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On the Conjugate Gradient Matched Filter

Chaoshu Jiang, Hongbin Li, and Muralidhar Rangaswamy

Abstract—The conjugate gradient (CG) algorithm is an efficient method
for the calculation of the weight vector of the matched filter (MF). As an it-
erative algorithm, it produces a series of approximations to the MF weight
vector, each of which can be used to filter the test signal and form a test
statistic. This effectively leads to a family of detectors, referred to as the
CG-MF detectors, which are indexed by the number of iterations in-
curred. We first consider a general case involving an arbitrary covariance
matrix of the disturbance (including interference, noise, etc.) and show that
all CG-MF detectors attain constant false alarm rate (CFAR) and, fur-
thermore, are optimum in the sense that the th CG-MF detector yields
the highest output signal-to-interference-and-noise ratio (SINR) among all
linear detectors within the th Krylov subspace. We then consider a struc-
tured case frequently encountered in practice, where the covariance matrix
of the disturbance contains a low-rank component (rank- ) due to domi-
nant interference sources, a scaled identity due to the presence of a white
noise, and a perturbation component containing the residual interference.
We show that the � ���st CG-MF detector achieves CFAR and an output
SINR nearly identical to that of the MF detector which requires complete it-
erations of the CG algorithm till reaching convergence. Hence, the � ���st
CG-MF detector can be used in place of the MF detector for significant
computational saving when is small. Numerical results are presented to
verify the accuracy of our analysis for the CG-MF detectors.

Index Terms—Conjugate gradient method, Krylov subspace, matched
filter, space-time adaptive processing (STAP).

I. INTRODUCTION

Detection of a multichannel signal in temporally and spatially corre-
lated clutter and/or jamming is found in phased-array radar, sonar, and
many other applications. A widely explored technique is space-time
adaptive processing (STAP) [1]. Most classical STAP-based methods
require to invert a large space-time covariance matrix, thus incurring a
substantial amount of training signals as well as a high computational
cost (e.g., [2]). Aimed at mitigating the training and computational re-
quirements in STAP detection, reduced-rank techniques, such as eigen-
canceler [3], principal-component method [4], cross-spectral metric
[5], multistage Wiener filter (MWF) [6], etc., have been proposed to re-
duce the dimension of the data in advance of detection. Meanwhile, the
conjugate gradient (CG) algorithm (e.g., [7]) is an efficient method for
solving a system of linear equations and has been explored for adaptive
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filtering, STAP detection, and beamforming in recent studies [8]–[12].
Interestingly, there is a close connection between the CG and the MWF
[9], [10].

In this correspondence, we explore the CG algorithm in the matched
filter (MF) for STAP detection. The CG algorithm is employed to iter-
atively calculate the weight vector of the MF detector, which produces
a series of progressively improved approximations to the MF weight
vector. Each of the intermediate weight vectors generated by the CG
can be used to form a decision variable, which, collectively, forms a
family of STAP detectors referred to herein as the CG-MF detectors.
Our goal is to examine the performance of these CG-MF detectors rel-
ative to the benchmark MF detector. We consider two cases, one in-
volving a general covariance for the disturbance (i.e., clutter, jamming,
and noise) and the other involving a structured disturbance covariance.

Specifically, for the first case, the space-time covariance matrix of
the disturbance, denoted by ���, is arbitrary. Our analysis shows that
the CG-MF detectors achieve constant false alarm rate (CFAR), irre-
spective of the number of iterations. The probability of detection, for
a given false alarm probability, is dictated by the output signal-to-in-
terference-and-noise ratio (SINR) of the linear filter employed by the
CG-MF detector, which is non-decreasing over the CG iterations. It is
found that the CG-MF detector obtained at the �th CG iteration is op-
timum in the sense that it yields the largest output SINR over all linear
detectors within the �-dimensional Krylov subspace.

For the second structured case, we assume ��� � ���� � ��

���� � ���,
where���� is a rank-� matrix which contains dominant clutter scatterers
or interference sources, the scaled identity ��

���� is due to the presence of
a white noise with variance ��

�, and��� is a perturbation term with small
entries compared with those in ����. The perturbation ��� may be caused
by insignificant, residual clutter/interference sources. In this correspon-
dence,��� is treated as a deterministic perturbation. In the absence of the
perturbation, it is well-known that the CG algorithm converges in ���
iterations [7], and if � is small, requires significant less computation
than directly computing the matrix inverse needed by the MF detector.
However, with ���, the CG in general requires full iterations (i.e., �
iterations with � being the size of ���) to reach convergence. Interest-
ingly, we show that the output SINR achieved by the CG-MF detector
obtained by with ��� iterations is identical to that of the MF detector
within a first-order approximation. Hence, � � � CG iterations suffice
and there is no need for full iterations.

