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Differential Space-Time Modulation Over
Frequency-Selective Channels

Hongbin Li, Member, IEEE

Abstract—We present herein a new differential space-time-fre-
quency (DSTF) modulation scheme for systems that are equipped
with an arbitrary number of transmit antennas and operate in fre-
quency-selective channels. The proposed DSTF modulator consists
of a concatenating spectral encoder and differential encoder that
offer full spatio-spectral diversity and significant coding gain. A
unitary structure is imposed on the differential encoder to admit
linear, decoupled maximum likelihood (ML) detection in space and
time. Optimum criteria based on pairwise error probability anal-
ysis are developed for spectral encoder design. We introduce a class
of spectral codes, namely, linear constellation decimation (LCD)
codes, which are nonbinary block codes obtained by decimating a
phase-shift-keying (PSK) constellation with a group of decimation
factors that are co-prime with the constellation size. Since LCD
codes encode across a minimally necessary set of subchannels for
full diversity, they incur modest decoding complexity among all
full-diversity codes. Numerical results are presented to illustrate
the performance of the proposed DSTF modulation and coding
scheme, which compares favorably with several existing differen-
tial space-time schemes in frequency-selective channels.

Index Terms—Differential modulation, frequency-selective
fading, linear constellation decimation codes, maximum likelihood
detection, maximum spatio-spectral diversity, OFDM, space-time
coding.

I. INTRODUCTION

MULTIANTENNA assisted space-time (ST) coding,
which offers diversity gain over single-antenna systems

and coding gain over uncoded systems, has generated wide-
spread interest in recent years [1], [2]. Coherent decoding of
ST codes requires reliable estimation of the underlying multi-
channels at the receiver. This is a challenging and costly task,
especially when the channel experiences high mobility induced
fast-channel fading [3], [4]. Noncoherent or differential ST
coding, which circumvents the need for channel estimation, is
an attractive alternative in such environments.

A number of differential ST coding schemes relying on either
(complex) orthogonal design [5]–[7] or group design [8]–[12]
have been proposed. They offer full spatial diversity with
various tradeoffs between transmission rate and encoding/de-
coding complexity. It is noted that the above differential ST
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coding schemes were designed primarily for narrowband
(flat-fading) channels. To deal with frequency-selective fading
in wideband channels, these narrowband schemes can be
used along with some equalization techniques to eliminate
the multipath-induced inter-symbol interference (ISI) or with
orthogonal frequency division multiplexing (OFDM) to convert
the frequency-selective channel into a set of frequency-flat
subchannels [3]. Whenever there is a complexity constraint,
frequency-domain-based schemes, such as OFDM, are usually
more attractive and preferred to the computationally more in-
volved equalization-based approaches. While it is well known
that OFDM, in general, need to be used with some error control
coding to seek spectral diversity against frequency-selective
fading, it has been a relatively new subject as to how to encode
across space, time, and frequency to ensure the jointly max-
imum spatio-spectral diversity in a differential ST system that
is subject to frequency-selective fading.

For OFDM-based systems, redundant linear precoding (LP)
operating in the complex field, which leads to the so-called
LP-OFDM, provides an effective way to achieve full spectral
diversity [13]. It is shown that LP-OFDM compares favorably
(in terms of bit error rate and spectral efficiency) to coded
OFDM with standard error-control codes. LP-OFDM with
multiantenna transmission and full spatio-spectral diversity has
been discussed in [14]. An alternative scheme reported in [15]
utilizes constellation rotation (CR) [16] with OFDM. In fact,
CR can be thought of as a special form of LP with a rotational
precoding matrix. These schemes yield full diversity only
when the maximum likelihood (ML) detector with exponential
complexity (in block size) is used for decoding.

While the above LP- and CR-based schemes are specially tai-
lored for coherent systems, the research on differential space-
time modulation with full spatio-spectral diversity appears more
scarce. For single-antenna systems, block differentially encoded
OFDM with full spectral diversity was recently studied (e.g.,
[17] and [18]). Diggavi et al. examined both equalization and,
respectively, OFDM-based differential space-time coding [3];
for the latter, however, they did not address how to encode across
the subcarriers, and therefore, full spectral diversity is not guar-
anteed.

In this paper, we extend and provide a general treatment
of the differential space-time-frequency (DSTF) modulation
scheme that was recently introduced in [19] and [20] for
systems equipped with an arbitrary number of transmit an-
tennas. The proposed DSTF scheme guarantees the full spatial
diversity provided by multiantenna transmission/reception, as
well as the maximum spectral diversity offered by multipath
propagation induced frequency-selective fading. It utilizes a
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unitary differential encoder, which decouples the ML detection
in space and time and a novel linear constellation decimation
(LCD) encoder for spectral encoding, which incurs modest
decoding complexity among all full-diversity codes. An outline
of this paper is as follows.

Section II provides an overview of the proposed DSTF
system. The concatenating structure of the spectral encoder and
differential encoder is highlighted. The differential encoder is
first detailed in Section III. It is obtained through block orthog-
onal designs, which are extensions of the classical orthogonal
designs [21], which were recently successfully used for ST
block coding [2]. The differential encoder imposes a unitary
structure on the transmitted code matrices. We discuss how to
exploit the structure to render decoupled ML detection in space
and time.

In Section IV, we derive the performance criteria for code
construction based on pairwise error probability (PEP) analysis.
We show that for an th-order frequency-selective multipath
channel with rich scattering, the proposed DSTF scheme can
produce a diversity order of with transmit
antennas and receive antenna; if receive
antennas are in place, the diversity order can be further in-
creased -fold. Optimum design criteria that maximize the
coding gain, in general, require encoding across all subchan-
nels, which would result in codes with prohibitive decoding
complexity. To overcome the decoding difficulty, we introduce
in Section V a class of short codes, which are referred to
as the linear constellation decimation (LCD) codes, which
encode across a minimum set of subchannels that are necessary
for full diversity. As such, LCD codes are shortest and incur
modest decoding complexity among all full-diversity codes.
We present optimum LCD codes with the largest coding gain
obtained through computer searches. In Section VI, numerical
results are presented to illustrate the performance of the pro-
posed DSTF modulation and coding scheme. We show that
it compares favorably with several existing differential ST
schemes in wideband frequency-selective channels.

