¢ Rx(0)

3775 (40)

where Rx(m) = E[x(n)x
H(n¡m)] 2 CJ£J . In particular,

the BC preconditioner is given by [15]

M=

266664
M0 MP¡1 ¢ ¢ ¢ M1

M1 M0 ¢ ¢ ¢ M2

...
...

. . .
...

MP¡1 MP¡2 ¢ ¢ ¢ M0

377775
where

Mk =
(P¡ k)Rx(k) + kRx(k¡P)

P
, 0· k < P:

(41)

It is noted that, as shown in [7], practically M¡1=2

does not need to be explicitly calculated in the PCG

algorithm. The PCG algorithm is summarized as

follows.

ALGORITHM

Initialization. Initialize the conjugate-direction vector

D1,j , gradient vector °1,j , preconditioned vector z1,j and
initial solution B0,j:

°1,j =¡Rj (42)

D1,j = z1,j =M
¡1°1,j (43)

B0,j = 0: (44)

for k = 1,2, : : :, until convergence (k · J(P¡ 1)) do
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TABLE I

Complexity of PCG-PMF

Equation Flops Remark

(41) O(J2P) calculated once

M¡1 O(J2P log2P+ J3P) calculated once

(45) O(J3P log2P) at kth iteration

(46) O(J2P) at kth iteration

(47) O(J2P) at kth iteration

(48) O(J3P log2P) at kth iteration

(49) O(J2P) at kth iteration

Total ¼O(rJ3P log2P) for r iterations

Update the step size ®k,j:

®k,j =
°Hk,jzk,j

DHk,jRyDk,j
: (45)

Update the solution Bk,j:

Bk,j = Bk¡1,j +®k,jDk,j : (46)

Update the gradient vector °k+1,j:

°k+1,j = °k,j +®k,jRyDk,j : (47)

Update the preconditioned vector zk+1,j:

zk+1,j =M
¡1°k+1,j : (48)

Update the conjugate-direction vector Dk+1,j

Dk+1,j = zk,j +
°Hk+1,jzk+1,j

°Hk,jzk,j
Dk,j : (49)

end for

The complexity associated with the AR parameter

estimation in PCG-PMF is summarized in Table I,

where r is the number of iterations needed by the

PCG algorithm to reach convergence, and the flop

counts are for all J channels. It is interesting to

note that the PCG-PMF is computationally very

efficient, involving approximately O(rJ3P log2P).
The computational efficiency is primarily due to the

fast convergence rate offered by preconditioning and

the use of a BC preconditioner, as explained next.

In the following we discuss the complexity of only

M¡1, (45), and (48), since the other calculations are
obvious.

First, we consider M¡1. Since M is a BC matrix,

the inverse of M can be computed by using the fast

Fourier transform (FFT) [16]

M¡1 =

2666664
C0 CP¡1 ¢ ¢ ¢ C1

C1 C0 ¢ ¢ ¢ C2

...
... ¢ ¢ ¢ ...

CP¡1 CP¡2 ¢ ¢ ¢ C0

3777775 (50)

where

Cm =
1

P2

P¡1X
k=0

W¡km
P M¡1

k , m= 0,1, : : : ,P¡ 1

(51)
and W¡km

P = exp(j2km¼=P). It follows that the

computation of M¡1 is composed of P matrix
inversions of J £ J matrices and J2 FFTs of length P.
Therefore, the total complexity is O(J2P log2P+ J3P).
Second, we consider (45). The main complexity

of (45) is matrix-vector multiplication RyDk,j .

Since Ry is a JP-dimensional BT matrix, the above

matrix-vector multiplication consists of J2 Toeplitz

matrix-vector multiplications, where each Toeplitz

matrix is a P£P matrix. Each Toeplitz matrix-vector
multiplication can be implemented by the FFT using

O(P log2P) flops [17]. Hence, the complexity of (45)
for each channel per iteration is O(J2P log2P). With J
channels and r iterations, the total complexity of (45)

is O(rJ3P log2P).
Finally, we consider (48). Since the preconditioner

M is a BC matrix, (48) can again be computed by J2

FFTs of length P. The complexity for each channel

per iteration is O(J2P log2P), so the total complexity
of (48) for J channels is O(rJ3P log2P).
Here, we make a comparison between the

PCG-PMF and CG-PMF. Since the condition number

of the preconditioned disturbance covariance matrix

R̃y is generally smaller than that of Ry, PCG-PMF

provides a faster convergence than CG-PMF. The

latter has a complexity of O(J3P3).

