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Differential Space-Time-Frequency Modulation Over
Frequency-Selective Fading Channels
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Abstract—We present herein a differential space-time-fre- Txl
quency (DSTF) modulation scheme for systems with two transmit x1(n—1) J OFDM || b/c
antennas over frequency-selective fading channels. The proposed d(n) s(n) MOD
DSTF scheme employs a concatenation of a spectral encoder and d(n) Spectral Differential [~ x, (n)

a differential encoder/mapper, which are designed to yield the S/P +=» Encoder +=» Encoder !
maximum spatio-spectral diversity and significant coding gain. M{} My} xa(n) Tx2
To reduce the decoding complexity, the differential encoder is -I OFDM Y
designed with a unitary structure that decouples the maximum Xo(n — 1) =tz~! (€= mop I P/S
likelihood (ML) detection in space and time; meanwhile, the
spectral encoder utilizes alinear constellation decimation (LCD) (@
coding scheme that encodes across a minimally required set of Rx 5(n) R
subchannels for full diversity and, hence, incurs the least decoding y(n) d(n) d(n)
complexity among all full-diversity codes. /p t=p| OFDM »| Differential Spectral
. . . . DEMOD Decoder =9 Decoder =¥ P/S —

Index Terms—DPifferential modulation, frequency-selective L MI) M
fading, linear constellation decimation (LCD) codes, maximum d i
spatio-spectral diversity, space-time coding. y(n—1)

(b)
Fig. 1. A baseband DSTF system with two Tx’s and one Rx. (a) Transmitter.
I. INTRODUCTION (b) Receiver.

IFFERENTIAL space-time coding (DSTC), which cir-

cumvents the challenging task of multi-channel estimation Notation Vectors (matrices) are denoted by boldface lower
in time-varying channels, has generated significant interdspper) case letters; superscrigts”, (-)*, (-)* denote the
recently [1]-[3]. Current DSTC schemes are designed primarii§anspose, conjugate, and conjugate transpose, respeclively,
for flat-fading channels. One possible wideband extensionigsthe M x M identity matrix; 0 (respectively,1) is a vector
to use DSTC with orthogonal frequency-division multiplexingvith all zero (resp., one) elements; denotes the Kronecker
(OFDM) on each subcarrier across the transmit antennas (epgoduct; finally,diag{-} denotes a diagonal matrix.
[4]). Such an extension, however, does not exploit additional de-
grees of freedom offered by multipath propagation in wideband [I. SYSTEM DESCRIPTION

systems. Itachieve_s onlyspatialdivc_arsity. _ Fig. 1 depicts a baseband DSTF system with = 2
We present herein a novdifferential space-tlme-frequencytransmit antennas (Tx) an, = 1 receive antenna (Rx). For

(DSTF) m(_)dulatlon scheme for systems with two transmg ace limitation, the extension f¥; > 2 will be considered
antennas in frequency-selectlve channels. The DSTF sche where. At the transmitter, the information stream is se-
employs a concatenation of a spectral encoder and adlfferenltfg to-parallel (S/P) converted t& x 1 vectorsd(n), which

encoder that are designed to maximize the spatio-specg next spectrally encoded byt,{-} to form P x 1 code

diversity and coding gain. Qur differential encoder can t\‘f’eotorSS(n). The coded symbols are, in general, drawn from
thought of as a block extension of the scalar DSTC scheme.,,qialjation of a larger size than that of the information

in [1]; in particular, it reduces to the latter when the symb ymbols (cf. Section IV). Two adjacent coded vectors are

block size (i.e. P defined in Section Il) is one. The differential J: : ) :

encoder provides full spatial diversity if working alone. Tcgj ifterentially encoded bde{X},(z\;vlhlcT)ou)t(pl(gi)azP x 2
achieve full spectral diversity as well, we introduce a class &STF code matrixX(n) £ Xl(zn ~1) x1(2n) , Where
linear constellation decimation (LC@pdes that encode across,_ ) 2 [:(£50) it P = 1§]T =12 azndt Con_1
a minimally necessary number of subchannels and, thus, in%ﬂl“ AN ' X ,

the least decoding complexity among all full-diversity codes. =" Next, the P x 1 vectorx;(t) is OFDM modulated or”
9 piexity 9 y "subcarriers, parallel-to-serial (P/S) converted, and transmitted
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channel order. The frequency response apthesubchannel is with nonsingular covariance matriR, = E{hh"}, where

H;(p) 2 Y1 hi(l) exp(—j2nlp/ P). Furthermore, we have h = [ hI]7. To minimize decoding complexity, we
2 consider minimum-length full-diversitycodes that encode

y(n;p) = ZHi(p):vi(n;p) + w(n; p) (1) across a minimum number of subchannels for full diversity.