During the review process of this paper, we learned of an in-
dependent work by Ma et al. [22], which is similar to our ap-
proach in that both are OFDM-based techniques and guarantee
full spatio-spectral diversity. A notable difference is that in their
approach, independent subcarriers of OFDM are treated as vir-
tual antennas, and therefore, diagonal space-time codes of [9]
are used to provide joint spatial and spectral coding. On the
other hand, our scheme exploits a concatenating structure that
separates spectral and spatial coding. As such, our scheme may
enjoy advantages in both error rate performance and decoding
complexity, since it utilizes a smaller constellation size than that
of [22] for the same number of transmit antennas and spectral
efficiency.

Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters; all vectors are column vectors; superscripts

denote the transpose, conjugate, and conju-
gate transpose, respectively; takes the statistical expecta-
tion; denotes the identity matrix; and denote
an all-zero and, respectively, an all-one vector/matrix; diag
denotes a diagonal matrix; denotes the th element of
matrix ; denotes the vector 2-norm; tr denotes the

Fig. 1. Baseband differential DSTF system withN transmit antennas and one
receive antenna. (a) Transmitter. (b) Receiver.

matrix trace operator; det takes the matrix determinant; and
finally, denotes the matrix/vector Kronecker product [23].

II. SYSTEM DESCRIPTION

Fig. 1 depicts the block diagram of a baseband equivalent
DSTF system with transmit antennas and
receive antenna. The proposed techniques extend trivially to the
case involving multiple receive antennas. The DSTF transmitter
employs a concatenation of a spectral encoder and a
differential encoder , which encode across space, time
and frequency to provide the maximum spatio-spectral diversity
and coding gain.

At the transmitter, information stream
is first serial-to-parallel (S/P) converted to blocks of length

. The spectral
encoder maps to vectors . As will
become clear in Section V-C, the coded symbols of are in
general drawn from a constellation with a larger size than that
of to provide the necessary redundancy. The differential
encoder takes as input consecutive spectrally
encoded vectors and outputs the
following DSTF code matrix:1

...
...

... (1)

Let be the th element of the vector
, for and . This

vector is next OFDM modulated by the inverse fast Fourier
transform (IFFT), parallel-to-serial (P/S) converted, and then
transmitted from the th transmit antenna during the th OFDM
symbol interval. Clearly, modulates the th sub-
carrier of the OFDM symbol , and each DSTF code
matrix is transmitted using OFDM symbol intervals.

1The choice of the parameters N ;N , and N , as well as the encoder
M f� g, will be discussed in Section III.
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At the receiver, the received signal is S/P converted and
OFDM demodulated by the fast Fourier transform (FFT),
yielding vectors ,
where denotes the sample corresponding to the

th subcarrier of the th OFDM symbol. The differen-
tial decoder takes as inputs data vectors

, i.e., the received data
over the transmission of two adjacent DSTF code matrices

and , performs differential decoding, and
outputs estimates . Finally, the
spectral decoder performs decoding and outputs
estimates of the information blocks .

The baseband equivalent channel between the th transmit
antenna and the receive antenna is modeled as a finite im-
pulse response (FIR) filter with coefficients (e.g.,
[24, Sec. 14.5]), where denotes the channel order. Due
to OFDM modulation, the frequency-selective channel is
equivalent to parallel frequency-flat subchannels, with
the frequency response for the th subchannel given by

. The received signal can
be expressed as

(2)

where denotes the zero-mean complex white Gaussian
noise with variance per dimension.

The problem is to design the differential encoder and
the spectral encoder for differential space-time trans-
mission over wideband fading channels. Of primary interest is
to seek the maximum spatio-spectral diversity as well as coding
gain without incurring prohibitive decoding complexity.

Before we delve into the technical details, the proposed
concatenating structure merits additional discussions. To en-
sure joint spatio-spectral diversity, it is necessary to introduce
correlation across space, time, and frequency in the transmitted
signal. While one could consider using a single space-time-fre-
quency encoder to provide the needed correlation, design of
such an encoder is, in general, intricately complicated, and so
are the resulting encoding and decoding schemes (see [25] for
a similar dilemma involving coherent space-time modulation).
A remarkable advantage offered by concatenating two inde-
pendent encoders (viz., and ) is that the design
task is greatly simplified, and so is the encoding and decoding
complexity. In particular, we will show that a nonbinary block
code encoder can be used to encode across frequency (different
subcarriers) to provide full spectral diversity and coding gain,
and a unitary differential encoder can be used to encode across
space and time at each subcarrier to provide maximum spatial
diversity. The corresponding differential space-time decoding
is linear (see Theorem 1), whereas the complexity of spectral
decoding is controlled by utilizing spectral codes with min-
imum code length that is necessary to provide full spectral
diversity (see Section V-C).

III. DIFFERENTIAL MODULATION

The proposed differential scheme makes use of block orthog-
onal designs. Classical orthogonal designs [21] have been re-
cently exploited to construct space-time block codes for nar-
rowband systems (e.g., [2] and [26]). Block extensions of or-
thogonal designs have been discussed in [27] for coherent com-
munications in frequency-selective channels. Our interest here
is to utilize them for differential space-time transmission. We
consider complex block orthogonal designs in our case.

