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Differential Space-Time-Frequency Modulation Over
Frequency-Selective Fading Channels

Hongbin Li, Member, IEEE

Abstract—We present herein a differential space-time-fre-
quency (DSTF) modulation scheme for systems with two transmit
antennas over frequency-selective fading channels. The proposed
DSTF scheme employs a concatenation of a spectral encoder and
a differential encoder/mapper, which are designed to yield the
maximum spatio-spectral diversity and significant coding gain.
To reduce the decoding complexity, the differential encoder is
designed with a unitary structure that decouples the maximum
likelihood (ML) detection in space and time; meanwhile, the
spectral encoder utilizes alinear constellation decimation (LCD)
coding scheme that encodes across a minimally required set of
subchannels for full diversity and, hence, incurs the least decoding
complexity among all full-diversity codes.

Index Terms—Differential modulation, frequency-selective
fading, linear constellation decimation (LCD) codes, maximum
spatio-spectral diversity, space-time coding.

I. INTRODUCTION

D IFFERENTIAL space-time coding (DSTC), which cir-
cumvents the challenging task of multi-channel estimation

in time-varying channels, has generated significant interest
recently [1]–[3]. Current DSTC schemes are designed primarily
for flat-fading channels. One possible wideband extension is
to use DSTC with orthogonal frequency-division multiplexing
(OFDM) on each subcarrier across the transmit antennas (e.g.,
[4]). Such an extension, however, does not exploit additional de-
grees of freedom offered by multipath propagation in wideband
systems. It achieves only spatial diversity.

We present herein a noveldifferential space-time-frequency
(DSTF) modulation scheme for systems with two transmit
antennas in frequency-selective channels. The DSTF scheme
employs a concatenation of a spectral encoder and a differential
encoder that are designed to maximize the spatio-spectral
diversity and coding gain. Our differential encoder can be
thought of as a block extension of the scalar DSTC scheme
in [1]; in particular, it reduces to the latter when the symbol
block size (i.e., defined in Section II) is one. The differential
encoder provides full spatial diversity if working alone. To
achieve full spectral diversity as well, we introduce a class of
linear constellation decimation (LCD)codes that encode across
a minimally necessary number of subchannels and, thus, incur
the least decoding complexity among all full-diversity codes.
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Fig. 1. A baseband DSTF system with two Tx’s and one Rx. (a) Transmitter.
(b) Receiver.

Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters; superscripts , , denote the
transpose, conjugate, and conjugate transpose, respectively;
is the identity matrix; (respectively, ) is a vector
with all zero (resp., one) elements; denotes the Kronecker
product; finally, denotes a diagonal matrix.

II. SYSTEM DESCRIPTION

Fig. 1 depicts a baseband DSTF system with
transmit antennas (Tx) and receive antenna (Rx). For
space limitation, the extension to will be considered
elsewhere. At the transmitter, the information stream is se-
rial-to-parallel (S/P) converted to vectors , which
are next spectrally encoded by to form code
vectors . The coded symbols are, in general, drawn from
a constellation of a larger size than that of the information
symbols (cf. Section IV). Two adjacent coded vectors are
differentially encoded by , which outputs a

DSTF code matrix: , where

, , 2 and ,
. Next, the vector is OFDM modulated on

subcarriers, parallel-to-serial (P/S) converted, and transmitted
from during the th OFDM symbol interval. At the receiver,
the received data is S/P converted and OFDM demodulated
to output , where
denotes the sample corresponding to theth subcarrier of the

th OFDM symbol. The differential decoder performs
differential decoding, and finally, performs spectral
decoding. The channel between and the Rx is modeled as
an FIR filter with coefficients , where denotes the
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channel order. The frequency response at theth subchannel is
. Furthermore, we have

(1)

where denotes the zero-mean complex white Gaussian
noise with variance per dimension.

The problem of interest is to design and for
wideband differential transmission that yields the maximum
spatio-spectral diversity gain as well as significant coding gain.