V. CONJUGATE-GRADIENT PAMF

The CG-PMF algorithm is now extended to the

adaptive case when both the covariance matrix and

the AR model order P are unknown. The resulting

detector is referred to as the CG-PAMF detector.

The extension of CG-PMF involves 1) replacing

the true covariance matrices with estimates obtained

from the target-free training data, and 2) integrating

the CG-based model order selection proposed in

Section IVC with CG iterations. The CG-PAMF

detector with OSCG-PAMF is summarized next.

Step 1 Estimate the disturbance covariance

matrices from the training data via temporal and range

averaging:

R̂(P̄)y =

2664
R̂x(0) ¢ ¢ ¢ R̂x(P̄¡ 1)
...

. . .
...

R̂x(1¡ P̄) ¢ ¢ ¢ R̂x(0)

3775 (52)

R̂(P̄)yx =

2664
R̂x(¡1)
...

R̂x(¡P̄)

3775 (53)
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where the submatrices are given by

R̂Hxx(m) =
1

NK

KX
k=1

N¡mX
l=1

xk(l+m)x
H
k (l) (54)

with K denoting the number of training data vectors

and P̄ determined by (33).

Step 2 Use the CG algorithm to solve

R̂(P̄)y B̂
(P̄) = R̂(P̄)yx : (55)

Step 2.1 Examine the residual ¯̂²Jp (34) at

each Jpth (p= 1,2, : : : , P̄) iteration of CG. If ¯̂²Jp <

®0
¯̂²J(p¡1), where 0< ®0 < 1 is a stopping threshold,

then exit the CG iteration, and set the AR model order

as P̂ = p.

Unlike the original PAMF with an unknown

AR model order [6], which has to run recursively

from p= 1 to a P̂ (P̂ · P̄) to jointly estimate the AR
coefficients and model order, OSCG-PAMF does not

contain any recursion. It only has to perform CG

with the disturbance covariance matrix R(P̄)y for JP̂

iterations to obtain a model order estimate.

REMARK Several estimators can be employed

to find the linear prediction filters for the PAMF.

The estimator as represented by (55) along with

the covariance matrix estimates (52)—(54) is often

called the multichannel Yule-Walker method. Other

estimators, such as the least-squares estimators [6],

solve slightly modified versions of the linear equation

(55). It is noted that in most cases, the CG algorithm

can be used to efficiently solve such a modified linear

equation. Due to space limit, we do not explore these

alternative CG-PAMF detectors.

A similar comparison can be made between the

complexity of the OSCG-PAMF detector and that

of the eigencanceler when the covariance matrix is

unknown. In addition to the numbers of flops as

summarized in Section IVC, both have to pay the

extra complexity needed to estimate the covariance

matrix. In this case, the OSCG-PAMF requires an

additional complexity of O(J2P̄NK) as incurred
in (52)—(54), whereas the extra complexity for the

eigencanceler is O(J2N2K) that is used to estimate
a full (JN £ JN) space-time covariance matrix from K

training signals.

VI. NUMERICAL RESULTS

In this section simulation results are provided to

illustrate the performance of the proposed techniques.

We consider simulated data generated using AR

models and the KASSPER data [18], which were

obtained from more realistic clutter models. The

simulation results presented below use 20000

independent Monte Carlo data realizations and a

probability of false alarm of Pfa = 10
¡2. The chosen

Pfa may be considered too high for many practical
detection applications. It is noted that the choice is

only to facilitate computer simulation and reduce
simulation time. The main observations from the

simulation, including the convergence of the CG
algorithm in PAMF detection and the accuracy of the
estimated P provided by the proposed model order

selection method, are independent of the choice of Pfa.
A major issue that we like to illustrate in the

following numerical examples is the convergence of
the CG algorithm, with partial or full iterations, when
the data covariance matrix is known or estimated,

and/or when the AR model order is known or
estimated. To this end we compare the various

detectors used with the CG algorithm, including the
CG-PMF (Section IVB), CG-PAMF with a known
AR model order (Section V) and OSCG-PAMF with

an estimated model order (Section V), with the same
detectors used with direct matrix inverse (DMI). For

example, the DMI-PAMF detector involves a direct
inverse of the estimated covariance matrix in (52)
and uses it compute the linear prediction filter (26).