A. Square and Nonsquare Complex Orthogonal Designs

To introduce necessary notation, we briefly review complex
orthogonal designs [2]. A (generalized) complex orthogonal de-
sign of size in variables is an matrix

, formed by entries and
their linear combinations, that satisfies

for some positive constant . A complex orthog-
onal design can be represented as [2]

(3)

where and are real matrices that satisfy [2]:

(4)

(5)

(6)

where denotes the Kronecker delta.
To facilitate differential modulation, we classify complex

orthogonal designs into two categories: square and non-
square complex orthogonal designs. Square designs are those
with , which exist only for powers of two, i.e.,

, and which also form the base of nonsquare
designs with (and, necessarily, [2]).
Specifically, any nonsquare complex orthogonal design can be
formed by the first rows of the corresponding base square
design [2]. For example, a nonsquare design for is
formed by the first seven rows of the base square design with

. The ratio

is called the rate of the orthogonal design. It is well known that
full-rate (i.e., ) complex orthogonal designs exist only
for . The best rate known for and is ,
whereas for , it is [2], [26], [28]. For easy
reference, we provide below the square designs for and

transmit antennas, which are used in Section VI:

• transmit antennas [2], [29]:

and

(7)
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• transmit antennas [26]:

and

(8)

Other square designs can be found in [28].

B. Proposed Differential Encoder

Back to the DSTF system, the differential encoder
in Fig. 1(a) takes as input consecutive vec-

tors: . Let be an
matrix formed from these vectors through the following block
complex orthogonal design [cf. (3)]:

(9)

where and are matrices associated with a com-
plex orthogonal design of size , which is identical to the size
of a base square complex orthogonal design:

if
if
if and

(10)

We reiterate that a square design implies . Let the first
transmitted DSTF code matrix be

(11)

where denotes the total energy emitted from all transmit an-
tennas per subcarrier, and [cf. (1)]

...
...

...

The proposed differential encoding scheme proceeds as if there
were transmit antennas:

(12)

The matrix sequence is defined as

...
...

...

(13)

where diag . Throughout the paper, we
assume that the coded symbols are drawn from a con-
stant-modulus constellation (e.g., PSK) with unit-energy
elements. This assumption, along with the orthogonal design
(9), suggests that is a (scaled) unitary matrix with

(14)

Since we have rather than antennas, we cannot proceed
to transmit . Instead, the following matrix is transmitted
[cf. (1)]:

(15)

where . That is, the last
rows of are discarded. It is noted that due to the

unique structure of in (13) (formed by diagonal ma-
trices), the differential encoding (12) is performed at each sub-
carrier.

Let and diag .
In vector form, the received signal can be written as [cf. (2)]

(16)

where ,
and we note that . Let

. We can write (16) col-
lectively as

(17)

where , and
. An equivalent form of (12) is

(18)

where [see (9)]

(19)

with diag . Note that is unitary by con-
struction. Substituting (18) into (17) yields

(20)

where . Due to the unitary
transformation , consists of independently and iden-
tically distributed (i.i.d.) complex Gaussian entries with zero-
mean and variance per dimension. Substituting (19) into (20)
followed by simplification gives

(21)



2232 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 6, JUNE 2005

where and are vectors formed from the th
row of and , respectively, and
diag . Equation (21) is referred to as the
fundamental differential receiver equation. Remarkably, the un-
known channel vectors are absent from this equation. The
variance of the virtual noise is twice that of the real channel
noise . This translates to a 3-dB loss of signal-to-noise
ratio (SNR), which is well-known for standard single-antenna
differential modulation.

Due to the unitary structure of the proposed differential en-
coder, the ML detection of the space-time multiplexed vectors

is decoupled. In particular, we have the fol-
lowing result.

Theorem 1: The ML detection of the coded vectors
based on two adjacent vectors

and decouples into individual detections:

(22)

where denotes a valid codebook (of the spectral
encoder ), and

(23)

(24)

Proof: See Appendix A.
Hence, the ML detector amounts to a linear filtering (in space

and time), as described in (23), followed by spectral decoding
in (22). The complexity can be further simplified a little bit by
noticing that the premultiplication by in (23) is
not needed since it cancels the in (22). Next, we
discuss how to design the spectral encoder .

IV. PERFORMANCE CRITERIA

We consider the PEP, which is defined as the probability of
the event that the ML detector erroneously chooses codeword

as for code design. The following
assumption is made through our analysis.

A1) (Correlated) Rayleigh Fading: The channel vectors
are zero-mean

complex Gaussian random vectors with nonsingular covariance
matrix , where .

Extensions to other channel models can be made in a manner
as in [1]. By (57) and Theorem 1, the conditional PEP at high

SNR can be approximated by (dropping the indices
and for notational brevity) [24]:

(25)

where , and . Using
(16) in (24) and ignoring the noise at high SNR, we have

where is defined in (13), ,
and the second equality is due to (14). It follows that

where diag , the third equality uses the fact that
, with denoting the -point FFT matrix:

, and finally

(26)

Denote the eigenvalue decomposition (EVD) of by
, where is diagonal formed by the eigenvalues of

, and contains the eigenvectors. Furthermore, let

(27)

and denote its EVD by , where
diag , with , and
the eigenvectors are contained in . Then

(28)

where . Clearly, is complex Gaussian
with zero-mean and identity covariance matrix. Substituting
(28) into (25) and taking the expectation with respect to , we
have [1], [13]

(29)

where rank rank .
Let and . Following [1],

and are referred to
as the diversity gain and coding gain, respectively. The design
criteria are as follows. [1]
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• Rank criterion: Maximize the diversity gain over
all possible coding schemes.

• Product criterion: Maximize over all possible
coding schemes.

Next, we summarize the maximum diversity and coding gain
of the proposed DSTF system.

Theorem 2: Under the channel condition A1), the maximum
diversity gain of the DSTF system equipped with transmit
antennas and one receive antenna is , which
is achieved if and only if the minimum Hamming distance of the
code is no less than . Any maximum-diversity achieving
code has a coding gain that is upper bounded by

det (30)

where denotes the minimum Euclidean distance of the code
[see (33)].