Throughout the correspondence, transpose and complex conjugate
transpose are denoted by ���� and ���� , respectively. � � � denotes
the matrix Frobenius norm. �� ��������� denotes a complex circularly
symmetric Gaussian random vector with mean��� and covariance matrix
���.

II. DATA MODEL

Consider detecting a known 	-channel signal 


��� � ��� cor-
rupted by a spatio-temporally correlated disturbance ������:


� � ������ � ������


� � ������ � �


��� � ������ (1)

where ������� � � �� �� 	 	 	 � � , denotes the �th received vector and
� the deterministic unknown complex amplitude of 


���. Let 


 �




� ���� 


� ���� 	 	 	 � 


� ����� , ��� � 
���� ���� ���� ���� 	 	 	 � ���� ����� , and
��� � 
���� ���� ���� ���� 	 	 	 � ���� ����� , which are 	� � � complex vec-
tors. In STAP, 


 is known as the space-time steering vector. For a
side-looking uniform linear array (ULA), 


 is given by




 � 


� � 


� (2)
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where ���� � ��
�

�� ����� � � � � � ����������
�

is the tem-
poral steering vector with a normalized Doppler frequency ��,

���� � ��
�

�� ����� � � � � � ����������
�

is the spatial steering
vector with a normalized spatial frequency ��, and � denotes the Kro-
necker product. A standard assumption in STAP is that the disturbance
���, which includes clutter and noise, is complex circularly symmetric
Gaussian with zero-mean and space-time covariance matrix ��� [1]:
��� � �� ����������, with � � � under 	� and � �� � under 	�.

III. CONJUGATE GRADIENT MATCHED FILTER

The optimum detector for (1) is the matched filter (MF) (e.g., [2]):


	
 �
���������������

������������

�

�

� (3)

where � is the threshold of MF. We will frequently denote a detector
by a linear filter weight vector. The weight vector of the MF is

���	
 � ���
��
���
 (4)

The MF test statistic can be alternatively expressed as:


	
 �
�����	
����

�

����
	
������	


�

�

�
 (5)

For typical STAP applications, the covariance matrix ��� has a large
dimension. As a result, direct matrix inversion is usually not recom-
mended to compute the weight vector (4) due to its computational com-
plexity. We consider herein an alternative way by employing the con-
jugate (CG) algorithm [7], which iteratively finds a sequence of linear
weight vectors����� � � �� �� � � �, that are guaranteed to converge to the
MF weight vector in no more than �� iterations. Each of the weight
vector���� can be used to form a detector as in (5). As such, the CG iter-
ations yield a family of detectors, referred to as the CG-MF detectors.
To introduce necessary notation, the CG algorithm is briefly summa-
rized as follows.

Initialization. Initialize the conjugate direction vector ����, gradient
vector ���� and initial solution ����:

���� � ����� � ���� ��	 ���� � �
 (6)

for � � �� 
� � � �, till convergence �� � ��� do
Update the step size �� , weight vector ���� , gradient vector ������,

and conjugate direction vector ������ as follows:

�� �
	����	

�

����� �������
(7)

���� ������� � ������ (8)

������ ����� � ��������� (9)

������ �����
	������	

�

	����	
�

� ������
 (10)

end for
A quick comment on the complexity is in order. Each iteration of

the CG algorithm involves one matrix-vector product, requiring about
�������� flops. With full �� iterations, the CG algorithm has a com-
plexity of �������� flops, comparable with alternative linear solvers
such as the QR factorization [7]. In many practical cases, the CG algo-
rithm may require far fewer than full iterations (see Section IV-B and
also [7, Ch. 10] for discussions on the convergence of the CG algo-
rithm), leading to significant reduction in complexity.

IV. ANALYSIS

We consider the performance of the CG-MF detectors in two cases.
The first involves a general covariance matrix ��� that is positive defi-
nite but otherwise arbitrary, whereas the other deals with a structured
covariance that is frequently encountered in practice.