This DMI approach turns out to coincide with the
Yule-Walker method [13] for AR spectral estimation.

It is noted in [6] that there are alternative spectral
estimation methods which may yield better detection
performance in some scenarios. These alternatives are

not considered here since the focus is the convergence
of the CG algorithm in PAMF. In the following we

primarily use, as a comparison metric, the probability
of detection versus the SINR for a given probability
of false alarm. The output SINR of the PAMF detector

was derived and extensively studied in [19].
First, we examine the performance of the two

implementations of the PMF detector by using
simulated data with AR disturbances. The disturbance
is an AR(2) process with J = 4 elements and N = 64

pulses. Both PMF detectors have knowledge of the
exact disturbance covariance matrix; however, they use

different approaches to compute the linear predictor.
Specifically, we consider the DMI-PMF, which uses
DMI to solve the Wiener-Hopf equation, and the

CG-PMF as discussed in Section IVB with knowledge
of the AR model order P. The numerical results are

shown in Fig. 3. It is seen that both implementations
yield an identical detection performance.

We next examine the performance of the CG-based

AR model order selection method used in the

CG-PMF and CG-PAMF detectors with an unknown

AR model order. Two AR disturbance signals with

J = 4 and N = 64 are considered, and their model

orders are P = 1 and 3, respectively. We choose

the same upper bound P̄ = 6 for both cases. The

residual ¯̂²k (34) is computed and used for model order

selection; as a benchmark, we also include ²̄k, which

is similarly computed as in (34) but with ²̂k,j replaced

by ²k,j . Recall that
¯̂²k is an approximation of ²̄k, which

cannot be computed in practice due to the fact that the
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Fig. 3. Probability of detection versus SINR of PMF for simulated data(J = 4; N = 64; P = 2).

true Wiener-Hopf solution is unknown. The numerical

results for CG-PMF are shown in Fig. 4 and Fig. 5,

which correspond to P = 1 and P = 3, respectively.

It is seen that ¯̂²k has a sharp decrease at the JPth

(JP = 4 for P = 1 and JP = 12 for P = 3) iteration of

CG, which confirms the effectiveness of the CG-based

model order selection method. The counterpart model

order selection results for CG-PAMF are shown in

Fig. 6 and Fig. 7, for P = 1 and P = 3, respectively.

Unlike the CG-PMF which uses the real disturbance

covariance matrix, the sample covariance matrix

estimated from the training data (cf. (40)) is employed

for model order selection in CG-PAMF. Here the

training data size is set to K = 32. It is also shown

that ¯̂²k has a sharp decrease at the JPth (JP = 4

for P = 1 and JP = 12 for P = 3) iteration of CG,

although the decrease in residue is smaller than that

of CG-PMF due to estimation error of the sample

covariance matrix.

We now consider the convergence of PCG-PMF.

The simulated disturbance is an AR(8) multichannel

process with J = 4. The convergence of CG-PMF and

PCG-PMF is shown in Fig. 8. The condition number

of the preconditioned covariance matrix is 4.2, which

is much less than the condition number of the original

covariance matrix 77.1. It is seen from Fig. 8 that

only 5 iterations are needed in PCG-PMF to reach

a relative approximation error under 1%, while 20

iterations are needed for CG-PMF.

Our next example considers the adaptive PAMF

detector, for which the disturbance covariance matrix

is unknown and the sample covariance matrix is

estimated by (52). Similar to the PMF detector,

we compare two implementations of the PAMF

detector, including the DMI-PAMF and CG-PAMF,

Here the DMI-PAMF directly inverses the sample

covariance matrix to get the maximum-likelihood

estimation of AR coefficients [13]. The disturbance is

an AR(2) signal, whose disturbance covariance matrix

is estimated from K = 16 target-free training data

vectors, and the AR coefficients are estimated based

on the estimated disturbance covariance matrix. The

numerical results are shown in Fig. 9. It is observed

that both implementations yield an identical detection

performance.