Proof: First note that the minimum rank of
is one. This occurs when the minimum Hamming distance of
any two different codewords and is one or, equivalently,
when the spectral encoder is trivial, i.e., in Fig. 1(a) is
simply an identity. Hence, the minimum diversity of the system
is (due to the block diagonal structure of ), which cor-
responds to the spatial diversity. The maximum possible rank
of is since its dimension is as well. Matrix

has rank exactly equal to for all error events
if and only if the minimum Hamming distance is no less than

. This is because is a Vandermonde ma-
trix, and thus, any rows of are linearly independent,
provided that . Therefore, the maximum diversity is

, due to, again, the block diagonal structure of .
This is the maximum diversity order offered by the system.

Now, consider an arbitrary full diversity code (i.e., has
full rank). The coding gain is maximized if and only if det
is maximized. Using (26) and (27), we have

det det

det det

det det (31)

We next observe that is a Hermitian and Toeplitz
matrix, with identical diagonal elements tr . By the
Hadamard inequality [30 , p. 477]

det tr (32)

where tr is the pairwise Euclidean
distance between the codewords and . The equality in (32)
holds if and only if is diagonal. Note that the above
bound is asymptotically (for large ) tight since is
asymptotically diagonal (e.g., [31]). It follows that the coding
gain is upper bounded by (30), where the minimum Euclidean
distance of the code is defined as2

(33)

and the proof is complete.

2d should not be confused with the minimum Euclidean distance of the
constellation points of A .

To summarize, optimum codes based on the rank criterion
should have a minimum Hamming distance of , which
yields the maximum spatial-spectral diversity gain. Meanwhile,
to achieve the maximum coding gain, det has to
be maximized. The upper bound (30) indicates that it is benefi-
cial to maximize the minimum Euclidean distance of the code,
provided that the constraint on the minimum Hamming distance
is met. These rules can be utilized to construct optimum codes.
In general, full-diversity codes with optimum coding gain re-
quire encoding across all subchannels, which leads to exponen-
tial (in ) decoding complexity. For practical applications, it
is more interesting to develop short codes that encode across a
minimum set of subchannels but still achieve full diversity and
significant coding gain. In the next section, we develop such
short codes.

V. SPECTRAL ENCODING: LCD CODES

In this section, we present a class of short codes, referred to
as the linear constellation decimation (LCD) codes, that en-
code across a minimum set of subcarriers to ensure the full
spatio-spectral diversity and significant coding gain. LCD codes
have the minimum code length and, therefore, incur modest de-
coding complexity among all full-diversity codes. LCD codes
are used in conjunction with a subcarrier interleaver that inter-
leaves coded symbols in frequency. In the following, we first
briefly review the idea of subcarrier interleaving. Next, we de-
velop the corresponding code design criteria that incorporate
subcarrier interleaving. These criteria are employed to construct
LCD codes. Finally, we revisit the issue of ML detection when
LCD codes are used.

A. Subcarrier Interleaving

Our notion for subcarrier interleaving follows [15]. Let
collect the indices of all subcarriers. Sub-

carrier interleaving is a partition of into nonoverlapping
subsets , where denotes
the number of subcarriers grouped in the th subset. Subcar-
rier interleaving allows transmitting multiple short codewords
over different subcarrier sets. Since ML detection of these code-
words is independent, using short codes along with subcarrier
interleaving can lead to significant computational saving com-
pared with using long codes. For an th-order Rayleigh fading
channel satisfying A1), it is necessary to have to
ensure full spectral diversity [15]. On the other hand, since the
ML decoding complexity is exponential in should be as
small as possible. Hence, we choose . Among var-
ious alternatives, the following subcarrier interleaving scheme
is conceptually simple, by which the subcarriers within a subset
are maximally separated in the frequency domain:

(34)

where , and is assumed to be an integer
multiple of . For simplicity, we will hereafter assume this
subcarrier interleaving scheme.
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B. Design Criteria

The input–output relation for the th subcarrier subset is
given by [cf. (57)]

(35)

where
, and

are quantities associated with the th subcarrier
subset, which are similarly defined as their counterparts in (57).
Note that denotes the codebook used for the

th subset. The maximum diversity and the associated coding
gains of the proposed DSTF system with subcarrier interleaving
are summarized in the following result.

Theorem 3: Under the channel condition A1), the max-
imum diversity gain of the DSTF system with transmit
antennas, one receive antenna and subcarrier interleaving (34)
is , which is achieved if and only if the
codebook has a uniform Hamming distance of . Any
maximum-diversity achieving code has a coding gain given by

det (36)

where denotes the minimum product distance of the code
[see (41)].

Proof: Following a PEP analysis similar to the one in Sec-
tion IV, we can show that the pairwise diversity gain with sub-
carrier interleaving is rank , where [cf. (26)]

(37)

The diagonal matrix , which is similar to in (26),
is formed by the difference of two different codewords
in , and is formed from rows

of the FFT matrix .
A direct calculation shows that is orthogonal:

(38)

It follows that rank rank . Hence, the
maximum diversity gain is , which is identical to that
in Theorem 2, and is achieved if and only if the code has
a uniform Hamming distance .

Likewise, the pairwise coding gain of any maximum-diver-
sity achieving code with subcarrier interleaving is [cf. (31)]

det det (39)

Note that

det det

det det

(40)

where the third equality is due to (38), and det
denotes the pairwise product distance of the code. It follows that
the maximum coding gain is (36), where the minimum product
distance of the codebook is defined as

det (41)

which concludes the proof.
Hence, subcarrier interleaving incurs no loss of diversity.

Note that a Euclidean distance upper bound similar to (30)
is less meaningful here since it requires a large (i.e., the
channel order) to be tight, as opposed to the requirement for a
large (the number of subcarriers) there. Hence, for maximum
coding gain, the product distance , rather than the Euclidean
distance of the code, has to be maximized in the current case
with subcarrier interleaving.