A. General Covariance Matrix

We first represent the CG-MF detector ���� by using the conjugate
direction vectors 
�����. From (8),

���� � �������� (11)

where ���� � ���� ��� � � � � ��

� contains the stepsizes and ���� �

������ ����� � � � � ����
 consists of the first � conjugate direction directors.
Note that ���� diagonalizes the covariance matrix ��� [7, p.523]:

���
�
� ������� � ���� (12)

where ���� � 	�������� �
�
�� � � � � �

�
�� and �� � ������ �������� . This allows

���� to be compactly expressed as

���� � ������ ���
�
� ��� (13)

which gives the following close-form expression for ����:

���� � �������
��
� ���

�
� ���
 (14)

The �th CG-MF detector using ���� is given by


� �
�����

� ����
�

����
� �������

�

�

��
 (15)

Theorem 1: The following are true for the �th CG-MF detector.
a) ���� is a linear minimum mean square estimator that minimizes

���� � ��� ���
			���


�������

�	�����
�
���	� (16)

among all linear estimators within the �-dimensional Krylov sub-
space

������ ���� �� ����
���������������
���� � � � �������

����


b) ���� yields the largest output SINR

�� � ����
�����

� ����
�

����
� �������

(17)

among all linear detectors within ������ ���� ��.
c) Under the assumption ��� � �� ���������� with � � � under 	�

and � �� � under 	�, the probability of false alarm �
��� and the
probability of detection ���� of ���� are

�
��� � ��� ����� (18)

���� ��� 
��� 
��� (19)

where ��
� is the Marcum � function.
Sketch of Proof: As the above results are quick extensions of stan-

dard knowledge, only a sketch of proof is provided. Result a) is due to
that the Krylov subspace is also spanned by the conjugate direction
vectors [7]: ������ ���� �� � ����
����� ����� � � � � �����. As such,

���� ���� ���
			�


 ���

�	�����
�
���	�

����� ���
�
� �������

��
���
�
� ��� � �������

��
� ���

�
� ��� (20)

which is identical to (14).
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Result b) follows immediately from a), since minimizing the mean-
square error (MSE) is equivalent to maximizing the SINR [13].

To show c), we use (12) and(11) to rewrite the test variable �� of (15)
as

�� �
������ ���

�
� ����

�

����� ��������
� ����

� (21)

where �� � ������ ���
�
� ��������

�
� ���������

� . Clearly, �� � �� ��� �� under

�� and �� � �� ������� ���
�
� 			�����

�
� �������

� � � under��. As such
�� is central and, respectively, noncentral Chi-square distributed under
�� and ��, where the noncentrality parameter under �� is given by

� (17). Hence, (18) and (19) follow immediately.

A number of remarks are in order. First, (18) implies that CG-MF
detectors for all � are CFAR detectors. Their test variables �� are all
identically distributed to that of the MF test variable ���, irrespective
of � the number of iterations. Second, b) implies that 
� � 
���, since
������ 			� �� � ������ 			� ����. Hence, the CG-MF is a family of CFAR
detectors


� composed of both reduced-rank detectors �� � ��� and
the full-rank MF detector �� � ���, which offers a natural way to
trade complexity for performance. Specifically, the detection proba-
bility ���� of the CG-MF detector 


� increases with more CG itera-
tions (i.e., a larger �), at higher computational complexity. The tradeoff
and the analytical expression (19) allow one to save the computational
cost by selecting an appropriate reduced-rank CG-MF detector that of-
fers a targeted ���� , without going through all CG iterations.

B. CG-MF: Structured Covariance Matrix

We now examine the performance of the CG-MF detectors when the
disturbance covariance matrix has a low-rank structure:

���� � �
�
	��� (22)

where ���� is a rank-� positive semi-definite matrix �� � ��� and ��� an
identity matrix. In such a case, the CG algorithm is known to converge
using at most � � � iterations [7], i.e., 


��� � 


��.

Many practical applications involve a disturbance covariance matrix
having a structure similar to (22). For example, in airborne radars, the
disturbance covariance matrix often consists of a low-rank ���� due to
the clutter and jamming and a scaled identity ��	��� due to the thermal
noise, where ��	 denotes the noise variance. The rank � is typically
much smaller than the joint spatio-temporal dimension �� . Specifi-
cally, if the disturbance is primarily due to ground clutter and thermal
noise, then according to Brennan’s rule [14], we have

� � 	� � �� 
 ���� (23)

where � �
�� �

�
, �
 is the platform velocity, �� is the pulse repetition

period, � is the antenna element spacing, and 	�� rounds a real-valued
number towards infinity.