=1 The coded symbols have to be transmitted in well sepa-

wherew(n; p) denotes the zero-mean complex white Gaussigated subchannels bgubcarrier interleaving (SI)[5]. Let

noise with varianceV, /2 per dimension. Z = {0,1,...,P — 1} collect the indices of all subcarriers.
The problem of interest is to desighty{-} and M, {-} for Briefly statAed, Slis a partition df into M nonov_erlappmg sub-

wideband differential transmission that yields the maximuSetSZ™ = {pm.o,- .-, Pm q,—1}, WhereQ,, is the number

spatio-spectral diversity gain as well as significant coding gai@f subcarriers in thenth subset. For channels satisfyiAd),
we need@,, > L + 1 to achieve the maximum spectral

IIl. DIFFERENTIAL ENCODING diversi_ty [5]- We ch_oo_se th_e_mi_nimuﬂ@m = L+ 1 sothat th_e
) ] ] decoding complexity is minimized. Among other alternatives,
We transmit the first DSTF code matrix @(0) = vE;I:©  the following SI scheme is conceptually simple [5]:
1px1. For subsequent transmission, we encode as follows: 70 — . M Y ) ©)
Xn)=Do(n-1Sn). n=12.. @ y o T B
D, (2(n—1)—1) D, (2(n—1)) whereM = P/(L + 1), andP is assumed a multiple df + 1.
D,,(2(n—1)—1) D,,(2(n— 1))} The input—output relation, when Sl is utilized, for theth
@2 (AT AR subcarrier subset is given by [cf. (5)]
s(2n—1) —s*(2n) ] with

and S(n) = (1/\/5)[ s(2n)  s*(2n—1)

D, (t) £ diag{x;(t)}. Assuming thas(t) are drawn from a
constant-modulus, unit-energy constellatigh (e.g., PSK), wherez(™)(t) € CE+Dx1 (™ (p — 1) € CE+DX(T+D),

it can be readily verified thaD,(n), similarly defined as s(m) () ¢ ALFDXT andv(™)(t) € CE+D*1 are the counter-
D,(n — 1), is unitary: D,(n)DY(n) = E.I,p. Rewrite parts of the corresponding quantities in (5). The probability of
(1) in vector/matrix form:y(t) = Y7, Hixi(t) + w(t), erroneously choosing,™ (t) ass\™ (t) by the ML detector is

t = 2n — 1, 2n, whereH; £ diag{H;(0),..., H;(P — 1)}  upper-bounded by (dropping indicesandt for brevity) [6]:
and w(t) denotes theP x 1 noise vector. Lety(n) =

whereD,(n — 1) 2 {

2 (1) = 2772 [ (n — 1) Y2 ) £y (7)

E e _
[y (20 — 1),y (20)]7, s(n) 2 [s7 (20— 1),572n)|T, and  p(s, - sy) < [_} det(Ra) [T, ™" (8
D,(n — 1)& Dy(2(n—1)-1) Dy (2(n —1)) } 1) = (8No) dettB) Tz Al ©
! L Dy@m-1) - =Dy —-1)=-1)]" wherer. £ rank(®.) < 2(L + 1), . £ 27'L ®
whereD, (t) = diag{y(?)}. Using (2), we can readily show (F'D:D.F,,),and{);}-, are the . nonzero eigenvalues of

that &, withD, £ diag(e), e £ 5, —s,,andF,, € CEHx(L+1)
_ formed by rowsn, m + M, ..., m + LM of the P-point FFT
y(n) =2 1/2Dy(n - 1)8(’”) + 'U(n) (3) matrix]-')é CPX(LJrl):I—[]:]pﬂ A ex;_(—j27r(p— 1)(qp_ 1)/P).
whereu(n) are2P x 1 vectors formed by independent Gaussiafollowing [6], G4 £ miny exo 7. is called thediversity
entries with zero-mean and variandg per dimension. Equa- advantage while G, = miny eo [det(Rz) [}, )\l]l/” is
tion (3) is thefundamental differential receiver equation the coding advantag®ever an uncoded system. We summarize
Due to the unitary structure of the DSTF codes, the maximutime optimumG,; andG.. for the DSTF system as follows:
likelihood (ML) detection of the space-time multiplexed code Theorem 1:Under condition A1) and (6), the max-

vectorss(2n—1) ands(2n) is decoupled. To see this, 8 (n— imum diversity advantage of the DSTF system is
1) 25202  DH(1)D,(t) andD,(n—1) 2 Dy (n—1)[l® Gamax = 2(L + 1), which is achieved iff the code has
Q;l/Z(n —1)]. Note thatD (n — 1) is unitary. Let a uniform Hamming distance of. + 1. Any maximum-di-
" Y versity achieving code has a coding advantage given by
z(n) 2D, (n — 1)y(n) Gemax = 274L + 1)[6%,, det(Ry)]Y/REFDL where
o012 12, ~H, Omin denotes theminimum product distancef the code:
=272 [l @ Q)2 (n - )] s(n) + D, (n = Du(n). g 250 o |det(D.)|.
(4) Proof: Note thatF,, is orthogonal withF? F,, = (I +
Due to the block diagonal structure of matfixe 25/ %(n — 1),  D1z+1. Hencerank(®,) = 2rank(DZD,) < 2(L +1). The
(4) reduces to the following two independent equations: inequality becomes an equality éthas no zero element over all

o1/201/2 B error events, which occurs when the ced®as a uniform Ham-
z(t) =277,/ " (n = Ds(t) +v(1), t=2n—12n (5) ming distance of’. + 1. Hence, the maximum diversity order

wherez(2n — 1) andz(2n) are the first and second halves ofs 2(L + 1). Note that the minimum diversity order is 2 since

z(n), whereag/(2n — 1) andv(2n) are similarly formed from miny o rank(®.) = 2. Now, assume the maximum diver-