C. LCD Codes

Even with subcarrier interleaving, exact maximization of the
product distance is still highly involved; in general, there is
no closed-form solution. In what follows, we introduce one way
of building linear codes by means of constellation decimation.
We show that these LCD codes guarantee full spatio-spectral
diversity, as well as substantial coding gain compared to other
heuristic codes.

The subcarrier subset index is dropped for notational
brevity. To reduce decoding complexity, we consider codes
with a length of , which is the minimum code length
to achieve the maximum diversity. To achieve a code rate of

bits per coded symbol using a set of interleaved
subcarriers, we need a codebook with distinct
codewords (of length ), drawn from an -ary PSK
constellation . The need for a PSK constellation is due to
the unitary differential mapping described in Section III. Let

denote
the th codeword. We first present a result about the choice of
the constellation size .

Proposition 1: A necessary condition for achieving the max-
imum diversity gain is .

Proof: Suppose . Then, there exist and
for with , which implies that the minimum
Hamming distance of the code is less than . According
to Theorem 3, the code cannot achieve the maximum diversity
gain.

Note that for codes with , the minimum product
distance is zero since different codewords must share at least
one identical coded symbol at one place. We choose the min-
imum constellation size to seek the minimum de-
coding complexity. This choice, however, has the following im-
plication.

Proposition 2: If the minimum constellation size
is adopted, then all symbols in must appear in each row of the
codebook once and only once,
in order to achieve the maximum diversity gain.

Proof: First, if any symbol in appears in a row of
for more than once, the minimum Hamming distance of the re-
sulting code is less than , which loses the maximum di-
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Fig. 2. The 8-PSK constellation.

versity gain. On the other hand, the fact that any symbol in
cannot appear in a row of more than once implies that each
symbol must appear at least once, in order to have a codebook
of distinct codewords.

If we label the constellation points in as
(see, e.g., the 8-PSK constellation shown in Fig. 2) and form the
sequence , Proposition 2 mandates that
each row of be a permutation of . It might be asked if any
permutation may lead to loss in diversity. The answer is no.

Theorem 4: Assuming the minimum constellation size
, any code with rows formed by any permutation

of the sequence attains the maximum diversity gain; con-
versely, any maximum-diversity achieving code has rows
that are permutations of .

Proof: The th row of codebook , being
a permutation of , indicates that all codewords in differ
at the th coded symbol, which increases the Hamming distance
by one. Since there are a total of rows, has a uni-
form Hamming distance, thus achieving the maximum diversity
order. The converse statement follows directly from Proposition
2.

Following Theorem 4, a simple calculation indicates that
there are a total of distinct codes of code length ,
all achieving the maximum diversity. An exhaustive search
for codes with the largest product distance quickly becomes
infeasible, even for relatively small and . To facilitate code
construction, we introduce the idea of constellation decimation,
which effectively imposes a linear structure on the code. The
linear structure makes the analysis of distance property and
search for good codes significantly easier.

Definition 1 (Constellation Decimation): Let
, and denote the th element of

. Denote by the th
decimation of , where

.
Consider the 8-PSK constellation shown in Fig. 2 with

. It is straightforward to verify
that

One purpose of applying con-
stellation decimation is to implement symbol permutation in a
structured way. One can see that some decimation factors (e.g.,

) are improper in the sense that the decimated sequence

does not include all symbols in . To avoid such improper
decimation factors, we recall the following result.

Proposition 3: [32] Sequence has period gcd ,
where gcd denotes the greatest common divisor.

Hence, proper decimation requires that and be relatively
prime. The codebook is an matrix, each row
of which is obtained by a proper decimation of . We use the
notation

(42)

to signify that codebook is obtained by using decimation
factors for the th row of . Some examples
of using constellation decimation for code construction are in
order.

Example 1 (Repetition Coding): Consider the 8-PSK con-
stellation shown in Fig. 2 with unit-energy symbols and code
rate bit per coded symbol. This implies that the min-
imum constellation size . Assume
(three-ray channel). Using all-one decimation factors, we ob-
tain , or

(43)

which is effectively a repetition code. The fact that repetition
codes achieve full spectral diversity can be explained in an intu-
itive manner. Specifically, since an th-order channel can have
at most channel zeros, one of the repetitive transmissions
is guaranteed to survive. The minimum product distance for this
code is (cf. Fig. 2), where , which
turns out to be the smallest among all full-diversity codes. Codes
with a larger minimum product distance are appealing since they
translate to a larger coding gain.

Example 2 (Optimum LCD Coding): Consider again the
8-PSK constellation with unit-energy symbols, bit per
coded symbol, , and . New LCD codes
can be constructed by changing the decimation factors. Let us
examine , or

(44)

The minimum product distance for this code is ,
where , and . At
high SNR, this translates to a coding gain [cf. (36)] of

dB relative to the
previous repetition code. The code is in fact the
optimum LCD code in the sense that it achieves the largest
coding gain among all LCD codes with the same constel-
lation size and code length. It is, however, not the only
optimum LCD code. A quick computer search indicates
that there are a total of seven optimum LCD codes, namely,

,
all yielding the same minimum product distance. Note that
LCD codes differing by a permutation of the decimation factors
are considered equivalent, and only one of them is listed.
For example, the following codes are considered equivalent:

.
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TABLE I
OPTIMUM LCD CODES, WHERE R DENOTES THE CODE RATE IN BITS PER CODED SYMBOL, L+ 1 DENOTES THE BLOCK LENGTH (DIVERSITY ORDER), �

DENOTES THE MINIMUM PRODUCT DISTANCE OF THE CODE, AND M SIGNIFIES THE USE OF THE M -ARY PSK CONSTELLATION

The above examples show that optimum LCD codes attain
an impressive coding gain over heuristic codes such as repeti-
tion codes. In fact, the relative coding gain becomes even more
prominent as the code rate and/or diversity order increases. For
example, at a code rate of bits per coded symbol with

, a comparison of the minimum product distance
of the optimum LCD code (see Table I) and the rep-
etition code reveals that the former yields a coding gain
of about 15 dB over the latter!