Estimating the rank � can be a tricky issue since (23) may not hold
for all clutter scenarios encountered in practice. The CG algorithm has
an advantage of not requiring to know � a priori, since at the �����st
iteration, the residual 			
���


� , which is also the negative gradient ���� ,
vanishes. This is the stopping rule used by the CG [7]. Other STAP
detectors designed to take advantage of the structure (22), such as the
low rank normalized matched filter (LRNMF) [15] which employs the
principal eigenvectors of the covariance matrix, requires an estimate of
� and its performance is quite sensitive to the accuracy of the estimate.

While the convergence of the CG for a structured covariance matrix
exactly like (22) is well known, we consider a different but related case

that ��� is a perturbed version of (22):

��� � ���� � �
�
	��� ���� ���� ���� (24)

where ���� � ���� � ��	��� as in (22) and ��� is a Hermitian perturbation
matrix assumed to be small, i.e., 
���
 � 
����
. Since the perturbation
is small, it is of interest to examine the following questions: Can the
CG algorithm reach (almost) convergence in � � � iterations? How is
the detection performance of the CG-MF detector 


��� compared to
the MF detector? Before we address these questions, we note that the
model (24) exists in many scenarios. For example, in airborne radar
applications, the covariance matrix ��� may not have exactly � � � dis-
tinct eigenvalues as in (22). Typically,��� contains a few principal eigen-
values due to the dominant clutter scatterers, but the other eigenvalues
are rarely identical and spread around the noise level [1]. By decom-
posing��� as (24), ���� contains only the dominant clutter scatterers, and
the effect of the less significant clutter scatterers can be included in ���.
The same can be extended to a general interference scenario, where����

includes the effect of a few major interference sources to be mitigated
at the receiver, whereas ��� contains the residual interference.

To answer the previous questions, we first present a result that relates
the weight vectors for the two detectors.

Lemma 1: Consider the linear equation ���


�� � 			, where ��� �
�������	������� � �������� is a positive-definite Hermitian matrix,���� is
a rank-� positive semi-definite Hermitian matrix, ��	 � � is a constant,
and ��� is a Hermitian perturbation matrix. If the perturbation is small
such that 
���
 � 
����
, the MF solution 


�� can be approximated
by the CG-MF solution 


���, with the approximation error given by




�� 



��� � ���
�

� ���
�

���� ���
�

� ���� ��
���
� (25)

where ��
���
� contains the second- and higher-order perturbation
terms that can be neglected for small 
���
,

	��� � ����� ��� � (26)

��� � � 
			�����			����
�
�			� � � � ����

�
�			��	�
���� (27)

���
�

���� � ��� 
 	��� ��	���
�

�
	��� ��

��	���
�

� (28)

��� � ��������� �����




��
� �����

� ������� ��
��
���
�
� 			 � �	�� (29)

and 




��
� � �	�
���� is given by






��
� � �����			��������			��������			� � � � �

�

���

���
���
� ���������

� 			 � (30)

Proof: See the Appendix.
When the perturbation vanishes, it is straightforward to show from

(48) of the Appendix that




�� 



��� � ����
�

���
�

���� ���
�

� 			 � � (31)

which offers another proof that the CG-MF detector


��� converges to
the MF detector 


�� when ��� � � [7]. Interestingly, the first equality
of the above equation resembles (25) except that ��� is replaced by 			. It is



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 5, MAY 2012 2663

also noted that the matrix������
� can be easily calculated by the following

simple recursion:

���� ��

���� ����������
� ��������������� � � �� �� � � � � � � �� (32)

We now consider the output SINR of the CG-MF detector ������,

	��� � �
��
�����

�������
�

����
������������

(33)

and its relation to the output SINR of the MF detector. The following
result addresses their relationship.

Theorem 2: Under the conditions stated in Lemma 1, the output
SINRs of the MF detector ����	 and the CG-MF detector ������ are
identical within a first-order approximation:

�� � 	�	 � 	��� � �	�����
 (34)

where 	��� is given by (33) and 	�	 is similarly defined by replacing
������ in (33) with ����	.