III. D IFFERENTIAL ENCODING

We transmit the first DSTF code matrix as:
. For subsequent transmission, we encode as follows:

(2)

where

and , with

. Assuming that are drawn from a
constant-modulus, unit-energy constellation (e.g., PSK),
it can be readily verified that , similarly defined as

, is unitary: . Rewrite
(1) in vector/matrix form: ,

, , where
and denotes the noise vector. Let

, , and

,

where . Using (2), we can readily show
that

(3)

where are vectors formed by independent Gaussian
entries with zero-mean and variance per dimension. Equa-
tion (3) is thefundamental differential receiver equation.

Due to the unitary structure of the DSTF codes, the maximum
likelihood (ML) detection of the space-time multiplexed code
vectors and is decoupled. To see this, let

and

. Note that is unitary. Let

(4)

Due to the block diagonal structure of matrix ,
(4) reduces to the following two independent equations:

(5)

where and are the first and second halves of
, whereas and are similarly formed from

. Hence, the ML detection of and
is independent.

IV. SPECTRAL ENCODING

We assume (correlated) Rayleigh fading channels:A1)
are zero-mean complex Gaussian

with nonsingular covariance matrix , where
. To minimize decoding complexity, we

consider minimum-length full-diversitycodes that encode
across a minimum number of subchannels for full diversity.
The coded symbols have to be transmitted in well sepa-
rated subchannels bysubcarrier interleaving (SI)[5]. Let

collect the indices of all subcarriers.
Briefly stated, SI is a partition of into nonoverlapping sub-
sets , where is the number
of subcarriers in the th subset. For channels satisfyingA1),
we need to achieve the maximum spectral
diversity [5]. We choose the minimum so that the
decoding complexity is minimized. Among other alternatives,
the following SI scheme is conceptually simple [5]:

(6)

where , and is assumed a multiple of .
The input–output relation, when SI is utilized, for theth

subcarrier subset is given by [cf. (5)]

(7)

where , ,
, and are the counter-

parts of the corresponding quantities in (5). The probability of
erroneously choosing as by the ML detector is
upper-bounded by (dropping indicesand for brevity) [6]:

(8)

where ,
, and are the nonzero eigenvalues of

, with , , and
formed by rows , of the -point FFT
matrix : .
Following [6], is called thediversity
advantage, while is
thecoding advantageover an uncoded system. We summarize
the optimum and for the DSTF system as follows:

Theorem 1: Under condition A1) and (6), the max-
imum diversity advantage of the DSTF system is

, which is achieved iff the code has
a uniform Hamming distance of . Any maximum-di-
versity achieving code has a coding advantage given by

, where
denotes theminimum product distanceof the code:

.
Proof: Note that is orthogonal with

. Hence, . The
inequality becomes an equality iffhas no zero element over all
error events, which occurs when the codehas a uniform Ham-
ming distance of . Hence, the maximum diversity order
is . Note that the minimum diversity order is 2 since

. Now, assume the maximum diver-

sity. We have

, which leads to the coding gain as in The-
orem 1 for all full-diversity codes.

For notational brevity, we drop the subcarrier subset index.
To achieve a code rate of , we need a codebook with



LI: DIFFERENTIAL SPACE-TIME-FREQUENCY MODULATION OVER FREQUENCY-SELECTIVE FADING CHANNELS 351

Fig. 2. 8-PSK constellation with unit symbol energy.

distinct codewords of length (i.e., the min-
imum code length for full diversity), with coded symbols drawn
from an -PSK constellation . Let
be the th codeword, and be the
codebook. To ensure that has a uniform Hamming distance of

, it canbeshownthat mustbeno less than .Wechoose
to minimize the decoding complexity. Let us label the

constellation points in as (e.g., the 8-PSK
shown in Fig. 2) and form the sequence .
The uniform Hamming distance requirement mandates that each
row of be a permutation of; any code formed by permuta-
tions also has a uniform Hamming distance of . It is easy
to see that there are a total of such permutation codes, all
achieving the full diversity!