Remark 1: The LCD codes are linear, since the scaling
(modulo- ) of a codeword or the sum (modulo- ) of any
two codewords results in another valid codeword. In fact, all
LCD codes can be thought of as nonbinary linear
block codes, where each codeword contains one message
symbol, and the code length is the minimum length
required to achieve the maximum diversity. LCD codes are also
maximum distance separable since their minimum Hamming
distance attains the Singleton bound , which is an upper
bound on the minimum Hamming distance of all linear block
codes [24 , p. 461]. Systematic LCD codes are easy to imple-
ment, simply by adopting the decimation factor at least
once (usually, it is by convention).

Since LCD codes are linear, the set of Hamming distances
between any pair of distinct LCD codewords is identical to the
set of Hamming weights of the nonzero codewords in the code
[24 , p. 419]. This simplifies remarkably the search for LCD
codes with good distance structure. In particular, we only need
to examine the weight structure of the codewords, rather

than the distance between codeword pairs. In Table I, we
list optimum LCD codes resulting from our computer searches
for several values of the code rate and diversity order. System-
atic encoding is assumed with . Hence, only
are shown for brevity. Note that for frequency-flat channels (i.e.,

), the need for spectral encoding vanishes; the decimation
factor is shown as in this case. The minimum product dis-
tances of the various LCD codes are also shown in Table I.
It is clear that as the constellation size increases, optimum LCD
codes are abundant, and all achieve identically the same diver-
sity and coding gain. Note that diversity gain and coding gain
are only asymptotic (high SNR) performance measures. Hence,
optimum LCD codes listed within the same category may have
(slightly) different finite-SNR performance.

Remark 2: We see from Table I that as (channel order) in-
creases, the constellation size increases rapidly, and so does
the decoding complexity. In general, for systems with a large
channel order, it suffices to use LCD codes based on a hypothe-
sized channel order that is (usually much) smaller than the true
channel order, since it is known that the diversity-induced per-
formance gain diminishes as the diversity order increases (e.g.,
[24]). For systems rich in both spatial and spectral diversity, it
is recommended to maximize the spatial diversity first, before
seeking additional spectral diversity. We will further elaborate
on this point with a numerical example in Section VI.

Remark 3: LCD spectral codes are also closely related to the
cyclic space-time diagonal codes of [9]. In particular, the latter
can be obtained by forming diagonal code matrices using LCD
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code vectors. Our LCD interpretation establishes an interesting
connection to permutation codes (via Theorem 4) and offers a
new perspective for code construction. Specifically, it is possible
to employ other linear or nonlinear constellation operations that
may result in new codes with not only full diversity but higher
coding gain as well. This remains an interesting future research
subject.

Remark 4: Finally, we comment on the transmission rate of
the proposed DSTF system. For a DSTF system using a spectral
encoder with code rate bits per coded symbol, the overall
transmission rate is defined as , where we recall
that is the rate of the orthogonal design used for differential
encoding (see Section III).

D. Maximum Likelihood Detection

With subcarrier interleaving, the ML detector based on (35)
reduces to parallel detectors, each operating on signals re-
ceived on the th subcarrier subset [cf. (22)]:

(45)

where denotes the codebook for the th subcarrier subset.
When repetition coding is utilized with subcarrier inter-

leaving, the ML detector (45) can be simplified. In particular,
let , with

denoting its th element. In addition, let
denote the message symbol carried by the repe-

tition codeword . The ML detector reduces to

(46)

which reduces to rounding the phase angle of
to the nearest multiple of (assuming -ary PSK).

VI. NUMERICAL SIMULATIONS

We consider an OFDM system with subcarriers, and
the following schemes are utilized for differential modulation.
The performance measure is the bit-error rate (BER) as a func-
tion of , which is the SNR per receive antenna per sub-
carrier [cf. (2) and (11)].

• DT: Differential OFDM with one transmit (Tx) antenna
and scalar differential PSK. It is acronymed as DT since
differential modulation is performed across two adjacent
OFDM symbol intervals (i.e., time) and not across fre-
quency or space. This system yields no diversity.

• DST: Differential space-time coded OFDM with multiple
Tx antennas. Differential modulation is performed on each
subcarrier using the cyclic group differential space-time
codes [9], which encode across space and time but not
frequency.

Fig. 3. BER versus E =N with N = 2 Tx antennas, N = 1 Rx antenna,
and transmission rate R = 1 b/s/Hz in independent Rayleigh block-fading
channels of channel order L = 2.

• DSTF-NSE: The proposed DSTF modulation scheme
with multiple Tx antennas but no spectral encoding (NSE).
Hence, similar to DST, coding is performed across space
and time but not frequency.

• DSTF-REP: DSTF with multiple Tx antennas and repeti-
tion codes for spectral encoding.

• DSTF-OPT: DSTF with multiple Tx antennas and op-
timum LCD codes for spectral encoding.