The performance of the CG-PAMF with an

unknown disturbance AR model order and disturbance

covariance matrix is considered next. Both AR

model based data and KASSPER 2002 data set are

employed in this example. The KASSPER data set

was generated by considering practical airborne radar

parameters and issues found in a real-world clutter

environment [18]. Specifically, the simulated airborne

radar platform travels at a speed of 100 m/s with a 3±

crab angle. The radar carrier frequency is 1240 MHz.

The horizontal 11 antenna elements form a ULA with

a spacing of 0.1092 m between adjacent elements, and

the transmit array is uniformly weighted and phased

to steer the mainbeam to 195±. The pulse repetition
frequency is 1984 Hz and a coherent processing

interval contains 32 pulses. Only the first 8 elements

are used in our simulation. We use the covariance

matrix associated with range bin 200 in the KASSPER

data set to generate the test data and the covariance

matrices from the neighboring ranges bins to generate

the training signals. A target is injected into the test

cell with a normalized spatial frequency 0.1 and a

normalized Doppler frequency 0.35.
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Fig. 4. Residuals ²̄Jp and
¯̂²Jp for model order selection in CG-PMF (J = 4; N = 64; P = 1; P̄ = 6).

Fig. 5. Residuals ²̄Jp and
¯̂²Jp for model order selection in CG-PMF (J = 4; N = 64; P = 3; P̄ = 6).

The numerical results are shown in Fig. 10 for

the AR model based data and, respectively, Fig. 11

for the KASSPER 2000 data, where OSCG-PAMF

(unknown P) represents the CG-PAMF detector with

the CG-based model order selection method which

employs a model order upper bound P̄ calculated by

(33). In Fig. 11 we also include for comparison the

joint domain localized (JDL) detector [20], a popular

reduced-dimensional STAP solution in scenarios of

limited training. The JDL is implemented by using

3 beams and 3 Doppler bins for adaptivity. It is seen

that the performance of the OSCG-PAMF is nearly

identical to that of CG-PAMF with known P (AR

data) or a preselected P = 2 (KASSPER data). For

the case of AR data, we noticed that only one model

order selection error (P̂ 6= P) occurred out of 20000
simulations. Moreover, using the relevant parameters

of the KASSPER data, we have ¯ = 2vgTr=d = 0:923.

It follows that for J = 8 elements, the maximum

number of CG iterations needed by the CG-PAMF
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Fig. 6. Residuals ²̄Jp and
¯̂²Jp for model order selection in CG-PAMF (K = 32; J = 4; N = 64; P = 1; P̄ = 6).

Fig. 7. Residuals ²̄Jp and
¯̂²Jp for model order selection in CG-PAMF (K = 32; J = 4; N = 64; P = 3; P̄ = 6).

for a given model order p is estimated to be rcp+

1 = d8:077+0:923pe. For example, the maximum
numbers of CG iterations for p= 2 is about 10 due to

the low-rank structure of the clutter, whereas without

such a structure, it would require pJ = 16 iterations

for the CG to converge. It is also seen in Fig. 11

that the PAMF detectors outperform the JDL-AMF

detector. The JDL-AML experiences a loss of about

4 dB compared with the MF.

Finally, we compare the complexity in terms

of the number of flops required by the CG and

DMI implementations. The flops required by the

CG-PAMF and DMI-PAMF versus the AR model

order p are shown in Fig. 12. For the DMI-PAMF,

the QR decomposition is adopted to get the J-channel

AR coefficients. It is seen that the complexity of the

CG-PAMF is lower than that of the DMI-PAMF.

VII. CONCLUSIONS

The CG algorithm was employed to solve the

linear prediction problem underlying the PMF and

PAMF detectors. It is shown that the CG algorithm
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Fig. 8. Convergence of CG-PMF and PCG-PMF (J = 4; P = 8).