Proof: The proof goes by direct calculation and using Lemma 1.
The loss of output SINR of the CG-MF relative to the MF is given by

�� � 	�	 � 	��� � �
��
�����

�	����
�

����
�	�������	

�
�����

�������
�

����
������������

� (35)

First, we consider the difference between ��������	 and ����������. Using
Lemma 1, we have

���
�
����	 � ���

�
������ � ���

�
���
�

� 



�


��� ���
�

� ���� �	�����
� (36)

Since ��� is orthogonal to the column space of ���
�

� 


�
��� ���
�

� [also see

(31)], we have �������
�

� 


�
��� ���
�

� � � and (36) reduces to

���
�
����	 � ���

�
������ � �	�����
� (37)

It follows that

�����
�	����

� � �����
�������

� � �	�����
� (38)

Next, we consider the difference between the denominators
����
�	�������	 and ����

������������:

���
�
�	�������	 ����

�
������������

� � �����
�	���	����	 �������
�

� 	����	 �������

�
���	����	 �������


� � �����	����	 �������
�

� 	����	 �������

�
���	����	 �������
 (39)

where ��� denotes the real part. Again using Lemma 1, we have

	����	 �������

�
���	����	 �������
 � �	�����
� (40)

Substituting (37) and (40) into (39) yields

���
�
�	�������	 ����

�
������������ � �	�����
� (41)

Finally, from (35), the output SINR loss of the CG-MF detector is given
by

�� � �
��
�����

�	����
�����

������������ � �����
�������

�����
�	�������	

����
�	�������	���

�
������������

� (42)

Fig. 1. General covariance matrix with � �, � �� and � � ��.
Upper: normalized output SINR versus the number of iterations for the CG-MF
detector. Lower: Probability of detection versus SINR for the MF and CG-MF
detectors with several different numbers of iterations.

Substituting (38) and (41) into the numerator of (42), we have

�����
�	����

�
���
�
������������ � �����

�������
�
���
�
�	�������


� �����
�	����

�
���
�
�	�������	 � �	�����


� �����
�	����

� � �	�����
 ���
�
�	�������	 � �	�����
 (43)

from which (34) immediately follows.
Remark: It is interesting to note that while Lemma 1 indicates that

the difference between the weight vectors, i.e., ����	 � ������, con-
tains first-order terms of the perturbation, such first-order differences
vanish in the output SINR. Theorem 2 implies that the probabilities of
detection of the MF and CG-MF detectors are also identical within a
first-order approximation. This has important practical implication. In
particular, even though the CG algorithm using ��� generally requires
full (i.e., �� ) iterations before it reaches convergence, to save compu-
tation, we can take the intermediate result������ obtained at the 	���
st
iteration and obtain nearly the same detection performance as the MF
detector, provided that ��� is sufficiently small.

V. NUMERICAL RESULTS

A. General Covariance Matrix

We first consider the general covariance matrix case studied in
Section IV-A. We use a disturbance covariance matrix ��� obtained
from the KASSPER data set [16], which is a simulated data set that
includes practical airborne radar parameters and issues found in a
real-world clutter environment. The radar platform considered in this
data set has 11 horizontal antenna elements. For simplicity, we use
only the outputs of the first � � � channels for processing. The
number of pulses is � � ��, and the probability of false alarm is

�� � ����. We first examine the output SINR 	� , defined in (17), of
the CG-MF detector ���� . Fig. 1 (upper) shows the normalized output
SINR �

�
, where the normalizing factor 	�	 is the output SINR of

the MF detector, versus the number of iterations. It is observed that 	�
converges rapidly to 	�	 as � increases.

The probability of detection for the MF detector and the CG-MF
detector after � � ��� �� and 40 iterations, respectively, is shown
in Fig. 1 (lower) as a function of the MF output SINR, defined as
	�	 �
��������������. It is seen that with � � �� iterations, the CG-MF
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Fig. 2. Structured covariance matrix with � �, � ��, and �

� ��. Upper: Output SINR of the MF detector and CG-MF detector after �

� � � iterations versus the relative perturbation size. Lower: Probability of de-
tection of the MF detector and the CG-MF detector after �� � � iterations.

detector achieves nearly identical detection performance as the MF de-
tector, which requires �� � ��� CG iterations.