A. Independent Rayleigh Block-Fading Channels With Known
Channel Order

In this case, the channel coefficients are generated as i.i.d.
complex Gaussian variables with zero-mean and variance

, where . They are fixed within one block con-
sisting of multiple DSTF matrices and change independently
from one block to another. The following examples also assume

receive (Rx) antenna for all methods.
Fig. 3 depicts the BER of the single-antenna DT and the mul-

tiantenna methods for when the transmission rate is
b/s/Hz (see Remark 4 for the definition of ). To achieve

b/s/Hz, both DT and DSTF-NSE employ BPSK and
DST utilizes the rate-1 2-Tx cyclic group code with quadra-
ture phase shift keyng (QPSK) [9], whereas both DSTF-REP
and DSTF-OPT use 8PSK. It is seen that DST and DSTF-NSE
achieve a diversity order of 2 (viz., spatial diversity), as can be
verified from the BER-SNR slope. This confirms that none of
them yields spectral diversity. We see that spectral diversity is
achieved by DSTF-REP and DSTF-OPT. An inspection of the
BER-SNR slope indicates that both schemes achieve a diversity
order of about 6 at high SNR. This is the maximum spatio-spec-
tral diversity order offered by the system. Finally, we observe
that DSTF-OPT yields a coding gain of about 2.5 dB relative to
DSTF-REP, which agrees with the prediction made in Example
2 of Section V-C.

Fig. 4 depicts a scenario similar to that of the previous ex-
ample, except that b/s/Hz. To achieve this transmission
rate and both DT and DSTF-NSE employ QPSK, DST utilizes
the rate-2 2-Tx cyclic group code with 16PSK [9], while both
DSTF-REP and DSTF-OPT use 64PSK. Observations are
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Fig. 4. BER versus E =N with N = 2 Tx antennas, N = 1 Rx antenna,
and transmission rate R = 2 b/s/Hz in independent Rayleigh block-fading
channels of channel order L = 2.

similar to the last example with a few exceptions. First, we
notice that even though both DSTF-NSE and DST achieve a
similar diversity order, the former, which does not enforce a
group structure in coding, yields an energy saving of about
3 dB over the group-based DST. This was also observed in
[7] for high-rate transmission in flat-fading channels. Second,
DSTF-REP becomes energy ineffective due to loss in coding
gain. The loss relative to DSTF-OPT is about 15 dB at high
SNR, which agrees with the prediction made in Section V-C.
Note that the BER-SNR slope of DSTF-OPT at high SNR is
similar to that of DSTF-OPT, indicating that the former is still
a full-diversity scheme.

We now consider Tx antennas for the multiantenna
schemes. Since no rate-1 complex orthogonal design exists for

, all DSTF methods employ the square
orthogonal design in (8). To account for rate loss and make
fair comparison, a rate-3/4 convolutional code is used for all
non-DSTF schemes so that all methods are compared at the
same spectral efficiency. The rate-3/4 code is obtained by punc-
turing a rate-1/2 convolutional code [24 , p. 499]. It is used along
with subcarrier interleaving to provide coding across subcarriers
(but not across OFDM symbols), which may provide spectral di-
versity.

Fig. 5 depicts the results when Tx antennas are used
by the multiantenna schemes, and the effective transmission
rate is b/s/Hz. In this case, both DT and DSTF-NSE
employ BPSK, DST utilizes the rate-1 3-Tx cyclic group code
with 8PSK [9], and both DSTF-REP and DSTF-OPT use 8PSK.
Meanwhile, Fig. 6 depicts a similar scenario, except that the
transmission rate is b/s/Hz. To achieve this rate, both
DT and DSTF-NSE employ QPSK, DST utilizes the rate-2
3-Tx cyclic group code with 64PSK [9], and both DSTF-REP
and DSTF-OPT use 64PSK. From both figures, it is seen that
DSTF-OPT overall compares favorably with the other schemes.
In addition, the following remark is in order.

Remark 5: It is seen from Figs. 5 and 6 that the rate-3/4
convolution code cannot provide full spectral diversity. Inter-
estingly, Wang and Giannakis [13] compared their hand-crafted
full-diversity spectral codes with conventional error-control

Fig. 5. BER versus E =N with N = 3 Tx antennas, N = 1 Rx antenna,
and transmission rate R = :75 b/s/Hz in independent Rayleigh block-fading
channels of channel order L = 2.

Fig. 6. BER versus E =N with N = 3 Tx antennas, N = 1 Rx antenna,
and transmission rate R = 1:5 b/s/Hz in independent Rayleigh block-fading
channels of channel order L = 2.

codes (ECCs) in OFDM systems using coherent detection and
had a similar observation. In principle, it is possible to use more
powerful ECCs along with differential space-time modulation
to provide full spatio-spectral diversity. However, it remains
unclear how to select such codes, how they should be used with
constellation mapping to provide the necessary minimum Ham-
ming distance (cf. Theorem 4), and how subcarrier interleaving
should be performed, etc. Indeed, all these issues are critical to
the diversity and coding gain that is achieved in the end. Due
to the popularity of standard ECCs in many wireless systems,
an investigation into these issues is well motivated and should
be pursued in the future.

B. Unknown Channel Order

In some cases, knowledge of the exact channel order might
be unavailable, and it would be of interest to examine the im-
pact on DSTF if an incorrect channel order is assumed. To
this end, we consider a scenario of Rayleigh fading involving

independent paths with equal variance , and the
hypothesized channel order is and , respectively.



LI: DIFFERENTIAL SPACE-TIME MODULATION OVER FREQUENCY-SELECTIVE CHANNELS 2239

Fig. 7. BER versus E =N for DSTF-OPT with N = 2 Tx antennas,
N = 1 Rx antenna, and transmission rate R = 1 b/s/Hz in independent
Rayleigh block-fading channels of channel order L = 2 when the channel
order is assumed to be L = 1; 2, and 3.

Fig. 8. BER versus E =N for DSTF-OPT with N = 2 Tx antennas, N =
1 Rx antenna, and transmission rate R = 1 b/s/Hz in correlated Rayleigh
block-fading channels of channel order L = 1 when the channel correlation
coefficient is � = 0; 0:1; 0:5, and 0:8.

The results are shown in Fig. 7 for b/s/Hz, where only
DSTF-OPT is considered. The corresponding constellation is
QPSK for , 8PSK for , and 16PSK for .
Fig. 7 suggests that overestimating (i.e., ) incurs no
loss of diversity since the BER-SNR slope for both and
3 are almost identical. In fact, it appears to slightly improve the
coding gain compared to . On the other hand, underesti-
mating leads to some loss of spectral diversity.