D, (n—1)v(n). Hence, the ML detection &f2n—1) ands(2n)  sjty. We havedet(®,) = 27241 [det (TgDiDefm)] 7

is independent. 2= 2L+ [det(DZD, ) det (fgfm)]?é [2-1(L + 1)]2(E+D)

| det(D.)|*, which leads to the coding gaifi. .x as in The-

orem 1 for all full-diversity codes. ]
We assume (correlated) Rayleigh fading channdéig) For notational brevity, we drop the subcarrier subset index

h; 2 [hi(0),...,h;(L)]T are zero-mean complex Gaussiaffo achieve a code rate & bps/Hz, we need a codebook with

IV. SPECTRAL ENCODING
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Fig. 2. 8-PSK constellation with unit symbol energy. e
|

N, & 2R(Z+1) distinct codewords of length + 1 (i.e., the min- 4 8 ? ol 24 28
imum code length for full dl\_/erS|ty), with c/?ded symbols drawrgig. 3. BER versus SNR in 3-ray Rayleigh fading channels.
from anM.-PSK constellationd,. Lets;, = [s;0,...,5:,1]
. A
be theith codeword, and8, = [so, . ,ch,l](LJr_l)XNC. be the V. SIMULATION RESULTS
codebook. To ensure thBt has a uniform Hamming distance of _ _ _
L+1,itcan be shownthat/, mustbe nolessthaW,. We choose ~ Consider an OFDM system with = 48 subcarriers and
M, = N, to minimize the decoding complexity. Let us label thd? = 1 bps/Hz. The transmitter has one or two Tx’s, but the
constellation points it4, as0,1,..., M, — 1 (e.g., the 8-PSK receiver has only one Rx. The channel coefficients are assumed
shown in Fig. 2) and form the sequerité [0,1,..., M. —1]. complexGaussianwithzero-meanandvariavge- 1/(L+1),

The uniform Hamming distance requirement mandates that edhereL = 2 (i.e., 3-ray Rayleigh channels). Fig. 3 depicts the
row of B, be a permutation of: any code formed by permuta-BER versus SNR (defined a5, /Ny) of the following trans-
tions also has a uniform Hamming distancdof- 1. Itis easy Mission schemesl) DPSK (1Tx): Differential OFDM with

to see that there are a total(d¥..!)” such permutation codes, alldifferential BPSK applied on each subcarrier, which yields no
achieving the full diversity! diversity and serves as a benchmark for other diversity systems.

To facilitate code construction, we introduce the idea &) DST (2Tx): Differential space-time coded OFDM with the
constellation decimatiorthat effectively imposes a linearunitary DSTC [3] applied on each subcarrier. The constellation
structure on the code. The linear structure makes the analys#¢d by DST is QPSK3) DSTF-Plain (2Tx): The proposed
of distance property and search for good codes significanf® TF scheme withoutthe spectralencadiér{-} (thustheword
easier. Specifically, le€[k] be thekth element ofé. Denote plain), in order to show the additional gain obtained/ey;{-}.
by, = {&,é1,...,6[M. — 1]} the gth decimationof ~Theinformationsymbols are BPSK.DSTF-Repetition (2Tx):

& q = 1,2,... M, whereg,[] 2 &gk (mod M,)], DSTF using the repetition cod&{>11 in (9) with 8-PSK for
k =0,1,..., M. — 1. Note thaig andM.. have to be relatively spectral coding) DSTF-Optimum (2Tx): DSTF using the op-
prime so that the decimated sequence will be a permutatia@n ofimum LCD codeB{"** with 8-PSK in (9) for spectral coding.

A linear constellation decimation (LCodeB; is an(L + Fig. 3indicatesthatbothDST and DSTF-Plain achieve a diversity
1) x M, matrix, each row obtained by a proper decimation afrder of 2, since the BER-SNR slope of these two schemes is
. We use the notatioB, = (qo,q1, ..., qz) to signify thatB, approximately 2. This is the spatial diversity. An inspection
is obtained by using decimation factgrfor the jth row of B,.  of the BER-SNR slope reveals that both DSTF-Repetition and
Two LCD codes are listed below fdr = 2 (i.e., 3-ray channel), DSTF-Optimum achieve a diversity order of 6 at high SNR,

A, = 8-PSK as shown in Fig. 2, and rafe= 1 bps/Hz: which is the maximum spatio-spectral diversity order offered by
- . 1 the system. It is also observed that DSTF-Optimum yields an
0, 1, 2, 3, 4, 5, 6, 7 NG . ; "
(L,1,1) _ - additional coding gain of about 2.5 dB over DSTF-Repetition,
B; =10 L 2 3 4,5 6 7 which agrees with the calculation in Section IV.
0, 1, 2 3, 4, 5 6 7| 9 '
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