B. Structured Covariance Matrix With Perturbation

We now consider the case examined in Section IV-B where the co-
variance ��� is a perturbed version of a structured ����. We demonstrate
how the convergence of the CG-MF detector is directly affected by the
size of the perturbation. We employ a relative perturbation size, de-
fined as

�� �
�����

������
� (44)

We tried several ways of generating the perturbation matrix ��� and ob-
tained similar results. The ones presented here were based on the fol-
lowing approach. For any structured covariance matrix���� as described
in (24) and a given perturbation size ��, 1) randomly generate ���� as a
complex Wishhart matrix ���� with mean ���� and compute the differ-
ence ���� � ���� � ����; 2) compute ��� as: ��� � ��

���� �
���� �

����; and 3) the
perturbed covariance matrix is given by ��� � ���� ����. It is noted that
although ��� is generated as a random matrix, in each trial ��� is treated
as a deterministic/known matrix that is a perturbed version of ���� with
perturbation size ��.

Fig. 2 (upper) shows the output SINR of the CG-MF detector
������ �� � �	 normalized by that of the MF detector, i.e., �

�
, as a

function of ��. It is seen that the output SINRs of the two detectors
remain nearly identical ��

�
� 
���	 for a relative perturbation size

as large as �� � �

, which indicates that our perturbation analysis
in Theorem 2 for the CG-MF detectors is quite accurate over a wide
range of perturbation size. Fig. 2 (lower) depicts the probability of
detection for the MF and CG-MF detector as a function of the MF
output SINR, where several values of �� are considered. It is seen that
with a relative perturbation size as large as �� � �

, the detection
probability of the two detectors are nearly identical. At �� � ��
, a
small difference is observed.

VI. CONCLUSION

The CG algorithm can be used to solve the Wiener–Hopf equation
underlying the MF, which leads to a family of linear CG-MF detec-
tors that converge to the MF in a fixed number of iterations. We have
shown that the CG-MF detectors are all CFAR detectors, they can be re-
cursively and efficiently computed via CG iterations over an expanding

Krylov subspace, and each of them is an optimum reduced-dimensional
detector in the sense that it yields the maximum output SINR over all
linear detectors residing the Krylov subspace. For disturbance covari-
ances with a low-rank structure (rank-�), we have shown that the pres-
ence of a perturbation component ��� disrupting the low-rank structure
has minimum effect on the convergence of the CG algorithm, in that
the output SINR of the ����	st CG-MF detector is nearly identical to
that of the MF detector. This offers significant computational saving,
in particular when � is small, by using the CG-MF instead of the MF
detector without incurring undue penalty in detection performance. A
future topic of interest is to analyze the CG algorithm for adaptive de-
tection when the covariance matrix ��� is unknown and estimated from
training signals.

APPENDIX

PROOF OF LEMMA 1

Proof: The CG-MF solution ������ obtained at the ��� �	st iter-
ation is the���-orthogonal projection of����� onto the Krylov subspace
�����	 


	 � � �	 [7]. This means that the ���-norm of the approxima-
tion error is minimized over all vectors in �����	 


	 ���	, which is the
column space of ���� � 


	���


	����


	����


	 � � � 	����


 [7]. That is,

������ ����������� � ���
�

��� �

�

�	�

�����
�





���

� (45)

Substituting ��� � �����


 and � � ���� � ��� ��	 into (45), we have

������ ����������� � ���
�

��� ������



�

�

�	�

�����
�



	

� ���
�

���
�




�

�

�	�

����� ���
�



 � (46)

The minimum approximation error is achieved if and only if the vector
�

�	�
����� ����


 is the orthogonal projection of the vector���� 


 onto

the linearly transformed Krylov subspace

��� �����	 


	 � � �	 � �������� 


	��� ���


	 � � � 	��� ���
�



� (47)

or the column space of ����� � ��� ���� . When the minimum of (46) is
achieved, the approximation error is given by

����� ������� � ���
�

���
�

���
���
�




 (48)

where

���
�

���

� 


 � ����������
�

�
�����	

������
�

�

� 


 ���� ��������
�
� �������	

��
���
�
� ��� (49)

which is the orthogonal complement projection matrix of the trans-
formed Krylov subspace��� �����	 


	 ���	. Substituting (49) into (48),
we have

����� ������� � ���
�� � ��������

�
� �������	

��
���
�
� 


� (50)

Since ����� � �����


, and the vector ��������
�
� �������	

������� 


 �
�����	 


	 � � �	, so ���� � ��������

�
� �������	

������� 


, and

����� ������� � ���
�� � ��������

�
� �������	

��
���
�
� 


� (51)
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Expanding ���� � ����� ������, we have

���
� ����

�

� �

�

���

���
���

� ���������� � ��������

����
�

� �

�

���

���
���

� ���������� � (52)