To facilitate code construction, we introduce the idea of
constellation decimationthat effectively imposes a linear
structure on the code. The linear structure makes the analysis
of distance property and search for good codes significantly
easier. Specifically, let be the th element of . Denote
by the th decimationof
, , where ,

. Note that and have to be relatively
prime so that the decimated sequence will be a permutation of.

A linear constellation decimation (LCD)code is an
matrix, each row obtained by a proper decimation of

. We use the notation to signify that
is obtained by using decimation factorfor the th row of .
Two LCD codes are listed below for (i.e., 3-ray channel),

-PSK as shown in Fig. 2, and rate :

(9)

is seen to coincide with a repetition code. It is easy to
verify that both codes have a uniform Hamming distance

. The minimum product distances are and
(cf. Fig. 2), respectively. By Theorem 1,

achieves a coding gain of

relative to the repetition code. In fact, can be
shown (by a quick computer search) to be the optimum LCD
code with the largest product distance. Due to space limitation,
construction of optimum LCD codes for other values ofand

will be reported elsewhere.

Fig. 3. BER versus SNR in 3-ray Rayleigh fading channels.

V. SIMULATION RESULTS

Consider an OFDM system with subcarriers and
. The transmitter has one or two Tx’s, but the

receiver has only one Rx. The channel coefficients are assumed
complexGaussianwithzero-meanandvariance ,
where (i.e., 3-ray Rayleigh channels). Fig. 3 depicts the
BER versus SNR (defined as ) of the following trans-
mission schemes.1) DPSK (1Tx): Differential OFDM with
differential BPSK applied on each subcarrier, which yields no
diversity and serves as a benchmark for other diversity systems.
2) DST (2Tx): Differential space-time coded OFDM with the
unitary DSTC [3] applied on each subcarrier. The constellation
used by DST is QPSK.3) DSTF-Plain (2Tx): The proposed
DSTFschemewithout thespectralencoder (thustheword
plain), in order to show the additional gain obtained by .
TheinformationsymbolsareBPSK.4)DSTF-Repetition(2Tx):
DSTF using the repetition code in (9) with 8-PSK for
spectral coding.5) DSTF-Optimum (2Tx): DSTF using the op-
timum LCD code with 8-PSK in (9) for spectral coding.
Fig.3 indicates thatbothDSTandDSTF-Plainachieveadiversity
order of 2, since the BER-SNR slope of these two schemes is
approximately 2. This is the spatial diversity. An inspection
of the BER-SNR slope reveals that both DSTF-Repetition and
DSTF-Optimum achieve a diversity order of 6 at high SNR,
which is the maximum spatio-spectral diversity order offered by
the system. It is also observed that DSTF-Optimum yields an
additional coding gain of about 2.5 dB over DSTF-Repetition,
which agrees with the calculation in Section IV.

REFERENCES

[1] V. Tarokh and H. Jafarkhani, “A differential detection scheme for
transmit diversity,” IEEE J. Select. Areas Commun., vol. 18, pp.
1169–1174, July 2000.

[2] B. L. Hughes, “Differential space-time modulation,”IEEE Trans. In-
form. Theory, vol. 46, pp. 2567–2578, Nov. 2000.

[3] B. M. Hochwald and W. Sweldens, “Differential unitary space-time mod-
ulation,” IEEE Trans. Commun., vol. 48, pp. 2041–2052, Dec. 2000.

[4] S. N. Diggavi, N. Al-Dhahir, A. Stamoulis, and A. R. Calderbank,
“Differential space-time coding for frequency-selective channels,”
IEEE Commun. Lett., vol. 6, pp. 253–255, June 2002.

[5] Z. Liu, Y. Xin, and G. B. Giannakis, “Linear constellation-precoding for
OFDM with maximum multipath diversity and coding gain,” inProc.
35th Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove,
CA, Nov. 2001, pp. 1445–1449.

[6] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for
high data rate wireless communications: Performance criterion and code
construction,”IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, Mar.
1998.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