Fig. 9. Probability of detection versus SINR of PAMF for AR data(K = 16; J = 4; N = 64; P = 2).

leads to not only new efficient implementations, but

also new insights of these parametric detectors as

reduced-dimensional subspace detectors. In particular,

the linear prediction filter and whitening filter of

the PMF and PAMF detectors are within the Krylov

subspace of dimension JP, and these detectors are

reduced JP-dimensional subspace detectors, where

J and P are the number of channels and AR model

order, respectively. We examined the convergence

rate of the CG parametric detectors. In airborne

radar applications, the special low-rank structure

of the disturbance covariance matrix implies that a

rapid convergence is possible, whereby convergence

can be achieved without completing a full round

of CG iterations. Even for disturbance covariance

matrices that do not have the low-rank structure,

preconditioning methods can be used to speed up

the convergence rate. In general, the CG parametric

detectors are more efficient than their counterparts

implemented in conventional approaches. We also

presented a new CG-based AR model order

selection method, which is naturally integrated
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Fig. 10. Probability of detection versus SINR for AR data (K = 32; J = 4; N = 64; P = 2; P̄ = 6).

Fig. 11. Probability of detection versus SINR for KASSPER 2002 data (K = 32; J = 8; N = 32; P = 2; P̄ = 2).

with the CG iterations. The proposed techniques are

illustrated by using both KASSPER and other

simulated data.

Finally, we note that the CG algorithm bears

some similarity to a vector space approach [21] to

solving the multi-dimensional Yule-Walker equation

for an arbitrary region of support. Both involve the

use of conjugate orthogonal basis vectors. A future

subject would be to investigate the relation of the

two approaches and explore the application of the

CG algorithm for multi-dimensional and multichannel

applications.

APPENDIX I. PROOF OF LEMMA 1

It is well known that the conjugate-direction

vectors obtained by the CG algorithm solving

the Wiener-Hopf equation (28) span the Krylov

subspace [7]:

K(R(P̄)j ,R(P̄)y ,k) = spanfD(P̄)1,j ,D(P̄)2,j , : : : ,D(P̄)k,j g: (56)
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Fig. 12. Computational complexity of CG-PAMF and DMI-PAMF versus AR model order p (K = 32; J = 8; N = 32).

Furthermore, the truncated solution obtained at the

kth iteration B(P̄)k,j minimizes the R
(P̄)
y -norm of the

approximation error over all vectors on K(Rj ,R(P̄)y ,k)
[22], i.e.,

kB(P̄)j ¡B(P̄)k,j kR(P̄)y =minak

°°°°°x¡
rX
k=0

akR
(P̄)k
y B(P̄)j

°°°°°
R(P̄)y

:

(57)

Therefore, the truncated solution obtained at the

kth iteration B(P̄)k,j is the R
(P̄)
y -orthogonal projection

of the Wiener solution B(P̄)j to the subspace

K(Rj ,R(P̄)y ,k), and ®k,j = [®(P̄)1,j ,®(P̄)2,j , : : : ,®(P̄)k,j ]T contains
the coordinate values of conjugate-direction vectors

fD(P̄)1,j ,D(P̄)2,j , : : : ,D(P̄)k,j g, which are given by

®
(P̄)
k,j =

D(P̄)Hk,j R(P̄)y B
(P̄)
j

D(P̄)Hk,j R(P̄)y D
(P̄)
k,j

: (58)

With the definition of D̃k,j by (30), we can write after

JP iterations

®JP,j = D̃
H
JP,jB

(P̄)
j (59)

where D̃JP,j = [D̃1,j ,D̃2,j , : : : ,D̃JP,j]. Recalling B
(P̄)
j =

[BTj ,0
T

J(P̄¡P)£1]
T, we have

®JP,j = [D̄
H
JP,j D̃HJP,d]

·
Bj

0

¸
(60)

where D̄JP,j 2CJP£JP is the upper JP£ JP block
matrix of D̃JP,j , and D̃JP,d contains the lower block

of D̃JP,j . Then Bj is given by

Bj = D̄
¡H
JP,j®JP,j : (61)

The intermediate solution obtained at the JPth CG

iteration is

B(P̄)JP,j =

JPX
m=1

®m,jD
(P̄)
m,j =D

(P̄)
JP,j®JP,j : (62)

It follows from (61) and (62) that B(P̄)JP,j and Bj are

related by

B(P̄)JP,j =D
(P̄)
JP,jD̄

H
JP,jBj =WJP,jBj (63)

where WJP,j =D
(P̄)
JP,jD̄

H
JP,j 2 CJP̄£JP , which completes

the proof.
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