C. Correlated Fading Channels

We now examine the effect of correlated channel fading on
DSTF by considering a scenario where the channel taps of each
Tx-Rx pair are correlated, but channels among different Tx-Rx
pairs are independent. In particular, the channel correlation ma-
trix (see Section IV) is assumed to be

, where is a symmetric Toeplitz matrix with the first row
given by . Hence, captures the significance of
correlation among the channel taps. Fig. 8 depicts the BER for

Fig. 9. BER versus E =N for DT and DSTF-OPT with transmission rate
R = 1 b/s/Hz in Rayleigh continuous-fading channels simulated according to
Channel Model A (L = 8) specified in HIPERLAN/2.

DSTF-OPT with b/s/Hz when the channel coefficients
are independent , weakly correlated , moder-
ately correlated , and strongly correlated . It
is seen from Fig. 8 that for all cases, full diversity is achieved,
which supports the previous analysis in Sections IV and V. How-
ever, as the correlated increases, a loss of coding gain becomes
more pronounced.

D. Continuous-Fading Channels

In the final example, we consider continuous-fading channels.
The channel coefficients are generated according to Channel
Model A with , as specified in HIPERLAN/2 [33], and are
time-varying according to the Jakes model with terminal speed
of 3 m/s and carrier frequency of 5.2 GHz. As noted in Re-
mark 2, attempting to achieve full spectral diversity in this case
is computationally expensive. Instead, we seek full spatial but
partial spectral diversity using a hypothesized channel order .
Fig. 9 depicts the BER for DSTF-OPT with transmission rate

b/s/Hz, hypothesized channel , and
Tx antennas, and or Rx antennas, respectively. As
a reference, the BER of the single-Tx single-Rx DT scheme is
also shown. It is seen that only incremental performance gain is
achieved as increases. On the other hand, when is in-
creased to Rx antennas, the gain becomes considerably
larger. This suggests that spatial diversity should be maximized
first before seeking additional spectral diversity.

VII. CONCLUSION

We have presented a differential modulation scheme (viz.,
DSTF) for systems equipped with multitransmit antennas in
frequency-selective channels. Through both analysis and sim-
ulation, we have shown that the DSTF system guarantees full
spatio-spectral diversity and significant coding gain. DSTF is
computationally quite appealing due to several unique designs.
In particular, a unitary structure based on block orthogonal de-
signs has been imposed for differential encoding, which renders
the ML decoding decoupled in space and time. For spectral en-
coding, we have introduced LCD codes that are nonbinary block
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codes obtained by decimating a phase-shift-keying constella-
tion with a group of decimation factors that are co-prime with
the constellation size. Since LCD codes have the shortest code
length for full diversity, they incur modest decoding complexity
among all full-diversity codes.

It should be noted that although it is possible to use standard
error-control codes for spectral encoding along with differential
space-time modulation to provide joint spatio-spectral diversity,
there are a number of issues that are yet to be resolved, including
how to select such full-diversity codes, how they should be used
with constellation mapping to provide the necessary minimum
Hamming distance, and how subcarrier interleaving should be
performed, etc., in order to ensure full diversity. On the other
hand, it should also be noted that the proposed LCD codes can
be combined with standard error-control codes to achieve ad-
ditional coding gain without losing full diversity. These issues
will be examined in the future.

APPENDIX A
PROOF OF THEOREM 1

For notational brevity, let

Then, (21) can be written as

(47)

Let , and
. We have

(48)

where

Recall that the real and imaginary components of the com-
plex Gaussian vectors are i.i.d. with zero-mean and
variance per dimension (see Section III). It follows that

is also complex Gaussian with zero-mean and covari-
ance . Hence, the ML detection
of based on (48) amounts to the minimization of the
Euclidean distance . A brute-force
minimization would incur exponential complexity. This can be
avoided by exploiting the following result.

Proposition 4: The matrix
, where is defined in (24), is semi-

unitary:

(49)

Proof: We first note from (4)–(6) that

(50)

(51)

Exploiting (50), we have [for notational brevity, we denote
by ]

where the second equality is due to the mixed product rule of
the Kronecker product [23 , p. 244]. Likewise, using (51) yields

Hence

(52)

(53)

where the second equality of (52) is because is diag-
onal with non-negative entries [see (24)]. It follows that

which implies (49).
Based on Proposition 4, we can construct a unitary matrix

, where is a matrix
(obtained by, e.g., a Gram–Schmidt procedure [30]) that is or-
thogonal to : . Without altering the ML solution,
we multiply both sides of (48) by , which yields

(54)

(55)

where , and . The reason that
(55) contains only noise is because , which cancels
the signal component. Thus, we can discard . Moreover,
it is noted that the two halves of are conjugate of each
other, i.e., , where the vector

is formed by the first elements of . Hence, it is
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sufficient to use for detection, and can be expressed
as

(56)

where is similarly formed by the first elements of
. Finally, we observe that, due to the block diagonal struc-

ture of the matrix inside the square brackets, the above equation
reduces to separate equations:

(57)

where and denote the th sub-
vector of and , respectively. It is noted that

are independent Gaussian vectors with zero-mean and co-
variance matrix . One can easily verify that
can be collectively expressed as in (23). The ML detector is
the minimizer of the Euclidean distance

. A simple expansion of
yields (dropping indices and )

(58)

The first term can be discarded since it is independent of vector
. Using the assumption that is drawn from a constant-modulus

unit-energy constellation, one can see that the second term can
also be discarded. In particular, recalling that is diagonal
[see (24)], we have

where and denote the th
sample of vectors and , respectively.
Hence, the ML detection reduces to the maximization of the
decoupled correlation metric (22), and the proof is complete.
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