If the columns of ��� � span the Krylov subspace ������� ���� � � ��, then
���� can be approximated by

���� � ��� � ����
���
� (53)

where ������� is defined by (30). After substituting (53) into (51), while
using a first-order expansion on ������ ��������

��, ������ ��������
�� can be ap-

proximated as

������ ��������
�� � ��� � ����

���
�

�

����� ����� ��� � ����
���
�

��

� ������ ������� ��
�� � ������ ������� ��

�����
���
� ������ ������� ��

��

(54)

where������
� � ����� �������

���
� ������ ������ �����

����
� ������� � . Similarly using

expansion on �����, we have

���
�� � ����� ������� � ���

��
� ����

��
� ��������� � (55)

Substituting (54) and (55) into (51), and discarding the second and
higher-order terms, we have
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Since���� is a rank-� correction matrix to 

���� , the solution������ ��� lies in

the Krylov subspace������� ���� ���� [7]. Hence, ���
�

� ��� lies in the lin-

early transformed Krylov subspace ���� ������� ���� � � �� or the column

space of 	��� � � ���� ��� � , and as such �������� ���
�

� ��� is equal to zero vector,
i.e.,

���
�

���� ���
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Since ���� is a positive-definite Hermitian matrix, left multiplying both

sides of (57) by ���
�

� yields

���
��
� � ��� �����

�

� ������� ��
��

���
�

� ��� � �� (58)

Substituting (58) into (56), we obtain the difference
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Note that
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where ��� ���� � 	��� ��	���
�

�
	��� ��

��	���
�

� is the orthogonal projection matrix
onto the column space of 	��� � . From the previous analysis, the vector

���
�

� ��� lies in the column space of 	��� � . Therefore,

��� ���� ���
�
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Substituting (61) into (60), we have
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and
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Similarly, it can be proved that
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and
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Substituting (63)–(65) into (59), we have
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where 


 is defined by (29).
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Inverse Methods for Reconstruction of
Channel Taps in OFDM Systems

Tomasz Hrycak, Saptarshi Das, and Gerald Matz

Abstract—We describe a novel pilot-aided method for estimation of
doubly selective wireless channels in OFDM systems. We compute the first
few Fourier coefficients of each channel tap from the pilot information. We
then estimate the BEM coefficients of the channel taps from their respec-
tive Fourier coefficients using a recently developed inverse reconstruction
method. For a system with channel taps, the proposed method uses

� ��� � operations and � � memory per OFDM symbol.
We validate our method by simulating a system conforming to the IEEE

802.16e standard.

Index Terms—Basis Expansion Model (BEM), channel estimation,
doubly selective, inverse reconstruction method, OFDM.

I. INTRODUCTION

A. Motivation

Orthogonal frequency-division multiplexing (OFDM) is a multicar-
rier modulation technique with several advantages, e.g., high spectral
efficiency and robustness against multipath propagation. OFDM based
communications through rapidly varying doubly selective wireless
channels attract a great deal of scientific and commercial interest.
OFDM is used in high-mobility communication systems, e.g., Mobile
WiMAX (IEEE 802.16e), WAVE (IEEE 802.11p), and DVB-T (ETSI
EN 300 744).

Communication systems using multicarrier modulation schemes
over doubly selective channels are affected by intercarrier interference
(ICI), which makes equalization more difficult. ICI is caused by the
Doppler effect, and the carrier frequency offset. The Doppler effect
is proportional to the receiver velocity and the carrier frequency and
depends inversely on the intercarrier frequency offset.

In the case of scalable OFDM, the required bandwidth grows with
the number of subcarriers. Increasing the bandwidth increases the sam-
pling frequency, which in turn proportionally increases the number of
resolvable discrete multipaths. For example, Mobile WiMAX with �
subcarriers typically exhibits a discrete path delay of �

�
; see [1]. A

large number of channel taps makes channel estimation much harder.
Such challenging regimes require an accurate channel estimation algo-
rithm, whose complexity scales with the number of subcarriers.

B. Previous Work

Doubly selective channels, whose taps vary with time, are commonly
estimated using the Basis Expansion Model (BEM); see [2] and [3].
The BEM approximates the channel taps by linear combinations of
prescribed basis functions. In this approach, channel estimation re-
duces to estimation of the basis coefficients of the channel taps. Several
bases have been proposed for modeling doubly selective channels. The
BEM with complex exponentials (CE-BEM) [4] gives rise to a banded
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